- You
are Required to Check Your SHSU Email Account Every
Day
-
Moisture in the
Atmosphere
-
Reading Assignment
The textbook for this course is entitled: eWeather and Climate by Netoff, Gillespie, Fujimoto-Strait and Tiller. Upon purchase of the Lab Manual for the Course GEO 1401/Lab, you will be provided a link to a downloadable pdf which will serve as the textbook for this course GEOG 1401/Lecture. The Lab Manual/cd text is only available for purchase online at: bearkatsonline.com.
-
- Note: This
unit contains a great many graphics and photographs. The
load time may
vary depending upon your
computer and web connection.
-
- Click the
radio
button located on the left
page margin opposite selected graphics for additional information.
Be
SURE
and
close
the message box when you are done.
-
01. When the word Storms is used in relation to climatic
controls, we are not talking about tornadoes, hurricanes and the
like. Rather this control deals with the presence of moisture in
the atmosphere, the various means by which moisture is removed
from the atmosphere and the forms the moisture takes.
Meteorologists are very interested in the amount of moisture in
the air not only because the presence of water vapor is an
indicator of the potential for precipitation, but the energy
released as water vapor changes states provides the energy for
storms.
-
- Moisture, or humidity, is a general term we will use to
describe the amount of water vapor in the air. There are a number
of ways to express the amount of humidity in the air -- the most
common being absolute humidity, relative humidity and mixing
ratio. We will take up each of these shortly.

-

-
-
02. Let's begin our look at moisture by considering the ideas of
saturation and vapor pressure. In the graphic below, suppose we
have a sealed container that is half full of water. The
temperature of both the water and the totally dry air (the air
contains no water vapor) above the water is 70 degrees F. Assume
that if we were to insert a barometer into the air overlying the
water we would get a pressure reading of 29.92 inches of
mercury.
-

-
-
03. In the graphic below the process of evaporation begins with
the movement of one molecule of water vapor from the liquid water
into the dry air above. As this first molecule makes its way into
the air, we should expect to see an increase in the air pressure
being registered on the barometer -- after all we have now added
one additional gas (water vapor) molecule to the air above the
liquid water. Now granted, in order to measure the pressure
increase of one molecule, we would have to be dealing with a very
sensitive barometer -- but the point is one additional molecule
into the air would result in some increase in the air pressure
within the sealed container. This portion of the total air
pressure that is accounted for by the presence of water vapor (in
this case just one molecule) is called vapor pressure.
-
- As the process of condensation continues and the presence of
water molecules grows greater, we will see an increase in vapor
pressure within the sealed container.
-
-

-
-
04. In our final graphic in this sequence, we have reached the
point where the air can not hold any additional water molecules.
At this point, the air is said to be saturated -- it is at
capacity. Any increase in vapor pressure (the result of any
additional water molecules being moved into the air over the
water) will cause a corresponding number of water vapor molecules
to move from the air to (because the air temperature is above 32
degrees F) water.
-

-
-
05. Air is said to be saturated when a balance is achieved between
those water vapor molecules leaving the water and those being
returned to the water. The air can hold no more water vapor -- it
is filled to capacity.
-
- You will note that the capacity (ability) of the air to hold
water vapor increases sharply with increases in temperature. In
the graphic below observe that air at 30 degrees F is saturated
when 3.3 grams of water vapor are present in a kilogram of
otherwise dry air. Were you to heat the air to 60 degrees F, you
can see that the capacity of the air increases to 10.7 g/kg (an
increase of 7.4 grams). But when we increase the air temperature
another 30 degrees F (to 90 degrees F), the capacity of the air
increases 19.3 grams.
-
- As you increase air temperature, the ability of the air to
hold water vapor increases at an increasing rate.
-
- And finally keep in mind that most of the moisture present in
the atmosphere is found within the first few thousand feet. This
is where the moisture is; this is where our weather is.
-
-

-
-
06. Take a little time to study the graphic below. I, of course,
do not expect you to memorize the information presented here, but
see what happens to the ability of the air to hold moisture as
temperature is increased. Look at the capacity of the air at 90
degrees F (a not uncommon afternoon summer temperature in
southeast Texas) -- 30.052 g/kg. Compare this to the capacity of
air with a temperature of 50 degrees F (a fairly typical winter
day temperature) -- 7.389 g/kg. The air in summer holds over 4
times the water vapor of a typical winter day. Can you begin to
see why our summer storms tend to be more vigorous (more
condensation taking place, thus more energy being released) and
result in larger quantities of precipitation (not only more water
vapor in the air, but the summer storm clouds may tower 30,000 to
40,000 feet compared to winter storm clouds of maybe a few
thousand feet).
-
- Too, how many of you have ever heard the saying: "It's too
cold to snow." Well it's probably rarely too cold to snow, but a
glance at the Capacity of Saturated Air table below will give you
a good idea of where this saying may have come from. At
temperatures below 0 degrees F, observe how little water vapor the
air is able to hold if saturated. And after all, if it's not in
the air, it's not going to be available to fall out.
-
-

-
-
07. Let's take a look at the various ways the moisture content of
the air may be expressed. Keep in mind that meteorologists are
interested in following the water vapor -- for the precipitation
potential, and as the energy source for our storms.
-
- Absolute Humidity.
Absolute humidity does not have a lot of usefulness in the realm
of the meteorologist. As you can see in the graphic below, as air
moves about in the atmosphere, its volume changes dramatically.
What is one cubic foot at the surface, may expand to become tens
of cubic feet aloft.
-
- In the example, a cubic foot at the surface contains 6 grams
of water vapor. Moved aloft, the air expands to 3 cubic feet with
each cubic foot containing 2 grams of water vapor. If you are
trying to keep up with the water vapor (say in a neat one cubic
foot package), you are going to have a major headache as the
moving air expands and compresses with changes in height.
-

-
-
08. Mixing Ratio.
Meteorologists make extensive use of the mixing ratio. Here
atmospheric moisture is measured by comparing the weight of water
vapor in the air to the weight of a unit of dry air. The mixing
ratio is usually measured in grams of water vapor per kilogram of
dry air. As depicted in the graphic to the right, the advantage
for the meteorologist is that the measurement is not concerned
with a volume of air (that changes dramatically with changes in
altitude), but rather with a weight which remains the same
regardless of the volume encompassed. If on a warm summer day a
parcel of air is heated and rises and spreads out, the basic
"container" remains constant -- a kilogram of air is a kilogram of
air regardless of whether it takes up one cubic foot at the
surface or 1000 cubic feet at 15,000 feet. Thus, it is relatively
easy to follow the water vapor that is the focus of the
meteorologist.
-

-
09. The graphic below depicts a sling psychrometer. This is an
instrument used to measure the amount of water vapor in the air.
As you can see, the instrument is comprised of two thermometers.
On the right is the "dry bulb" thermometer. As the instrument is
slung around in a circle, the dry bulb thermometer measures the
temperature of the air. The "wet bulb" thermometer on the left is
covered with a cotton "sock." Before use, the sock is dipped in
water. As the instrument is being slung, water is evaporated off
the sock. The amount of evaporation (a cooling process) is
dependent upon the humidity of the air. If the humidity is low, a
great deal of water can be evaporated into the dry air and the
result will be a relatively low wet bulb reading. If the humidity
is relatively high, then it is more difficult to evaporate much
water off the sock and a relatively higher wet bulb reading will
be obtained. The temperatures of the two thermometers are read
and, with the use of a chart, the mixing ratio can be
calculated.
-

-
-
10. Relative Humidity.
Probably the best known measure of water vapor in the air is
relative humidity. This measurement is commonly used on evening
weather reports, and the term is frequently used by the general
public. And while the concept of relative humidity has its place
in our everyday life, and most of us can surely relate to the
term, it is not the best measurement of the actual amount of water
vapor in the air. And again, it is the amount of water vapor in
the air that is important to the meteorologist.
-
- Relative humidity can be defined as the amount of water vapor
in air at a given temperature compared to what that air could hold
at that temperature. For instance, in the example, air at 60
degrees F can hold (has a capacity/will be saturated when it
holds) 10.7 g/kg. On a 60 degree F day, if the air holds only 5.35
g/kg of water vapor, the relative humidity of the air will be 50
percent. In other words the air is holding half of what it could
hold.
-

-
-
11. We can change the amount of water vapor in a parcel of air by
one of two means. In the graphic on the left we have two parcels
of similar size. Both have a temperature of 60 degrees F and, if
we were to consult the Capacity of Saturated Air table (see
earlier graphic), we would see that both have a capacity of 10.699
g/kg. Neither is saturated. The parcel on the left, lying over a
land surface, has a mixing ratio of 5.35 g/kg. Since the mixing
ratio of this parcel is half of what it could hold, it has a
relative humidity of 50 percent. The parcel on the right, lying
over water, has, due to increased evaporation, a mixing ratio of
7.133 g/kg. The relative humidity of this air parcel is 66
percent. In this instance we have increased the relative humidity
of the air mass by increasing the amount of water vapor in the
air.
-
- But adding (or removing) water vapor is not the only way we
can alter the relative humidity of an air mass. Note the graphic
on the right. Here we have two air parcels of similar size. The
parcel on the left has a temperature of 60 degrees F. By
consulting the Capacity of Saturated Air table we find that this
air has a capacity of 10.699 g/kg. Because the mixing ratio of
this parcel is 5.35 g/kg, the relative of this air is 50 percent.
Notice what happens when we reduce the temperature of such an air
parcel just 10 degrees F. The capacity is decreased from 10.699
g/kg to 7.389 g/kg (see the Capacity of Saturated Air table).
While there has been no change in the mixing ratio (changing the
temperature does not change the amount of water vapor in the air),
the reduced capacity means that the mixing ratio of 5.35 g/kg is
now a larger part of the capacity (now only 7.389 g/kg) and as a
result the relative humidity rises to 72 percent.
-
- We can thus change the relative humidity of a air parcel by
either increasing
or decreasing the amount of
water vapor in the parcel (this changes the mixing ratio of the
air mass) OR by raising or
lowering the temperature of the air mass (this changes the
capacity of the air mass). Because we are dealing with a ratio,
any change in the relationship of the amount of water vapor (the
mixing ratio) in the air to the capacity (the ability of the air
to hold water vapor) of the air will change the relative humidity
of the air parcel.
-
-

-
-
12. One must be careful when interpreting relative humidity. As
you can see in the graphic below, if we had two parcels of air,
both saturated, one with a temperature of 30 degrees F and the
other of 60 degrees F, the one whose temperature was 60 degrees F
would have over three times the water vapor in it. Again, this is
because warm air holds more water vapor than colder air, and
because relative humidity is a ratio between capacity (variable
with temperature) and mixing ratio.
-

-

-
-
- As an example of the kinds of problems relative humidity can
create for the casual observer, let's consider the climates of
western Europe and northern Africa. Most would associate the
climate of western Europe with high humidities, clouds, drizzle,
green landscapes and the like. Northern Africa (the Sahara Desert)
is generally characterized by extreme heat and dryness.
13. Let's assume we have an air mass over western Europe with the
characteristics indicated on the graphic on the left. At 60
degrees F the capacity of the air is 10.699 g/kg and the mixing
ratio of the air mass is 10.699 g/kg. The air is saturated and the
relative humidity is 100 percent. We are right at the point of
condensation which, should it occur, would result in rain, drizzle
and/or fog since the temperature is above 32 degrees F. Note
especially that the air mass contains 10.699 g/kg.
-
- Now, look at the graphic on the right. Here we have an air
temperature of 115 degrees F -- almost twice the temperature of
the air mass covering western Europe. Because of the higher
temperature, the capacity of this air parcel is almost six times
greater than that its European counterpart. However, upon
measurement we find that the mixing ratio of this air parcel is
only 13.370 g/kg -- resulting in a relative humidity of 20
percent. Now let's see -- almost twice the temperature, six times
the capacity, but only 20 percent relative humidity compared to
100 percent relative humidity for the parcel overlying western
Europe. But observe that the actual amount of water vapor in the
air over north Africa is greater by almost a third when compared
to that of western Europe. How is possible that a place with a 100
percent relative humidity reading can have less water vapor in the
air than a place with a relative humidity?
-
- It all comes back to the fact that with relative humidity you
are dealing with relationships between capacity that varies with
changes in temperature or mixing ratios.
-
-

-
-
14. Dew Point. As we have
observed a number of times, if you are going to have condensation
within an air mass, you are going to have to have moisture present
and the temperature of the air mass will have to be falling. The
temperature to which the air mass will have to be cooled is called
the dew point. The capacity of air (see the Capacity of Saturated
Air table) at 30 degrees F is precisely 3.368 g/kg; at 60 degrees
F the capacity rises to 10.699 g/kg and at 90 degrees F the
capacity is 30.052 g/kg. What these figures are saying is that if
you have a parcel of air whose temperature is 60 degrees F, that
air can hold (the most the mixing ratio can be is) a maximum
10.699 g/kg of water vapor.
-
- If any more water vapor is added, or if the temperature is
reduced below 60 degrees F, a change of state will occur. If you
add any more water vapor, you will exceed the capacity of the air
at that temperature to hold water vapor, thus for every additional
water vapor molecule added, a molecule of liquid water will be
condensed.
-
- On the other hand, if you drop the temperature below 60
degrees F, the saturated air will be unable to retain all of the
water vapor at the new lower temperature (its capacity will be
exceeded) and a portion of the water vapor will be condensed.
-
- This temperature where the change of state occurs is called
the dew point. For air containing 3.368 g/kg of water vapor, the
dew point is 30 degrees F; for air containing 10.699 g/kg of water
vapor, the dew point is 60 degrees F; and for air containing
30.052 g/kg of water vapor, the dew point is 90 degrees F.
-
- If you think about this for a moment, you can see that dew
point is an excellent indicator of the actual amount of water
vapor (the mixing ratio) in the air. Air with a high dew point
will have a great deal of water vapor present; air with a low dew
point will not have a lot of water vapor present. Too, you can see
that the dew point temperature is directly tied to the amount of
water vapor present. If you reduce the amount of water vapor
present in the air, you reduce the dew point temperature (the
point at which the air is saturated); if you add water vapor to
the air, you increase the dew point temperature.
-
- In the second graphic, we have four parcels of air of varying
temperatures. Each air parcel is saturated (each has a 100 percent
relative humidity reading). As the temperature of a parcel is
reduced, its capacity is reduced. Too, since the capacity is less,
the mixing ratio is also represented by a smaller number. Where is
the water vapor going? While not indicated on the graphic (we will
look at this idea in the following graphics), observe that, should
what is being depicted actually be occurring over a specific
geographic area, water vapor would be forced from the air as the
capacity of the air is reduced and rain would be occurring.
-
- Since the dew point is the temperature to which the air must
be cooled in order for condensation to occur (saturation), as you
remove water vapor from the air the mixing ratio changes as does
the dew point temperature.
-

-
-
15. The following series of graphics is provided to demonstrate
the relationships that exist between air temperature, capacity,
mixing ratio, relative humidity and dew point. For purposes of
example, let us assume that we are in a sealed room (no air in, no
air out and no air conditioner or heater in operation -- and no
breathing).
-
- We pull out a thermometer and take a reading of the room's air
temperature and find it to be 70 degrees F. Now, where to find the
capacity of air with a temperature of 70 degrees F? Right -- the
Capacity of Saturated Air table. We consult it and find that at 70
degrees F air has a capacity of (it will be saturated when it
contains) 15.260 g/kg. We take out our trusty sling psychrometer,
wet the sock down, give it a few slings, take the readings and
upon consulting the sling table find that the air in the room is
not at capacity -- it only contains (has a mixing ratio of) 10.699
g/kg. OK, it can hold 15.260 g/kg, but it actually holds 10.699
g/kg. It appears just from eyeballing the figures that the
relative humidity -- what's there (10.699 g/kg) compared to what
could be there at 70 degrees F (15.260 g/kg) -- is about two
thirds. When we actually calculate it (10.699 divided by 15.260),
we find the relative humidity to be 70 percent.
-
- Now as to the dew point. We know we have 10.699 g/kg of water
vapor present. To what temperature will we have to drop the air in
order for what is actually present (the mixing ratio -- the 10.699
g/kg) to represent saturation? Well, we're once again going to
need the Capacity of Saturated Air table. When we run down the
table, we find that air with a water vapor content of 10.699 g/kg
will be saturated when the temperature reaches 60 degrees F. Then
the dew point of the air in this room is 60 degrees F.
-
-

-
-
16. Now, what happens if we turn the room thermostat up to 80
degrees F? Looking at your Capacity of Saturated Air table, you
can see that as air temperatures rise, there is an increase in the
ability of the air to hold moisture. At 80 degrees F the capacity
of air increases to where it can hold 21.537 g/kg of water vapor.
We have raised the air temperature, but in doing so we have not
changed the actual amount of water vapor in the air, thus the
mixing ratio must be the same as previously -- 10.699 g/kg.
-
- However, the relationship between the air's capacity and the
mixing ratio has been changed. This will have to cause changes in
the relative humidity in the room. As you can see, the mixing
ratio is now approximately half of the capacity. Increasing the
air temperature has reduced the relative humidity. When we
actually calculate the relative humidity, we find it to be 50
percent. Just as you should expect. If you have to drop the air
temperature in order to have saturation/condensation, then an
increase in temperature should be moving you away from saturation
and any form of condensation.
-
- And what about the dew point? Well, if we are going to
saturate this air parcel (and we don't alter the mixing ratio),
aren't we still going to have to drop the temperature of this air
mass to 60 degrees F? Then the dew point must still be 60 degrees
F. The dew point is tied to the amount of water vapor in the air.
If you don't change the water vapor content of the air, you don't
change the dew point.
-

-
-
17. We now drop the thermostat to 60 degrees F. Consulting the
Capacity of Saturated Air table we find that the capacity of air
at 60 degrees F is only 10.699 g/kg -- the same as the room's
mixing ratio. If what's there (the mixing ratio) is the same as
what could be there (the capacity), then the air must be
saturated, the relative humidity must be 100 percent and we must
be at dew point (60 degrees F). Now there is no thunderstorm
taking place in the back of the room, and there is no fog nor
condensation on the walls. The air is just saturated. That means
the air can't hold one more molecule of water vapor. If any water
vapor were to be added at this point (thereby placing more
moisture into the air than it was able to hold), or if we were to
drop the temperature any lower (thereby reducing the capacity of
the air to hold the 10.699 g/kg), we would have a change of state
(gas to liquid at this 60 degree F temperature). But right now the
air is clear -- no clouds, fog or the like -- just saturated.
-

-
-
18. We now drop the thermostat to 50 degrees F and all kind of
things begin to happen. Checking the Capacity of Saturated Air
table, we find that air at 50 degrees F has a capacity of only
7.389 g/kg.
-
- Well, if that's all the water vapor the air can hold -- then
that's all it does hold. The mixing ratio drops to 7.389 g/kg.
What happened to the excess moisture (the 3.310 g/kg)? It "fell
out" of the air. Since the air temperature is above freezing, we
have condensation, and most likely condensation has formed on room
surfaces. We want to come back to this point in a moment, but for
now let's complete the table.
-
- Since we can assume a steady drop of temperature in the room
as a result of the thermostat change, can you see that as the
temperature hit 59 degrees F we condensed a little bit of
moisture, a little more at 58 degrees F, and so on until we
reached 50 degrees F at which point we had lost a total of 3.310
g/kg? As the capacity was steadily reduced, the mixing ratio was
constantly changing downward to meet the downward trending
capacity. The relative humidity remained constant at 100 percent
since between 60 degrees F and 50 degrees F the capacity and the
mixing ratio remained the same. And the dew point? Well, as we
continued to lose water vapor (the mixing ratio) the dew point
also followed a steadily downward trend so that we now find the
dew point and the room temperature to be the same.
-
- How many of you have ever asked yourself why rain sometimes
comes down in buckets and other times we only get a slow, soaking
drizzle? This line on the table ought to answer the question. We
can see that dropping the temperature from 60 degrees F to 50
degrees F caused 3.310 g/kg of water to condense. If this
temperature drop took five minutes to occur (like we might well
have with a warm/high capacity summer day thunderstorm), then the
3.310 g/kg will condense out in five minutes. On the other hand if
it took three days for the same temperature drop to occur (as you
might get with a slow moving warm front), then it will take three
days for the 3.310 g/kg to be condensed. The rate of precipitation
is largely related to the capacity of the air, the rapidity with
which the temperatures are dropped and the dew points hit.
-
-

-
-
19. Too cold for us, so let's run the thermostat back up to 80
degrees F. Consulting the Capacity of Saturated Air table we find
that the capacity of the air in the room has risen to 21.537 g/kg.
Again, since changing the temperature does not impact the actual
amount of water vapor in the room (and assuming here no
evaporation off the room's walls, floors, etc.), the mixing ratio
in the room must be where we left it on the last graphic -- 7.389
g/kg). Eyeballing the capacity and mixing ratio we can see that
the relative humidity has dropped to about 33 percent (actually to
34 percent) -- just as you might expect if you radically increase
the temperature since you are moving away from
condensation/precipitation. And the dew point? Well, look at the
Capacity of Saturated Air table and find at what temperature would
air with a mixing ratio of 7.389 g/kg become saturated. It looks
like 50 degrees F.
-

-
-
20. Now let's throw a little wrinkle into the mix. Say someone
opens the door and kicks in a tub of water. Evaporation begins to
the point of adding (for purposes of example) 4.958 g/kg of water
vapor to the air (sort of like an air mass moving over a large
body of water, right?). What kind of impact will this have on our
example?
-

-
-
21. We may have added water vapor to the air, but since there has
been no temperature change, the capacity of the air remains the
same at 21.537 g/kg. However, we must add the water vapor
evaporated from the tub of water to the mixing ratio in the room
prior to the time the tub of water was added. We did have 7.389
g/kg present. By adding 4.958 g/kg from the tub, we have increased
the mixing ratio to 12.347 g/kg. This should increase the relative
humidity (what's there compared to what could be there) -- and it
does. Our relative humidity jumps to 57 percent.
-
- Since we have changed the mixing ratio, we have changed the
dew point. Consulting the Capacity of Saturated Air table, we find
that in order to saturate the air presently in the room we would
have to drop the temperature in the room to 64 degrees F -- not to
50 degrees F as was the situation before we added the moisture.
And doesn't this make perfect sense -- if you add moisture,
shouldn't it be easier to get condensation (by having to only drop
the temperature to 64 degrees F instead of the lower temperature
of 50 degrees F)?
-

-
-
22. Ok, a fast review. We have a kilogram of air whose temperature
is 60 degrees F. How much water vapor can air at this temperature
hold at saturation -- what is the air's capacity? We get out the
Capacity of Saturated Air table, run the table to 60 degrees F and
find that such air, when saturated, will hold 10.699 g/kg. The
capacity of the air at 60 degrees F is 10.699 g/kg.
-

-
-
23. The air may hold 10.699 g/kg, but it feels fairly comfortable
-- it just doesn't seem like it is actually holding 10.699 g/kg at
the moment. Getting out our sling psychrometer and related tables,
we find that the air is not saturated. It only holds 5.35 g/kg.
The mixing ratio of the air is only 5.35 g/kg.
-

-
-
24. Well, if the air could hold (the capacity) 10.699 g/kg, but in
fact it only contains (the mixing ratio) 5.35 g/kg, then the air
is not saturated and the relative humidity must be something less
than 100 percent. It looks like the relative humidity (and upon
calculation we find that yes it is ...) 50 percent. The air is
only holding half of what it could hold at 60 degrees F, thus the
relative humidity of the air is 50 percent.
-

-
-
25. And the dew point? Well, by consulting the Capacity of
Saturated Air table, we find that air that holds 5.35 g/kg of
water vapor will be saturated when the temperature is reduced to a
temperature between 41 and 42 degrees F. So if we want to condense
moisture out of this air mass, we will have to drop the
temperature to the 41/42 degree F area. That failing, we could
increase the water vapor content (the mixing ratio) which would
have the effect of raising the dew point to a temperature closer
to 60 degrees F.
-

-
-
26. Like all gases in the atmosphere, water vapor can change
states (gas/liquid/solid). But unlike many gases found in the
atmosphere, water vapor changes state at temperatures found at the
Earth's surface. As the change of state occurs, heat is either
released or absorbed depending upon the change taking place.
-
- Consider the example of ice cubes in a glass of tea. If we
fill a glass with ice cube, then add tea and wait 10 to 15
minutes, we might find upon measurement the temperature of the tea
to be 37 degrees F. Now, if we take the glass and place it over a
flame, we will see the ice cubes begin to melt. Somewhat
surprisingly the temperature of the liquid remains at 37 degrees F
until all of the ice has been melted. The temperature of the
liquid was 37 degrees F before we placed the glass over the flame;
it remained 37 degrees F after all of the ice had been melted.
Where did all of that heat from the flames go?
-
- The heat energy was used to disrupt the crystalline structure
of the ice cubes and cause them to melt. It is still present -- it
now resides in the water molecules in the glass. Because the heat
is not associated with temperature change, it is usually referred
to as latent (or hidden) heat. This energy is not available until
the liquid is returned to the solid state at which time it will be
released into the atmosphere as heat.
-
- Let's take a look at the various states water moves through
and whether heat is being absorbed or released. Again, this heat
is the source of the energy that drives our storms.
-
-

-
-
27. Melting. In the melting
process, the solid ice is changed to liquid water. In this
process, heat is absorbed from the atmosphere by the water
molecule. For purposes of example, it takes approximately 80
calories of heat to produce one gram of water. This heat is often
referred to as the latent heat of melting. The heat is retained in
the water molecule to be released when the water is returned to
the solid state.
-
-

-
-
28. Freezing. Freezing is the
reverse of melting. Here liquid water is converted into ice. In
this process heat is released into the atmosphere. How much heat?
The same 80 calories absorbed during the melting process. This
heat is referred to as the latent heat of fusion.
-

-
-
29. Evaporation. In the
process of evaporation, approximately 600 calories are required to
convert one gram of water to water vapor. This heat energy is
absorbed by the water vapor molecule and will be available to be
released as heat when the water vapor is returned to the liquid or
solid state. The 600 calories required is called the latent heat
of evaporation.
-

-
- There are a number of factors that can aid in the process of
evaporation. Some of the more important are touched on below.
-
- Air Temperature. You
will remember that warm air has a greater capacity to hold
water vapor than does cold
air.
-

-
- Degree of Saturation.
Evaporation is also encouraged by the degree to which the air
is saturated. Drier air can hold more water vapor than can more
humid air.
-

-
- Temperature of the
Water. Evaporation is greater over warm water than
over cold water. This is largely due to the fact that the
molecules are more active in warm water and are thus more prone
to break the surface tension of the water. When compared to
warm water, the molecules comprising cold water move slower and
have a reduced tendency to move from the liquid to gaseous
state.
-

-
- Wind. And finally we
might note that evaporation is greater on windy days than on
calm days. Think about hanging a wet shirt out on a
clothes-line to dry. Very quickly the more active water
molecules move to the surrounding air as a thin layer of water
vapor surrounding the wet shirt. Now if there is little or no
wind, the air around the shirt is quickly moved to the point of
near-saturation -- it becomes more difficult for additional
water molecules to move from the wet shirt to the surrounding
air. Thus drying the shirt becomes an all day affair. On the
other hand, if there is a wind, the wind removes the
near-saturated layer surrounding the shirt and makes way for
additional water molecules to make their move from the liquid
to the gaseous state.
-
-
-

-
-
30. Condensation. In the
process of condensation, water vapor is converted to liquid water.
This process, which releases 600 calories of heat (the latent heat
of condensation), is an important source of energy for our storms.
Though less important than the movement of warm ocean water into
higher latitudes, this process does assist in the transport of
excess heat from the tropical regions to higher latitudes.
-

-
-
While melting, freezing, evaporation and condensation are well
known to most, there are two other change of state processes
whereby water vapor or its derivative makes a state change.
-
- 31. Sublimation. In one of
these, sublimation, ice is converted directly to a gas without
going through the liquid state. Probably the best known example of
this process is dry ice. Another example would be where snow is
evaporated (solid to a gas) without passing through the liquid
state. In the process of sublimation, 680 calories of heat energy
are absorbed by the gas molecule (80 calories coming from the
latent heat of fusion and 600 from latent heat of
evaporation).
-

-
-
32. Deposition. The opposite
of sublimation is deposition. In this process water is moved
directly from gas to the solid state (ice), again without passing
through the liquid state. Snow and frost are probably the best
known examples of deposition. In the process of deposition, 680
calories of heat energy are released into the atmosphere -- 600
calories from the latent heat of condensation, 80 calories from
the latent heat of fusion.
-

-
-
33. The graphic below is derived from your textbook. In this
summary of the various processes, note that melting, evaporation
and sublimation result in heat energy being taken from the
environment. Condensation, freezing and deposition result in heat
energy being released into the environment.
-

-
-
34. When condensation occurs and water vapor is converted into a
liquid, the results include dew, fog and the precursor to rain,
snow, sleet and hail -- clouds. For condensation to occur, two
conditions must first be met.
-

-
-
35. In the first condition, the air containing the water vapor
must be saturated. As we have indicated earlier this can be
brought about in either of two ways: (1) the air can be cooled
below the dew point. In this instance, the ability of the air to
hold moisture is exceeded and a change of state occurs. By far,
this is the most typical means by which condensation is brought
about. But there is a second way condensation occurs. (2)
Condensation may also result when sufficient moisture is added to
an air parcel to exceed the air's ability to hold the water vapor.
Again, in such instances, a change of state occurs.
-
- But there is a second condition that must also be met in order
for condensation to occur, and that is there must be a surface
present upon which the water vapor can condense. Such surfaces are
called condensation nuclei and may include dust particles, spores
or even such objects on the ground as leaves, grass and the like.
As a rule, such particles are in abundance in the lower levels of
the atmosphere.
-
- A special kind of nuclei, one that actually attracts water
vapor unto itself, is salt. Such water-seeking nuclei are called
hygroscopic nuclei. When present in abundance, condensation may
occur when relative humidities are in the 80 to 90 percent
range.
-
-

-
-
36. Dew. One of the most
common types of condensation is dew. In many respects dew is like
the "sweat" that forms on that cold drink can or glass of iced tea
you enjoy so much on a hot summer day. We all know that the
"sweat" is not oozing out of the can or glass. Where does it come
from? On the typical warm summer day, the air contains a great
deal of water vapor. As this water vapor comes in contact with the
cold beverage container, the cold container, via conduction,
chills the air immediately adjacent to itself thus dropping the
air temperature below the dew point. The excess moisture is
condensed out of the air onto the container.
-
- Dew is formed in much the same way. Dew is most likely to
occur on clear, calm nights. Such conditions encourage rapid
cooling of the surface, and the ground becomes much cooler than
the overlying air. Conduction then cools the air to slightly below
its dew point (which in order for dew to form must be above 32
degrees F) and the water vapor condenses on the nearest available
surface which may be grass, leaves, the hood of your car or
whatever. Dew does not "fall" (as does rain, snow and the like),
but rather it condenses upon.
-
- Dew can sometimes be very heavy -- say after a very warm,
humid day (high mixing ratio and dew point), then followed by a
relatively cool night (temperatures falling below the dew point on
such a day may well produce large amounts of liquid since the very
warm air is almost saturated to begin with).
-
- At other times, the quantity of dew is small and soon
evaporates as the morning temperatures begin to rise. These
conditions would be most likely when the mixing ratio is
relatively low (thus a low dew point). Night-time cooling may
cause the temperatures to fall below the dew point, but the air,
because it holds much less moisture at low temperatures, has less
to give up as dew once the dew point is reached.
-
- Let's see if we can take the following East Texas summer-time
ditty apart.
-
- When the dew is on the grass
- Rain will never come to pass.
-
- In the summer, one typically awakes (assuming you are up and
moving before 10:00AM or so) to clear skies -- the result of high
pressure (Continentality) over the land. Such conditions have
encouraged night-time cooling and the formation of dew. Typically
as the morning wears on, heating of the land results in the
formation of cumulus clouds. These conditions intensify into the
late afternoon hours. And while afternoon thunderstorms are often
prevalent in the area in the late afternoon, your chance of
receiving rain on any given summer afternoon is about 20 percent
(how many times have you heard the weatherman say that during the
summer months?). So clear skies in the morning often means not
enough time before dark arrives for widespread thunderstorms to
develop to the point of generating rain for you beyond about a 20
percent chance.
-
- Compare this to the second stanza of the ditty.
-
- When grass is dry at morning light
- Look for rain before the night.
-
- A couple of things come immediately to mind that could make
the grass dry at morning light (air temperature didn't get to the
dew point, not enough moisture in the air -- a relationship
here?). Consider the following. You get up in the morning and the
sky is cloudy. The clouds have prevented significant cooling of
the land during the night -- no dew. Too, can you see that in this
instance you have about a two to three hour head start (compared
to most summer days) on cloud formation? Could it be that by the
late afternoon we will have, not isolated thunderstorms, but
instead widespread thunderstorms (thus a better chance for you to
get rained on)?
-
-


-
-
37. Frozen Dew. Many of
you have no doubt seen frozen dew -- sometimes called "Black
Frost." Frozen dew is just what it sounds like it is. First dew
forms (the dew point is above 32 degrees F). The temperature then
continues to drop to points below 32 degrees F resulting in the
dew droplets freezing. This can be a very striking early morning
sight -- the ground is covered with small drops of frozen water
glistening in the early morning light. Kick the grass and the
droplets scatter like a bucket of small pearls. Something else
(though not condensation as such) is typically found in
association with frozen dew. That is frost.
-

-
-
38. Frost. Frost you will
remember is actually a form of deposition, not condensation. Frost
is formed when cooling air hits the dew point at a point below 32
degrees F. Water vapor is then converted directly to ice without
passing through the liquid state. The result is a crystalline,
frosty white covering of available surfaces. It is the crystalline
structure visible to the eye that indicates that deposition has
occurred. Had we moved from the gaseous water vapor to water and
then to ice, we would have frozen water (droplets or sheets of
ice) not crystals.
-
- And now thinking back to comments about frozen dew, can you
see why frozen dew is often accompanied by frost? First dew is
formed (the dew point is above 32 degrees F), the temperature
continues to drop (the dew/water droplets are frozen), and should
the temperature continue to drop below 32 you will have deposition
(the water vapor goes directly from water vapor to a solid) and
the formation of frost.
-
-

-
39. Let's use frost and the danger it presents to
agriculture crops and domestic vegetation to pull several themes
together we have touched upon up to this point in the course. In
the graphic below we have an apple orchard planted on a
north-facing slope. What advantages can you see in such a
location?
-
- The presence of a water body that will have the
temperature-moderating effect on its immediate surroundings should
be one such advantage.
-
- The north-facing slope is another. Think about when fruit
trees are most vulnerable frost damage. It's not during the winter
as you might initially think. During the winter, most trees are
dormant and generally immune to such damage. Rather most are most
susceptible during the early spring months -- when they are in
flower. In early spring, late incursions of cold air are always a
danger. If the orchard is planted on a south-facing slope, the Sun
more readily warms the slope resulting in premature flowering of
the trees. An orchard planted on a north-facing slope will not
receive as direct Sun rays and the relative cooler surface will
result in a later flowering of the trees (hopefully giving the
tree another week or two of protection from a late cold
snap).
-
- And finally there is the slope itself. As you travel around
the country, observe where most fruit trees are planted -- not on
flat land, but rather on slopes. There is a good reason for this.
It is inversions, not the cold air masses themselves, that present
the greatest danger to many of our agricultural crops. These
shallow (air is not a good conductor of heat) layers of cold air
lay waste to millions of dollars of crops in the United States
annually. By planting on slopes, the cold air as it forms will
tend to move down slope and hopefully spare the crop/orchard.
-
- Other frost-inhibiting practices would include:
-
- The covering of sensitive plantings (rosebushes and the
like) around homes. The covering is not there to keep the cold
air off of the plant, but rather to keep the warm air rising
from the Earth's surface trapped under the covering thus
assisting the plant to ward off the cold temperatures. You may
have seen urban "farmers" cover individual plants in their
backyard gardens with cups and the like. Same factor is at
work.
-
- While more rare, some commercial growers, especially if
they are producing valuable tree crops such as citrus, avocados
and the like will employ orchard heaters. The heaters are not
placed in the orchard to warm the trees, but rather each heater
acts as a small low pressure cell and, if used in sufficient
numbers, can effectively ward off freezing temperatures by
stirring the air (acting as small wind generators) and reducing
the damaging effects of the inversion threatening the
crop/orchard.
-
- A variant of the orchard heater would be permanently
constructed wind machines (and in very rare instances the use
of helicopters) to stir the air and break up the
inversion.
-
- And finally, how many of you have ever watched a television
news report of efforts of farmers to ward off freezes by
spraying their orchards with a light mist of water? Seems kind
of unbelievable when you first see it. Here the farmers are
spraying a fine mist of water over their groves and in effect
covering everything in a sheet of ice. Looks like they are
killing the plants, not trying to save them. While the crop
itself may well be lost, remember the most valuable thing is
the tree -- it may have taken five or more years to get to the
point of producing a crop. Keep in mind that most such trees
can stand temperatures of 27 to 28 degrees F for several hours.
By covering the trees with a coat of ice (whose temperature is
32 degrees F) they are in effect insulating the tree from the
colder/killing temperatures. But such an activity is tricky --
too little water and the trees will be killed for lack of
insulation, too much water and you run the risk of breaking the
limbs and even the main trunk itself.
-
-


-
-
40. Fog. Like dew (but unlike
frost which is a type of deposition), fog is also a form of
condensation. We can think of fog as a low cloud -- in that the
two are almost identical in terms of their appearance. Clouds are
usually defined as being above 50 feet, fog less than 50 feet
above the surface. While they may look alike, in fact the two are
formed very differently. Clouds, as we will see in the next
section, are typically formed as a result of adiabatic cooling
brought about by cooling of the air -- normally through uplift.
Fog are typically formed through either radiational cooling of the
surface which in turn then cools the air above, or by the movement
of relatively warm air over a cooler surface. In both instances,
the air is dropped to its dew point.
-
-


-
-
41. Advection Fog. Close to
home here in southeast Texas, the widespread fogs of fall along
the coast are generally advection fogs. Here, wind brings
relatively warm and humid air inland from the Gulf. As the air
passes over the cooler land surface, the air temperature is
reduced to the dew point and fog forms.
-
- You will often hear someone say that a fog "burns off." This
statement implies that the Sun heats the fog and evaporates it.
How many of you have ever heard someone say that a fog is
"lifting?" This statement implies that a fog is evaporated from
the bottom upward. Which is correct -- how does fog dissipate?
Well, from our discussion to this point, we know that if cooling
the air causes fog, then heating the air must cause it to
dissipate.
-
- Let's consider the "burn off" scenario first. The Sun striking
the fog, heating the air with the resulting evaporation and
dissipation of the fog. Sounds good, but think about that for a
moment. What's going to heat the air? Won't the albedo of the air
(the fog) be high? Not likely that a great deal of heat energy
will be absorbed in this manner. Fogs do "burn off," but the
tendency is to "burn off" from the ground -- up. In other words,
we are going to have to heat the land, which in turn will heat the
air above it, which will raise the capacity of the air to hold
water -- the result being evaporation and dissipation of fog. Fogs
do "burn off" or "lift," but they tend to do it from the ground up
and around the edges first. Of the two, to say a fog "lifts" would
probably be closer to describing the process.



-
-
-
42. Radiation Fog. A second
type of fog, and one that is widespread in southeast Texas, is
radiation (or ground) fog (Photo 1 below). We have all seen
examples of radiation fog. Most typical on crisp fall days,
radiation fog often looks like a low smoke covering area pastures.
Radiation fogs are commonly associated with inversions where the
cold surface cools the overlying air to the dew point. Because air
is a relatively poor conductor of heat, most radiation fogs tend
to be relatively shallow events. While some such fogs may extend
10 or even 20 feet (maybe to 50 or 100 feet with a light, stirring
wind) off the ground, a more typical radiation fog is maybe
chest-high. Ever seen a pasture where only the heads of cows were
visible? Such fogs, especially when thick, make excellent
playgrounds for little kids. Stand up -- now I see you. Crouch
down -- where did they go?
-
- Because the cold air associated with ground fog is
heavy/dense, some of the more striking radiation fog events are to
be seen when these fogs move downslope to lower elevations. Photos
4 and 5 below depict a ground fog in the process of moving from
its place of formation in the uplands into a lower valley. Such
events, if you can catch them as they begin, almost have the
appearance of a "waterfall" of fog.




-
-

-
-
43. Valley Fog. Valley fogs
represent a ground fog variant. As the name implies, these fogs
are associated with valleys and are frequently caused by either
cold air or ground fog draining into a lower elevation.





-
-
44. Steam or Evaporation Fog.
Some "valley" fogs are caused by a completely different process.
In valleys we often find creeks, rivers, lakes, ponds and the
like. In the fall, the temperature of these water bodies tends to
be warmer than the surrounding land. As the colder surrounding air
drains down into these low-lying areas, the temperature of the
moist air above the water is dropped to its dew point and fog
frequently forms. Such fogs are more properly termed "steam" or
"evaporation" fogs. This is the type of fog you may have seen
overlying a swimming pool in the fall, or maybe a small pond in a
pasture.
-
- A fall Sunday morning a number of years ago when my son was
maybe about four or five years old, I was relaxing reading the
paper when he screams out, "Daddy, the man's on fire!" I jumped up
out of my chair and rushed to the front door and looked out across
the street to one of the local schoolyards where a bunch of boys
were playing basketball. And sure enough not one, but several, of
the boys were "on fire." Steam/smoke was rising off them in such
quantities as to make a youngster think they were "on fire." In
fact, it was an evaporation fog -- caused by the cold morning air
condensing the evaporating moisture from the player's skin.

-


-
-
45. Upslope Fog. And finally,
there is the upslope fog. As the name implies, this fog is formed
as a body of air moves upslope (and cools). Imagine a parcel of
air moving in off the Gulf. As it moves from Galveston to Dallas
to Oklahoma City toward Denver, the land is gradually increasing
in elevation. At some point the expanding air will cool to its dew
point and as so often-times happens, a fog (a cloud if you will)
just appears out of nowhere.
-
-
-
You have now completed Unit 9: Moisture in
the Atmosphere. You might wish to check your knowledge of the material presented in this section by working through the Short Answer Review Questions, Multiple Choice/True-False Quiz Questions and the Drop-Down Statements available for Exam 3. To
return to the top of the page.
-
Copyright 2014, The START Group, All
Rights Reserved
- PO Box 310895
- New Braunfels, TX
78131