Factorizations of Algebraic Integers, Block Monoids, and Additive Number Theory

Scott Chapman

Sam Houston State University

October 19, 2017
Prologue

This talk is based the paper:

More information and background on this area can be found in:

This talk is based the paper:

More information and background on this area can be found in:

This talk is based the paper:

More information and background on this area can be found in:

Let $K = \mathbb{Q}(\alpha)$ be a finite extension of the rationals.

Let $\mathcal{O}_K = \{ \alpha \in K \mid f(\alpha) = 0 \text{ for some monic } f(X) \in \mathbb{Z}[X] \}$ be the ring of integers of K.

Let $\mathcal{I}(\mathcal{O}_K)$ represent the set of nonzero ideals of \mathcal{O}_K and $\mathcal{P}(\mathcal{O}_K)$ its associated subset of nonzero principal ideals.

Fundamental Question

If $\alpha \in \mathcal{O}_K$, then how does α factor into irreducible elements of \mathcal{O}_K? When do the elements of \mathcal{O}_K have unique factorization like in \mathbb{Z}?

Answer: The factorizations of α depend on the factorization of the ideal (α) into the prime ideals of $\mathcal{I}(\mathcal{O}_K)$. \mathcal{O}_K is a unique factorization domain exactly when $\mathcal{I}(\mathcal{O}_K) = \mathcal{P}(\mathcal{O}_K)$.
Let $K = \mathbb{Q}(\alpha)$ be a finite extension of the rationals.

Let $\mathcal{O}_K = \{ \alpha \in K \mid f(\alpha) = 0 \text{ for some monic } f(X) \in \mathbb{Z}[X]\}$ be the ring of integers of K.

Let $\mathcal{I}(\mathcal{O}_K)$ represent the set of nonzero ideals of \mathcal{O}_K and $\mathcal{P}(\mathcal{O}_K)$ its associated subset of nonzero principal ideals.

Fundamental Question

If $\alpha \in \mathcal{O}_K$, then how does α factor into irreducible elements of \mathcal{O}_K? When do the elements of \mathcal{O}_K have unique factorization like in \mathbb{Z}?

Answer: The factorizations of α depend on the factorization of the ideal (α) into the prime ideals of $\mathcal{I}(\mathcal{O}_K)$. \mathcal{O}_K is a unique factorization domain exactly when $\mathcal{I}(\mathcal{O}_K) = \mathcal{P}(\mathcal{O}_K)$.
Let $K = \mathbb{Q}(\alpha)$ be a finite extension of the rationals.

Let $\mathcal{O}_K = \{ \alpha \in K \mid f(\alpha) = 0 \text{ for some monic } f(X) \in \mathbb{Z}[X] \}$ be the ring of integers of K.

Let $\mathcal{I}(\mathcal{O}_K)$ represent the set of nonzero ideals of \mathcal{O}_K and $\mathcal{P}(\mathcal{O}_K)$ its associated subset of nonzero principal ideals.

Fundamental Question

If $\alpha \in \mathcal{O}_K$, then how does α factor into irreducible elements of \mathcal{O}_K? When do the elements of \mathcal{O}_K have unique factorization like in \mathbb{Z}?

Answer: The factorizations of α depend on the factorization of the ideal (α) into the prime ideals of $\mathcal{I}(\mathcal{O}_K)$. \mathcal{O}_K is a unique factorization domain exactly when $\mathcal{I}(\mathcal{O}_K) = \mathcal{P}(\mathcal{O}_K)$.
Motivation

Let $K = \mathbb{Q}(\alpha)$ be a finite extension of the rationals.

Let $\mathcal{O}_K = \{ \alpha \in K \mid f(\alpha) = 0 \text{ for some monic } f(X) \in \mathbb{Z}[X] \}$ be the ring of integers of K.

Let $\mathcal{I}(\mathcal{O}_K)$ represent the set of nonzero ideals of \mathcal{O}_K and $\mathcal{P}(\mathcal{O}_K)$ its associated subset of nonzero principal ideals.

Fundamental Question

If $\alpha \in \mathcal{O}_K$, then how does α factor into irreducible elements of \mathcal{O}_K? When do the elements of \mathcal{O}_K have unique factorization like in \mathbb{Z}?

Answer: The factorizations of α depend on the factorization of the ideal (α) into the prime ideals of $\mathcal{I}(\mathcal{O}_K)$. \mathcal{O}_K is a unique factorization domain exactly when $\mathcal{I}(\mathcal{O}_K) = \mathcal{P}(\mathcal{O}_K)$.
Let $K = \mathbb{Q}(\alpha)$ be a finite extension of the rationals.

Let $\mathcal{O}_K = \{\alpha \in K \mid f(\alpha) = 0 \text{ for some monic } f(X) \in \mathbb{Z}[X]\}$ be the ring of integers of K.

Let $\mathcal{I}(\mathcal{O}_K)$ represent the set of nonzero ideals of \mathcal{O}_K and $\mathcal{P}(\mathcal{O}_K)$ its associated subset of nonzero principal ideals.

Fundamental Question

If $\alpha \in \mathcal{O}_K$, then how does α factor into irreducible elements of \mathcal{O}_K? When do the elements of \mathcal{O}_K have unique factorization like in \mathbb{Z}?

Answer: The factorizations of α depend on the factorization of the ideal (α) into the prime ideals of $\mathcal{I}(\mathcal{O}_K)$. \mathcal{O}_K is a unique factorization domain exactly when $\mathcal{I}(\mathcal{O}_K) = \mathcal{P}(\mathcal{O}_K)$.

Chapman (Sam Houston State University)
The usual example used in an undergraduate Abstract Algebra Textbook to demonstrate that the Fundamental Theorem of Arithmetic can fail in an integral domain is:

\[6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}) \]

in the algebraic number ring \(\mathbb{Z}[\sqrt{-5}] \).

The actual argument to complete this observation involves showing two things:

(i) 2, 3, \(1 + \sqrt{-5}\) and \(1 - \sqrt{-5}\) are all irreducible, and

(ii) 2 (resp. 3) is neither an associate of \((1 + \sqrt{-5})\) nor of \((1 - \sqrt{-5})\) (this is clear once \(\pm 1\) are established as the only units of \(\mathbb{Z}[\sqrt{-5}]\)).
The usual example used in an undergraduate Abstract Algebra Textbook to demonstrate that the Fundamental Theorem of Arithmetic can fail in an integral domain is:

\[6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}) \]

in the algebraic number ring \(\mathbb{Z}[\sqrt{-5}] \).

The actual argument to complete this observation involves showing two things:

(i) \(2, 3, 1 + \sqrt{-5} \) and \(1 - \sqrt{-5} \) are all irreducible, and

(ii) \(2 \) (resp. \(3 \)) is neither an associate of \((1 + \sqrt{-5}) \) nor of \((1 - \sqrt{-5}) \)

(this is clear once \(\pm 1 \) are established as the only units of \(\mathbb{Z}[\sqrt{-5}] \)).
The usual example used in an undergraduate Abstract Algebra Textbook to demonstrate that the Fundamental Theorem of Arithmetic can fail in an integral domain is:

\[6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}) \quad (1) \]

in the algebraic number ring \(\mathbb{Z}[\sqrt{-5}] \).

The actual argument to complete this observation involves showing two things:

(i) 2, 3, \(1 + \sqrt{-5} \) and \(1 - \sqrt{-5} \) are all irreducible, and

(ii) 2 (resp. 3) is neither an associate of \(1 + \sqrt{-5} \) nor of \(1 - \sqrt{-5} \) (this is clear once \(\pm 1 \) are established as the only units of \(\mathbb{Z}[\sqrt{-5}] \)).
Motivation

Most books fail to point out to the readers that while $\mathbb{Z}[\sqrt{-5}]$ is not a UFD, it does have a rather nice factorization property.

Specifically, if $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m$ are irreducible elements of $\mathbb{Z}[\sqrt{-5}]$ with

$$\alpha_1 \cdots \alpha_n = \beta_1 \cdots \beta_m,$$

then $n = m$.

In general, an integral domain with this property is known as a \textit{half-factorial domain} (HFD).
Motivation

Most books fail to point out to the readers that while $\mathbb{Z}[\sqrt{-5}]$ is not a UFD, it does have a rather nice factorization property.

Specifically, if $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m$ are irreducible elements of $\mathbb{Z}[\sqrt{-5}]$ with

$$\alpha_1 \cdots \alpha_n = \beta_1 \cdots \beta_m,$$

then $n = m$.

In general, an integral domain with this property is known as a half-factorial domain (HFD).
Most books fail to point out to the readers that while $\mathbb{Z}[\sqrt{-5}]$ is not a UFD, it does have a rather nice factorization property.

Specifically, if $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m$ are irreducible elements of $\mathbb{Z}[\sqrt{-5}]$ with

$$\alpha_1 \cdots \alpha_n = \beta_1 \cdots \beta_m,$$

then $n = m$.

In general, an integral domain with this property is known as a half-factorial domain (HFD).
Using the ideal class group (and, more generally, the class number), one can construct a very simple proof of this fact for $\mathbb{Z}[\sqrt{-5}]$.

Carlitz first illustrated this argument in *PAMS* 11(1960), 391-392. His proof (while short) leads to a deeper understanding of how elements factor in an algebraic ring of integers.
Using the ideal class group (and, more generally, the class number), one can construct a very simple proof of this fact for $\mathbb{Z}[\sqrt{-5}]$.

Carlitz first illustrated this argument in *PAMS* 11(1960), 391-392.

His proof (while short) leads to a deeper understanding of how elements factor in an algebraic ring of integers.
Using the ideal class group (and, more generally, the class number), one can construct a very simple proof of this fact for $\mathbb{Z}[\sqrt{-5}]$.

Carlitz first illustrated this argument in *PAMS* 11(1960), 391-392. His proof (while short) leads to a deeper understanding of how elements factor in an algebraic ring of integers.
The purpose of this talk is to develop this understanding by using a structure, known as a block monoid, that is associated to the class group. In fact, block monoids have greater utility and we shall show that they can be used in a similar line of analysis in more general classes of integral domains, such as Dedekind domains and Krull domains. Our work will involve a close study of the combinatorial properties of block monoids and lead to an examination of an actively researched concept from Additive Number Theory known as Davenport’s constant.
The purpose of this talk is to develop this understanding by using a structure, known as a *block monoid*, that is associated to the class group. In fact, block monoids have greater utility and we shall show that they can be used in a similar line of analysis in more general classes of integral domains, such as Dedekind domains and Krull domains.

Our work will involve a close study of the combinatorial properties of block monoids and lead to an examination of an actively researched concept from Additive Number Theory known as *Davenport’s constant*.
The purpose of this talk is to develop this understanding by using a structure, known as a block monoid, that is associated to the class group. In fact, block monoids have greater utility and we shall show that they can be used in a similar line of analysis in more general classes of integral domains, such as Dedekind domains and Krull domains.

Our work will involve a close study of the combinatorial properties of block monoids and lead to an examination of an actively researched concept from Additive Number Theory known as Davenport’s constant.
Proposition

Let I be an ideal of \mathcal{O}_K and $\mathcal{I}(\mathcal{O}_K)$ and $\mathcal{P}(\mathcal{O}_K)$ be as above.

1. \mathcal{O}_K is a Dedekind domain. Moreover, there exists elements α and β in \mathcal{O}_K such that $I = (\alpha, \beta)$.

2. The factor monoid $\mathcal{C}(\mathcal{O}_K) = \mathcal{I}(\mathcal{O}_K) / \mathcal{P}(\mathcal{O}_K)$ forms a finite abelian group.

3. Let $[I]$ represent the image of the ideal I in $\mathcal{C}(\mathcal{O}_K)$. Then, for each $g \in \mathcal{C}(\mathcal{O}_K)$ there exists a prime ideal P of \mathcal{O}_K such that $[P] = g$.

Definitions
A Classic Theorem

The group $\mathcal{C}(\mathcal{O}_K)$ is known as the class group of \mathcal{O}_K and its order $|\mathcal{C}(\mathcal{O}_K)|$ is the class number of \mathcal{O}_K.

The class number gives a classic answer to the question of when a ring of algebraic integers admits unique factorization.

Theorem

The ring of integers \mathcal{O}_K in an algebraic number field K is a unique factorization domain if and only if the class number of \mathcal{O}_K is 1.

In fact, the size of the class group of \mathcal{O}_K was generally assumed to be a measure of how far a ring of integers was from being a UFD.
The group $\mathcal{C}(\mathcal{O}_K)$ is known as the class group of \mathcal{O}_K and its order $|\mathcal{C}(\mathcal{O}_K)|$ is the class number of \mathcal{O}_K.

The class number gives a classic answer to the question of when a ring of algebraic integers admits unique factorization.

Theorem

The ring of integers \mathcal{O}_K in an algebraic number field K is a unique factorization domain if and only if the class number of \mathcal{O}_K is 1.

In fact, the size of the class group of \mathcal{O}_K was generally assumed to be a measure of how far a ring of integers was from being a UFD.
The group $\mathcal{C}(\mathcal{O}_K)$ is known as the *class group* of \mathcal{O}_K and its order $|\mathcal{C}(\mathcal{O}_K)|$ is the *class number* of \mathcal{O}_K.

The class number gives a classic answer to the question of when a ring of algebraic integers admits unique factorization.

Theorem

The ring of integers \mathcal{O}_K in an algebraic number field K is a unique factorization domain if and only if the class number of \mathcal{O}_K is 1.

In fact, the size of the class group of \mathcal{O}_K was generally assumed to be a measure of how far a ring of integers was from being a UFD.
The group $\mathcal{C}(\mathcal{O}_K)$ is known as the *class group* of \mathcal{O}_K and its order $|\mathcal{C}(\mathcal{O}_K)|$ is the *class number* of \mathcal{O}_K.

The class number gives a classic answer to the question of when a ring of algebraic integers admits unique factorization.

Theorem

The ring of integers \mathcal{O}_K in an algebraic number field K is a unique factorization domain if and only if the class number of \mathcal{O}_K is 1.

In fact, the size of the class group of \mathcal{O}_K was generally assumed to be a measure of how far a ring of integers was from being a UFD.
The Connection Between Ideals and Factorizations

Proposition

Let D be a Dedekind domain and $x \in D$ a nonzero nonunit. Suppose in D that

$$(x) = P_1 \cdots P_k$$

where $k \geq 1$ and the $P_1, \cdots P_k$ are not necessarily distinct prime ideals of D. Then

1. In $\mathcal{C}(D)$, $[P_1] + \cdots + [P_k] = 0$.
2. The element x is prime in D if and only if $k = 1$.
3. The element x is irreducible in D if and only if for every nonempty proper subset $T \subset \{1, \ldots, k\}$, $\sum_{i \in T} [P_i] \neq 0$.
Proof of (3)

We prove (3) by contrapositive. \((\Rightarrow)\) Suppose for some proper subset \(T\) that \(\sum_{i \in T} \mathbb{P}_i = 0\). Then \(\prod_{i \in T} P_i = (y)\) for some nonzero nonunit \(y \in D\). By (1) we have \([P_1] + \cdots + [P_k] = 0\), so \(\sum_{i \in T} [P_i] = 0\) also. Thus, \(\prod_{i \in T} P_i = (z)\) for some nonzero nonunit \(z \in D\). Hence \((x) = (y)(z)\) implies that \(x = uyz\) where \(u\) is a unit of \(D\) and so \(x\) is reducible. \((\Leftarrow)\) Suppose that \(x\) is reducible in \(D\), i.e. \(x = yz\) for nonunits \(y\) and \(z\) in \(D\). By the Fundamental Theorem, there is a proper nonempty subset \(T \subset \{1, \ldots, k\}\) such that \((y) = \prod_{i \in T} P_i\). By (1), in \(C(D)\), \(\sum_{i \in T} [P_i] = 0\).
What happened in $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$?

The only units of \mathcal{O}_K are ± 1 and it is well known that the class number of \mathcal{O}_K is 2 (hence $\mathcal{C}(\mathcal{O}_K) \cong \mathbb{Z}_2$).

Let’s reconsider

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}) \quad (3)$$

in $\mathbb{Z}[\sqrt{-5}]$.

The prime ideal decompositions of (2) and (3) in $\mathbb{Z}[\sqrt{-5}]$ are

$$(2) = (2, 1 + \sqrt{-5})^2 \quad \text{and} \quad (3) = (3, 1 + \sqrt{-5})(3, 1 - \sqrt{-5}).$$
What happened in $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$?

The only units of \mathcal{O}_K are ± 1 and it is well known that the class number of \mathcal{O}_K is 2 (hence $C(\mathcal{O}_K) \cong \mathbb{Z}_2$).

Let’s reconsider

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

in $\mathbb{Z}[\sqrt{-5}]$.

The prime ideal decompositions of (2) and (3) in $\mathbb{Z}[\sqrt{-5}]$ are

$$(2) = (2, 1 + \sqrt{-5})^2$$

and

$$(3) = (3, 1 + \sqrt{-5})(3, 1 - \sqrt{-5}).$$
An Application

What happened in $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$?

The only units of \mathcal{O}_K are ± 1 and it is well known that the class number of \mathcal{O}_K is 2 (hence $C(\mathcal{O}_K) \cong \mathbb{Z}_2$).

Let’s reconsider

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

in $\mathbb{Z}[\sqrt{-5}]$.

The prime ideal decompositions of (2) and (3) in $\mathbb{Z}[\sqrt{-5}]$ are

$$(2) = (2, 1 + \sqrt{-5})^2$$

and

$$(3) = (3, 1 + \sqrt{-5})(3, 1 - \sqrt{-5})$$.
What happened in \(\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}] \)?

The only units of \(\mathcal{O}_K \) are \(\pm 1 \) and it is well known that the class number of \(\mathcal{O}_K \) is 2 (hence \(\mathcal{C}(\mathcal{O}_K) \cong \mathbb{Z}_2 \)).

Let’s reconsider

\[
6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})
\]

in \(\mathbb{Z}[\sqrt{-5}] \).

The prime ideal decompositions of (2) and (3) in \(\mathbb{Z}[\sqrt{-5}] \) are

\[
(2) = (2, 1 + \sqrt{-5})^2 \quad \text{and} \quad (3) = (3, 1 + \sqrt{-5})(3, 1 - \sqrt{-5}).
\]
Hence,

\[(6) = (2)(3) = (2, 1 + \sqrt{-5})^2 (3, 1 + \sqrt{-5})(3, 1 - \sqrt{-5}). \quad (4)\]

The second factorization in Eq. 3 is obtained by rearranging the product in Eq. 4,

\[
(6) = (2)(3) = (2, 1 + \sqrt{-5})^2 (3, 1 + \sqrt{-5})(3, 1 - \sqrt{-5}) \\
= (2, 1 + \sqrt{-5})(3, 1 + \sqrt{-5})(2, 1 + \sqrt{-5})(3, 1 - \sqrt{-5}) = (1 + \sqrt{-5})(1 - \sqrt{-5}).
\]

Moreover, since the class group of \(\mathbb{Z}[^5] \) requires a product of two nonprincipal prime ideals to obtain a principal ideal, these are the only two factorizations of 6 in \(\mathbb{Z}[^5] \) up to associates.
An Application

Hence,

\[(6) = (2)(3) = (2, 1 + \sqrt{-5})^2(3, 1 + \sqrt{-5})(3, 1 - \sqrt{-5}). \quad (4)\]

The second factorization in Eq. 3 is obtained by rearranging the product in Eq. 4,

\[(6) = (2)(3) = (2, 1 + \sqrt{-5})^2(3, 1 + \sqrt{-5})(3, 1 - \sqrt{-5})
= (2, 1 + \sqrt{-5})(3, 1 + \sqrt{-5})(2, 1 + \sqrt{-5})(3, 1 - \sqrt{-5})
= (1 + \sqrt{-5})(1 - \sqrt{-5}).\]

Moreover, since the class group of \(\mathbb{Z}[\sqrt{-5}] \) requires a product of two nonprincipal prime ideals to obtain a principal ideal, these are the only two factorizations of 6 in \(\mathbb{Z}[\sqrt{-5}] \) up to associates.
An Application

Hence,

\[(6) = (2)(3) = (2, 1 + \sqrt{-5})^2(3, 1 + \sqrt{-5})(3, 1 - \sqrt{-5}). \quad (4)\]

The second factorization in Eq. 3 is obtained by rearranging the product in Eq. 4,

\[(6) = (2)(3) = (2, 1 + \sqrt{-5})(3, 1 + \sqrt{-5})(3, 1 - \sqrt{-5})
= (2, 1 + \sqrt{-5})(3, 1 + \sqrt{-5})(2, 1 + \sqrt{-5})(3, 1 - \sqrt{-5}) = (1 + \sqrt{-5})(1 - \sqrt{-5}).\]

Moreover, since the class group of \(\mathbb{Z}[\sqrt{-5}]\) requires a product of two nonprincipal prime ideals to obtain a principal ideal, these are the only two factorizations of 6 in \(\mathbb{Z}[\sqrt{-5}]\) up to associates.
Let G be an abelian group. If $A \subseteq G$, then let $\langle A \rangle$ represent the subgroup generated by A.

Further, let $\mathcal{F}(G)$ represent the free abelian monoid on G. We write the elements of $\mathcal{F}(G)$ as $C = \prod_{g \in G} g^{v_g(C)}$ where $v_g(C)$ is a nonnegative integer.

Definition

Let G be an abelian group. The set

$$\mathcal{B}(G) = \left\{ C \mid C = \prod_{g \in G} g^{v_g(C)} \text{ with } \sum_{g \in G} v_g(C)g = 0 \right\}$$

forms a submonoid of $\mathcal{F}(G)$ known as the *block monoid of G*.
Let G be an abelian group. If $A \subseteq G$, then let $\langle A \rangle$ represent the subgroup generated by A.

Further, let $\mathcal{F}(G)$ represent the free abelian monoid on G. We write the elements of $\mathcal{F}(G)$ as $C = \prod_{g \in G} g^{v_g(C)}$ where $v_g(C)$ is a nonnegative integer.

Definition

Let G be an abelian group. The set

$$
\mathcal{B}(G) = \left\{ C \left| C = \prod_{g \in G} g^{v_g(C)} \text{ with } \sum_{g \in G} v_g(C)g = 0 \right\}
$$

forms a submonoid of $\mathcal{F}(G)$ known as the *block monoid of* G.

Let G be an abelian group. If $A \subseteq G$, then let $\langle A \rangle$ represent the subgroup generated by A.

Further, let $\mathcal{F}(G)$ represent the free abelian monoid on G. We write the elements of $\mathcal{F}(G)$ as $C = \prod_{g \in G} g^{v_g(C)}$ where $v_g(C)$ is a nonnegative integer.

Definition

Let G be an abelian group. The set

$$\mathcal{B}(G) = \left\{ C \ \bigg | \ C = \prod_{g \in G} g^{v_g(C)} \text{ with } \sum_{g \in G} v_g(C)g = 0 \right\}$$

forms a submonoid of $\mathcal{F}(G)$ known as the *block monoid of* G.
Block Monoids

Definition

If S is a nonempty subset of G, then the set

$$\mathcal{B}(G, S) = \left\{ C \mid C = \prod_{g \in G} g^{v_g(C)} \text{ with } \sum_{g \in G} v_g(C)g = 0 \text{ and } v_g(C) = 0 \text{ if } g \notin S \right\}$$

is a submonoid of $\mathcal{B}(G)$ known as the block monoid of G restricted to S.

We call the identity of $\mathcal{B}(G, S)$, $E = \prod_{g \in G} g^0$, the empty block.

A block B divides a block C, denoted $B \mid C$ if there is a block T such that $C = BT$.
Definition

If S is a nonempty subset of G, then the set

$$\mathcal{B}(G, S) = \left\{ C \mid C = \prod_{g \in G} g^{v_g(C)} \text{ with } \sum_{g \in G} v_g(C)g = 0 \text{ and } v_g(C) = 0 \text{ if } g \not\in S \right\}$$

is a submonoid of $\mathcal{B}(G)$ known as the *block monoid of G restricted to S*.

We call the identity of $\mathcal{B}(G, S)$, $E = \prod_{g \in G} g^0$, the *empty block*.

A block B divides a block C, denoted $B \mid C$ if there is a block T such that $C = BT$.
A block $B \neq E$ is **irreducible** if $B = CT$ for C, T in $\mathcal{B}(G, S)$ implies that either $C = E$ or $T = E$.

A block $B \neq E$ is **prime** if whenever $B \mid CT$ then either $B \mid C$ or $B \mid T$.

As with the usual theory of factorization in an integral domain, a prime block B is irreducible, but not conversely.

For the block $C = \prod_{g \in G} g^{v_g(C)}$, we set $|C| = \sum_{g \in G} v_g(C)$ to be the **size** of C.
A block $B \neq E$ is \textit{irreducible} if $B = CT$ for C, T in $B(G, S)$ implies that either $C = E$ or $T = E$.

A block $B \neq E$ is \textit{prime} if whenever $B \mid CT$ then either $B \mid C$ or $B \mid T$.

As with the usual theory of factorization in an integral domain, a prime block B is irreducible, but not conversely.

For the block $C = \prod_{g \in G} g^{v_g(C)}$, we set $|C| = \sum_{g \in G} v_g(C)$ to be the size of C.
A block $B \neq E$ is **irreducible** if $B = CT$ for C, T in $B(G, S)$ implies that either $C = E$ or $T = E$.

A block $B \neq E$ is **prime** if whenever $B \mid CT$ then either $B \mid C$ or $B \mid T$.

As with the usual theory of factorization in an integral domain, a prime block B is irreducible, but not conversely.

For the block $C = \prod_{g \in G} g^{v_g(C)}$, we set $|C| = \sum_{g \in G} v_g(C)$ to be the **size** of C.
A block $B \neq E$ is *irreducible* if $B = CT$ for C, T in $B(G, S)$ implies that either $C = E$ or $T = E$.

A block $B \neq E$ is *prime* if whenever $B \mid CT$ then either $B \mid C$ or $B \mid T$.

As with the usual theory of factorization in an integral domain, a prime block B is irreducible, but not conversely.

For the block $C = \prod_{g \in G} g^{\nu_g(C)}$, we set $|C| = \sum_{g \in G} \nu_g(C)$ to be the *size* of C.
We compile a few facts about block monoids.

Proposition

Let G be an abelian group and S a nonempty subset of G.

1. The block $B = \prod_{g \in S} g^{v_g(B)} \neq E$ is irreducible in $\mathcal{B}(G, S)$ if and only if for each nonempty subset T of S we have $\sum_{g \in T} v'_g(B)g \neq 0$ for any integers $v'_g(B)$ with $0 \leq v'_g(B) \leq v_g(B)$ where at least one $v'_g(B) \neq 0$ and at least one $v'_g(B) < v_g(B)$.

2. If $B \neq E$ in $\mathcal{B}(G, S)$, then B can be written as a product of irreducible blocks in $\mathcal{B}(G, S)$.

3. If $0 \in S$, then the block 0^1 is prime in $\mathcal{B}(G, S)$.

4. If G is finite, then $\mathcal{B}(G, S)$ contains finitely many irreducible blocks.
Basic Facts About Block Monoids

We compile a few facts about block monoids.

Proposition

Let G be an abelian group and S a nonempty subset of G.

1. The block $B = \prod_{g \in S} g^{v_g(B)} \neq E$ is irreducible in $\mathcal{B}(G, S)$ if and only if for each nonempty subset T of S we have $\sum_{g \in T} v'_g(B)g \neq 0$ for any integers $v'_g(B)$ with $0 \leq v'_g(B) \leq v_g(B)$ where at least one $v'_g(B) \neq 0$ and at least one $v'_g(B) < v_g(B)$.

2. If $B \neq E$ in $\mathcal{B}(G, S)$, then B can be written as a product of irreducible blocks in $\mathcal{B}(G, S)$.

3. If $0 \in S$, then the block 0^1 is prime in $\mathcal{B}(G, S)$.

4. If G is finite, then $\mathcal{B}(G, S)$ contains finitely many irreducible blocks.
Let $G = \mathbb{Z}_4$. Here

$$B(\mathbb{Z}_4) = \{0^{x_0}1^{x_1}2^{x_2}3^{x_3} \mid \text{each } x_i \geq 0 \text{ and } x_1 + 2x_2 + 3x_3 \equiv 0 \pmod{4}\}.$$

Notice that the non-prime irreducible blocks of $B(\mathbb{Z}_4)$ are as follows:

$$1^4, 2^2, 3^4, 1^22^1, 1^13^1, \text{ and } 2^13^2.$$

In this monoid it is easy to produce factorizations of blocks into irreducible blocks which differ in length. For instance

$$B = (1^4)(3^4) = (1^13^1)^4$$

is a factorization of B into 2 and 4 irreducible blocks respectively.
Let $G = \mathbb{Z}_4$. Here

$$\mathcal{B}(\mathbb{Z}_4) = \{0^{x_0}1^{x_1}2^{x_2}3^{x_3} \mid \text{each } x_i \geq 0 \text{ and } x_1 + 2x_2 + 3x_3 \equiv 0 \pmod{4}\}.$$

Notice that the non-prime irreducible blocks of $\mathcal{B}(\mathbb{Z}_4)$ are as follows:

$$\bar{1}^4, \bar{2}^2, \bar{3}^4, \bar{1}^2\bar{2}^{-1}, \bar{1}^{-1}\bar{3}^{-1}, \text{ and } \bar{2}^{-1}\bar{3}^{-2}.$$

In this monoid it is easy to produce factorizations of blocks into irreducible blocks which differ in length. For instance

$$B = (\bar{1}^4)(\bar{3}^4) = (\bar{1}^{-1}\bar{3}^{-1})^4$$

is a factorization of B into 2 and 4 irreducible blocks respectfully.
Let $G = \mathbb{Z}_4$. Here

$$\mathcal{B}(\mathbb{Z}_4) = \{0^{x_0}1^{x_1}2^{x_2}3^{x_3} \mid \text{each } x_j \geq 0 \text{ and } x_1 + 2x_2 + 3x_3 \equiv 0 \pmod{4}\}.$$

Notice that the non-prime irreducible blocks of $\mathcal{B}(\mathbb{Z}_4)$ are as follows:

$$1^4, 2^2, 3^4, 1^2 2^1, 1^1 3^1, \text{ and } 2^1 3^2.$$

In this monoid it is easy to produce factorizations of blocks into irreducible blocks which differ in length. For instance

$$B = (1^4)(3^4) = (1^1 3^1)^4$$

is a factorization of B into 2 and 4 irreducible blocks respectfully.
Let $G = \mathbb{Z}_4$. Here

$$B(\mathbb{Z}_4) = \{0^{x_0}1^{x_1}2^{x_2}3^{x_3} \mid \text{each } x_i \geq 0 \text{ and } x_1 + 2x_2 + 3x_3 \equiv 0 \pmod{4}\}.$$

Notice that the non-prime irreducible blocks of $B(\mathbb{Z}_4)$ are as follows:

$$\bar{1}^4, \bar{2}^2, \bar{3}^4, \bar{1}^2\bar{2}^1, \bar{1}^1\bar{3}^1, \text{ and } \bar{2}^1\bar{3}^2.$$

In this monoid it is easy to produce factorizations of blocks into irreducible blocks which differ in length. For instance

$$B = (\bar{1}^4)(\bar{3}^4) = (\bar{1}^1\bar{3}^1)^4$$

is a factorization of B into 2 and 4 irreducible blocks respectively.
Factorial vs. Half-Factorial

Proposition

Let G be an abelian group. The following statements are equivalent.

1. $\mathcal{B}(G)$ is factorial.
2. $\mathcal{B}(G)$ is half-factorial.
3. $|G| \leq 2$.

Proof.

(2) \Rightarrow (3) Suppose $\mathcal{B}(G)$ is half-factorial and that $|G| > 3$. Then G has two distinct nonzero elements g_1 and g_2 with $g_3 = g_1 + g_2 \neq 0$ and $g_3 \neq g_1, g_2$. The blocks $A_1 = (-g_3)^1 g_1^1 g_2^1$, $A_2 = g_3^1 (-g_1)^1 (-g_2)^1$, $B_1 = g_1^1 (-g_1)^1$, $B_2 = g_2^1 (-g_2)^1$ and $B_3 = g_3^1 (-g_3)^1$ are all irreducibles of $\mathcal{B}(G)$. But $A_1 A_2 = B_1 B_2 B_3$, so $\mathcal{B}(G)$ is not half factorial, a contradiction. Hence $|G| \leq 3$. If $|G| = 3$, then $G \cong \mathbb{Z}_3$. If $A = 1^3$, $B = 2^3$ and $C = 1^1 2^1$, then $AB = C^3$ and $\mathcal{B}(\mathbb{Z}_3)$ is not half-factorial. Hence, we conclude that $|G| \leq 2$.

Chapman (Sam Houston State University)
Factorial vs. Half-Factorial

Proposition

Let G be an abelian group. The following statements are equivalent.

1. $\mathcal{B}(G)$ is factorial.
2. $\mathcal{B}(G)$ is half-factorial.
3. $|G| \leq 2$.

Proof.

$(2) \Rightarrow (3)$ Suppose $\mathcal{B}(G)$ is half-factorial and that $|G| > 3$. Then G has two distinct nonzero elements g_1 and g_2 with $g_3 = g_1 + g_2 \neq 0$ and $g_3 \neq g_1, g_2$. The blocks $A_1 = (-g_3)^1 g_1^1 g_2^1$, $A_2 = g_3^1 (-g_1)^1 (-g_2)^1$, $B_1 = g_1^1 (-g_1)^1$, $B_2 = g_2^1 (-g_2)^1$ and $B_3 = g_3^1 (-g_3)^1$ are all irreducibles of $\mathcal{B}(G)$. But $A_1 A_2 = B_1 B_2 B_3$, so $\mathcal{B}(G)$ is not half factorial, a contradiction.

Hence $|G| \leq 3$. If $|G| = 3$, then $G \cong \mathbb{Z}_3$. If $A = 1^3$, $B = 2^3$ and $C = 1^1 2^1$, then $AB = C^3$ and $\mathcal{B}(\mathbb{Z}_3)$ is not half-factorial. Hence, we conclude that $|G| \leq 2$.

Definition

Let G be an abelian group. The *Davenport constant* of G is defined as

$$D(G) = \sup \{|B| \mid B \text{ is an irreducible element of } \mathcal{B}(G)\}.$$

If S is a nonempty subset of G, then

$$D(G, S) = \sup \{|B| \mid B \text{ is an irreducible element of } \mathcal{B}(G, S)\}$$

is known as the Davenport constant of G relative to S.

No closed formula for the computation of the Davenport constant is known.

Davenport’s constant arises in several unexpected areas. Alford, Granville and Pomerance used the bound $D(G) \leq \exp(G)(1 + \log(|G|/\exp(G))$ to prove there are infinitely many Carmichael numbers.
Definition

Let G be an abelian group. The *Davenport constant* of G is defined as

$$D(G) = \sup\{|B| \mid B \text{ is an irreducible element of } \mathcal{B}(G)\}.$$

If S is a nonempty subset of G, then

$$D(G, S) = \sup\{|B| \mid B \text{ is an irreducible element of } \mathcal{B}(G, S)\}$$

is known as the Davenport constant of G relative to S.

No closed formula for the computation of the Davenport constant is known.

Davenport’s constant arises in several unexpected areas. Alford, Granville and Pomerance used the bound $D(G) \leq \exp(G)(1 + \log(|G|/\exp(G))$ to prove there are infinitely many Carmichael numbers.
A Little Additive Number Theory

If $G = \mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_k}$ is a finite abelian group with $n_i \mid n_{i+1}$ for each $1 \leq i < k$, then set

$$M(G) = \left\lfloor \sum_{i+1}^k (n_i - 1) \right\rfloor + 1.$$

Proposition

Let G be an abelian group.

1. If $|G| = \infty$, then $D(G) = \infty$.
2. If $|G| < \infty$, then $M(G) \leq D(G) \leq |G|$.
If $G = \mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_k}$ is a finite abelian group with $n_i \mid n_{i+1}$ for each $1 \leq i < k$, then set

$$M(G) = \left\lfloor \sum_{i+1}^k (n_i - 1) \right\rfloor + 1.$$

Proposition

Let G be an abelian group.

1. If $|G| = \infty$, then $D(G) = \infty$.
2. If $|G| < \infty$, then $M(G) \leq D(G) \leq |G|$.
Davenport Facts

It is possible for the upper inequality in Proposition 10 (2) to be strict. Erdős conjectured in the mid-sixties that $D(G) = M(G)$. It was not until 1969 that this conjecture was disproved. The group of smallest order that is a counterexample is

$$G_1 = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_6.$$

If G is of rank less than or equal to 2, then $D(G) = M(G)$. It is unknown whether there is a counterexample of rank 3, and this, in fact, is an active area of research.
It is possible for the upper inequality in Proposition 10 (2) to be strict. Erdős conjectured in the mid-sixties that $D(G) = M(G)$. It was not until 1969 that this conjecture was disproved.

The group of smallest order that is a counterexample is

$$G_1 = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_6.$$

If G is of rank less than or equal to 2, then $D(G) = M(G)$.

It is unknown whether there is a counterexample of rank 3, and this, in fact, is an active area of research.
It is possible for the upper inequality in Proposition 10 (2) to be strict. Erdős conjectured in the mid-sixties that $D(G) = M(G)$. It was not until 1969 that this conjecture was disproved. The group of smallest order that is a counterexample is

$$G_1 = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_6.$$

If G is of rank less than or equal to 2, then $D(G) = M(G)$. It is unknown whether there is a counterexample of rank 3, and this, in fact, is an active area of research.
It is possible for the upper inequality in Proposition 10 (2) to be strict. Erdős conjectured in the mid-sixties that $D(G) = M(G)$. It was not until 1969 that this conjecture was disproved. The group of smallest order that is a counterexample is

$$G_1 = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_6.$$

If G is of rank less than or equal to 2, then $D(G) = M(G)$. It is unknown whether there is a counterexample of rank 3, and this, in fact, is an active area of research.
It is possible for the upper inequality in Proposition 10 (2) to be strict. Erdős conjectured in the mid-sixties that $D(G) = M(G)$. It was not until 1969 that this conjecture was disproved. The group of smallest order that is a counterexample is

$$G_1 = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_6.$$

If G is of rank less than or equal to 2, then $D(G) = M(G)$. It is unknown whether there is a counterexample of rank 3, and this, in fact, is an active area of research.
A Little More Terminology

Let M be a commutative cancellative monoid in which each nonunit can be written as product of irreducible elements (such a monoid is called *atomic*).

Let $A(M)$ represent the set of irreducible elements of M and M^\times its set of units.

For $x \in M \setminus M^\times$, set

$$L(x) = \{ n \mid n \in \mathbb{N} \text{ and there exist } x_1, \ldots, x_n \in A(M) \text{ with } x = x_1 \cdots x_n \}.$$

We will refer to $L(x)$ as the *set of lengths of x in M*.
A Little More Terminology

Let M be a commutative cancellative monoid in which each nonunit can be written as product of irreducible elements (such a monoid is called \textit{atomic}).

Let $\mathcal{A}(M)$ represent the set of irreducible elements of M and M^\times its set of units.

For $x \in M \setminus M^\times$, set

$$\mathcal{L}(x) = \{ n \mid n \in \mathbb{N} \text{ and there exist } x_1, \ldots, x_n \in \mathcal{A}(M) \text{ with } x = x_1 \cdots x_n \}.$$

We will refer to $\mathcal{L}(x)$ as the \textit{set of lengths of} x \textit{in} M.
Let M be a commutative cancellative monoid in which each nonunit can be written as product of irreducible elements (such a monoid is called \textit{atomic}).

Let $\mathcal{A}(M)$ represent the set of irreducible elements of M and M^\times its set of units.

For $x \in M \setminus M^\times$, set

$$\mathcal{L}(x) = \{ n \mid n \in \mathbb{N} \text{ and there exist } x_1, \ldots, x_n \in \mathcal{A}(M) \text{ with } x = x_1 \cdots x_n \}.$$

We will refer to $\mathcal{L}(x)$ as the \textit{set of lengths of x in M}.
Let M be a commutative cancellative monoid in which each nonunit can be written as product of irreducible elements (such a monoid is called \emph{atomic}).

Let $A(M)$ represent the set of irreducible elements of M and M^\times its set of units.

For $x \in M \setminus M^\times$, set

$$L(x) = \{ n \mid n \in \mathbb{N} \text{ and there exist } x_1, \ldots, x_n \in A(M) \text{ with } x = x_1 \cdots x_n \}.$$

We will refer to $L(x)$ as the \emph{set of lengths of x in M}.
We can extend $\mathcal{L}(x)$ to a global descriptor by setting

$$\mathcal{L}(M) = \{ \mathcal{L}(x) \mid x \in M \setminus M^\times \}.$$

We will refer to $\mathcal{L}(M)$ as the set of lengths of M.

There is another popular invariant which describes the variance in length of the factorizations of an element.

For $x \in M \setminus M^\times$ set

$$L(x) = \sup\{ n \mid \text{there are } x_1, \ldots, x_n \in \mathcal{A}(M) \text{ such that } x = x_1 \cdots x_n \}$$

and

$$l(x) = \inf\{ n \mid \text{there are } x_1, \ldots, x_n \in \mathcal{A}(M) \text{ such that } x = x_1 \cdots x_n \}.$$
A Little More Terminology

We can extend $\mathcal{L}(x)$ to a global descriptor by setting

$$\mathcal{L}(M) = \{ \mathcal{L}(x) \mid x \in M \setminus M^x \}.$$

We will refer to $\mathcal{L}(M)$ as the set of lengths of M.

There is another popular invariant which describes the variance in length of the factorizations of an element.

For $x \in M \setminus M^x$ set

$$L(x) = \sup \{ n \mid \text{there are } x_1, \ldots, x_n \in \mathcal{A}(M) \text{ such that } x = x_1 \cdots x_n \}$$

and

$$l(x) = \inf \{ n \mid \text{there are } x_1, \ldots, x_n \in \mathcal{A}(M) \text{ such that } x = x_1 \cdots x_n \}.$$
A Little More Terminology

We can extend \(\mathcal{L}(x) \) to a global descriptor by setting

\[
\mathcal{L}(M) = \{ \mathcal{L}(x) \mid x \in M \setminus M^\times \}.
\]

We will refer to \(\mathcal{L}(M) \) as the set of lengths of \(M \).

There is another popular invariant which describes the variance in length of the factorizations of an element.

For \(x \in M \setminus M^\times \) set

\[
L(x) = \sup \{ n \mid \text{there are } x_1, \ldots, x_n \in \mathcal{A}(M) \text{ such that } x = x_1 \cdots x_n \}
\]

and

\[
l(x) = \inf \{ n \mid \text{there are } x_1, \ldots, x_n \in \mathcal{A}(M) \text{ such that } x = x_1 \cdots x_n \}. \]
A Little More Terminology

We can extend $\mathcal{L}(x)$ to a global descriptor by setting

$$
\mathcal{L}(M) = \{ \mathcal{L}(x) \mid x \in M \setminus M^\times \}.
$$

We will refer to $\mathcal{L}(M)$ as the *set of lengths of* M.

There is another popular invariant which describes the variance in length of the factorizations of an element.

For $x \in M \setminus M^\times$ set

$$
L(x) = \sup \{ n \mid \text{there are } x_1, \ldots, x_n \in A(M) \text{ such that } x = x_1 \cdots x_n \}
$$

and

$$
l(x) = \inf \{ n \mid \text{there are } x_1, \ldots, x_n \in A(M) \text{ such that } x = x_1 \cdots x_n \}.
$$
A Little More Terminology

We can extend $L(x)$ to a global descriptor by setting

$$L(M) = \{L(x) \mid x \in M\backslash M^{\times}\}.$$

We will refer to $L(M)$ as the set of lengths of M.

There is another popular invariant which describes the variance in length of the factorizations of an element.

For $x \in M\backslash M^{\times}$ set

$$L(x) = \sup\{n \mid \text{there are } x_1, \ldots, x_n \in A(M) \text{ such that } x = x_1 \cdots x_n\}$$

and

$$l(x) = \inf\{n \mid \text{there are } x_1, \ldots, x_n \in A(M) \text{ such that } x = x_1 \cdots x_n\}.$$
The *elasticity of* x is defined as
\[
\rho(x) = \frac{L(x)}{l(x)}.
\]

We can again extend this definition to all of M by setting
\[
\rho(M) = \sup\{\rho(x) \mid x \in M \setminus M^x\}
\]
and call $\rho(M)$ the *elasticity of* M.
The **elasticity of** \(x \) is defined as

\[
\rho(x) = \frac{L(x)}{l(x)}.
\]

We can again extend this definition to all of \(M \) by setting

\[
\rho(M) = \sup\{\rho(x) \mid x \in M \setminus M^\times\}
\]

and call \(\rho(M) \) the **elasticity of** \(M \).
Questions

Obvious Questions:

(1) Which rings of algebraic integers \mathcal{O}_K are half-factorial?

(2) What is the elasticity of a given ring \mathcal{O}_K of integers?

HARDER QUESTIONS:

(3) What Dedekind domains are half-factorial?

(4) What is the elasticity of a given Dedekind domain?
Obvious Questions:

(1) Which rings of algebraic integers \mathcal{O}_K are half-factorial?

(2) What is the elasticity of a given ring \mathcal{O}_K of integers?

HARDER QUESTIONS:

(3) What Dedekind domains are half-factorial?

(4) What is the elasticity of a given Dedekind domain?
Obvious Questions:

(1) Which rings of algebraic integers \mathcal{O}_K are half-factorial?

(2) What is the elasticity of a given ring \mathcal{O}_K of integers?

Harder Questions:

(3) What Dedekind domains are half-factorial?

(4) What is the elasticity of a given Dedekind domain?
Questions

Obvious Questions:
(1) Which rings of algebraic integers \mathcal{O}_K are half-factorial?
(2) What is the elasticity of a given ring \mathcal{O}_K of integers?

HARDER QUESTIONS:
(3) What Dedekind domains are half-factorial?
(4) What is the elasticity of a given Dedekind domain?
Questions

Obvious Questions:

(1) Which rings of algebraic integers \mathcal{O}_K are half-factorial?

(2) What is the elasticity of a given ring \mathcal{O}_K of integers?

HARDER QUESTIONS:

(3) What Dedekind domains are half-factorial?

(4) What is the elasticity of a given Dedekind domain?
An Example

Example

To illustrate the above ideas, we can compute the sets of length for the block monoid $\mathcal{B}(\mathbb{Z}_3)$.

If $B = 0^x_1 1^x_2 2^x_3$ is in $\mathcal{B}(G)$, then $x_2 + 2x_3 \equiv 0 \pmod{3}$, so $x_2 \equiv x_3 \pmod{3}$.

Write $x_2 = 3q_2 + r$ and $x_3 = 3q_3 + r$, where $0 \leq r < 3$.

A calculation involving the irreducible blocks yields

$$\mathcal{L}(B) = \{x_1 + q_2 + q_3 + r + k \mid 0 \leq k \leq \min\{q_2, q_3\}\}$$

and so $\rho(B) = 1 + \min\{q_2, q_3\}/(x_1 + q_2 + q_3 + r)$.

This formula is maximized when $q_2 = q_3$ and $x_1 = r = 0$, so that $\rho(\mathcal{B}(\mathbb{Z}_3)) = 3/2$.
To illustrate the above ideas, we can compute the sets of length for the block monoid $B(\mathbb{Z}_3)$.

If $B = 0^{x_1}1^{x_2}2^{x_3}$ is in $B(G)$, then $x_2 + 2x_3 \equiv 0 \pmod{3}$, so $x_2 \equiv x_3 \pmod{3}$.

Write $x_2 = 3q_2 + r$ and $x_3 = 3q_3 + r$, where $0 \leq r < 3$.

A calculation involving the irreducible blocks yields

$$
\mathcal{L}(B) = \{x_1 + q_2 + q_3 + r + k \mid 0 \leq k \leq \min\{q_2, q_3\}\}
$$

and so $\rho(B) = 1 + \min\{q_2, q_3\}/(x_1 + q_2 + q_3 + r)$.

This formula is maximized when $q_2 = q_3$ and $x_1 = r = 0$, so that $\rho(B(\mathbb{Z}_3)) = 3/2$.

Chapman (Sam Houston State University)
Example

To illustrate the above ideas, we can compute the sets of length for the block monoid $B(\mathbb{Z}_3)$.

If $B = 0^{x_1}1^{x_2}2^{x_3}$ is in $B(G)$, then $x_2 + 2x_3 \equiv 0 \pmod{3}$, so $x_2 \equiv x_3 \pmod{3}$.

Write $x_2 = 3q_2 + r$ and $x_3 = 3q_3 + r$, where $0 \leq r < 3$.

A calculation involving the irreducible blocks yields

$$\mathcal{L}(B) = \{x_1 + q_2 + q_3 + r + k \mid 0 \leq k \leq \min\{q_2, q_3\}\}$$

and so $\rho(B) = 1 + \min\{q_2, q_3\}/(x_1 + q_2 + q_3 + r)$.

This formula is maximized when $q_2 = q_3$ and $x_1 = r = 0$, so that $\rho(B(\mathbb{Z}_3)) = 3/2$.
An Example

Example

To illustrate the above ideas, we can compute the sets of length for the block monoid $B(\mathbb{Z}_3)$.

If $B = \overline{0}^{x_1} \overline{1}^{x_2} \overline{2}^{x_3}$ is in $B(G)$, then $x_2 + 2x_3 \equiv 0 \pmod{3}$, so $x_2 \equiv x_3 \pmod{3}$.

Write $x_2 = 3q_2 + r$ and $x_3 = 3q_3 + r$, where $0 \leq r < 3$.

A calculation involving the irreducible blocks yields

$$L(B) = \{x_1 + q_2 + q_3 + r + k \mid 0 \leq k \leq \min\{q_2, q_3\}\}$$

and so $\rho(B) = 1 + \min\{q_2, q_3\}/(x_1 + q_2 + q_3 + r)$.

This formula is maximized when $q_2 = q_3$ and $x_1 = r = 0$, so that $\rho(B(\mathbb{Z}_3)) = 3/2$.
To illustrate the above ideas, we can compute the sets of length for the block monoid \(B(\mathbb{Z}_3) \).

If \(B = \overline{0}^{x_1} \overline{1}^{x_2} \overline{2}^{x_3} \) is in \(B(G) \), then \(x_2 + 2x_3 \equiv 0 \pmod{3} \), so \(x_2 \equiv x_3 \pmod{3} \).

Write \(x_2 = 3q_2 + r \) and \(x_3 = 3q_3 + r \), where \(0 \leq r < 3 \).

A calculation involving the irreducible blocks yields

\[
\mathcal{L}(B) = \{ x_1 + q_2 + q_3 + r + k \mid 0 \leq k \leq \min\{q_2, q_3\} \}
\]

and so \(\rho(B) = 1 + \min\{q_2, q_3\} / (x_1 + q_2 + q_3 + r) \).

This formula is maximized when \(q_2 = q_3 \) and \(x_1 = r = 0 \), so that \(\rho(B(\mathbb{Z}_3)) = 3/2 \).
Geroldinger’s Theorem

Let D be a Dedekind domain with divisor class group $G = \mathcal{C}(D)$, D^* the multiplicative monoid of D and S be the set of divisor classes of $\mathcal{C}(D)$ containing prime ideals. Suppose further that for $x \in D^*$, we have $(x) = P_1 \cdots P_k$ for not necessary distinct prime ideals P_1, \ldots, P_k of D. The function

$$\varphi : D^* \to \mathcal{B}(G, S)$$

is a well-defined monoid homomorphism that is surjective and preserves lengths of factorizations into irreducibles (i.e., $\mathcal{L}(x) = \mathcal{L}(\varphi(x))$ for each $x \in D^*$). Hence

$$\mathcal{L}(D) = \mathcal{L}(\mathcal{B}(G, S)),$$
Geroldinger’s Theorem can be extended to include the more general class of *Krull domains*.

When $D = \mathcal{O}_K$ is the ring of integers of a finite extension K of the rationals, we earlier established that $S = G$, so Geroldinger’s Theorem establishes a correspondence between \mathcal{O}_K and the full block monoid $B(G)$ over the class group. The following well-known theorem of Carlitz now follows as a corollary to Geroldinger’s Theorem.

Carlitz’s Theorem

Let \mathcal{O}_K be the ring of integers in a finite extension of the rationals. Then \mathcal{O}_K is half-factorial if and only if the class number of \mathcal{O}_K is less than or equal to 2. Equivalently, \mathcal{O}_K is half-factorial if and only if $|C(\mathcal{O}_K)| \leq 2$.
Implications of Geroldinger’s Theorem

Geroldinger’s Theorem can be extended to include the more general class of *Krull domains*.

When $D = \mathcal{O}_K$ is the ring of integers of a finite extension K of the rationals, we earlier established that $S = G$, so Geroldinger’s Theorem establishes a correspondence between \mathcal{O}_K and the full block monoid $B(G)$ over the class group. The following well-known theorem of Carlitz now follows as a corollary to Geroldinger’s Theorem.

Carlitz’s Theorem

Let \mathcal{O}_K be the ring of integers in a finite extension of the rationals. Then \mathcal{O}_K is half-factorial if and only if the class number of \mathcal{O}_K is less than or equal to 2. Equivalently, \mathcal{O}_K is half-factorial if and only if $|C(\mathcal{O}_K)| \leq 2$.

Geroldinger’s Theorem can be extended to include the more general class of *Krull domains*.

When $D = \mathcal{O}_K$ is the ring of integers of a finite extension K of the rationals, we earlier established that $S = G$, so Geroldinger’s Theorem establishes a correspondence between \mathcal{O}_K and the full block monoid $B(G)$ over the class group. The following well-known theorem of Carlitz now follows as a corollary to Geroldinger’s Theorem.

Carlitz’s Theorem

Let \mathcal{O}_K be the ring of integers in a finite extension of the rationals. Then \mathcal{O}_K is half-factorial if and only if the class number of \mathcal{O}_K is less than or equal to 2. Equivalently, \mathcal{O}_K is half-factorial if and only if $|C(\mathcal{O}_K)| \leq 2$.
Proposition

Let D be a Dedekind domain with class group G and S defined as above. Assume further that $|G| < \infty$ and $G \neq \{0\}$.

1. If $S \neq \{0\}$, then $\rho(D) \leq \frac{D(G,S)}{2}$.
2. If $G = S$, then $\rho(D) = \frac{D(G)}{2}$. Moreover, in this case there is an $x \in D^*$ with $\rho(x) = \rho(D)$.

Sketch of Proof: By Geroldinger’s Theorem, we can pass to $B(G, S)$. If $B \in B(G, S)$, then write it as $B = g_1 \cdots g_n$. The shortest factorization of B is greater than $n/D(G,S)$ and the longest less than $n/2$. Hence, $\rho(B(G, S)) \leq \frac{n/2}{n/D(G,S)} = \frac{D(G,S)}{2}$.
Proposition

Let D be a Dedekind domain with class group G and S defined as above. Assume further that $|G| < \infty$ and $G \neq \{0\}$.

1. If $S \neq \{0\}$, then $\rho(D) \leq \frac{D(G,S)}{2}$.

2. If $G = S$, then $\rho(D) = \frac{D(G)}{2}$. Moreover, in this case there is an $x \in D^*$ with $\rho(x) = \rho(D)$.

Sketch of Proof: By Geroldinger’s Theorem, we can pass to $B(G, S)$. If $B \in B(G, S)$, then write it as $B = g_1 \cdots g_n$. The shortest factorization of B is greater than $n/D(G, S)$ and the longest less than $n/2$. Hence, $\rho(B(G, S)) \leq \frac{n/2}{n/D(G, S)} = \frac{D(G,S)}{2}$.
Proposition

Let D be a Dedekind domain with class group G and S defined as above. Assume further that $|G| < \infty$ and $G \neq \{0\}$.

1. If $S \neq \{0\}$, then $\rho(D) \leq \frac{D(G,S)}{2}$.

2. If $G = S$, then $\rho(D) = \frac{D(G)}{2}$. Moreover, in this case there is an $x \in D^*$ with $\rho(x) = \rho(D)$.

Sketch of Proof: By Geroldinger’s Theorem, we can pass to $B(G, S)$. If $B \in B(G, S)$, then write it as $B = g_1 \cdots g_n$.

The shortest factorization of B is greater than $n/D(G,S)$ and the longest less than $n/2$.

Hence, $\rho(B(G, S)) \leq \frac{n/2}{n/D(G,S)} = \frac{D(G,S)}{2}$.
Proposition

Let D be a Dedekind domain with class group G and S defined as above. Assume further that $|G| < \infty$ and $G \neq \{0\}$.

1. If $S \neq \{0\}$, then $\rho(D) \leq \frac{D(G,S)}{2}$.

2. If $G = S$, then $\rho(D) = \frac{D(G)}{2}$. Moreover, in this case there is an $x \in D^*$ with $\rho(x) = \rho(D)$.

Sketch of Proof: By Geroldinger’s Theorem, we can pass to $B(G, S)$. If $B \in B(G, S)$, then write it as $B = g_1 \cdots g_n$.

The shortest factorization of B is greater than $n/D(G, S)$ and the longest less than $n/2$.

Hence, $\rho(B(G, S)) \leq \frac{n/2}{n/D(G, S)} = \frac{D(G,S)}{2}$.
On Elasticity

Proposition

Let D be a Dedekind domain with class group G and S defined as above. Assume further that $|G| < \infty$ and $G \neq \{0\}$.

1. If $S \neq \{0\}$, then $\rho(D) \leq \frac{D(G,S)}{2}$.

2. If $G = S$, then $\rho(D) = \frac{D(G)}{2}$. Moreover, in this case there is an $x \in D^*$ with $\rho(x) = \rho(D)$.

Sketch of Proof: By Geroldinger’s Theorem, we can pass to $\mathcal{B}(G, S)$. If $B \in \mathcal{B}(G, S)$, then write it as $B = g_1 \cdots g_n$. The shortest factorization of B is greater than $n/D(G, S)$ and the longest less than $n/2$. Hence, $\rho(\mathcal{B}(G, S)) \leq \frac{n/2}{n/D(G, S)} = \frac{D(G, S)}{2}$.
Valenza’s Theorem

The last result leads to an easy proof of a well-known extension of Carlitz’s Theorem by Valenza.

Valenza’s Theorem

Let \mathcal{O}_K be the ring of integers in a finite extension of the rationals. Then

$$
\rho(\mathcal{O}_K) = \frac{D(C(\mathcal{O}_K))}{2}.
$$
Valenza’s Theorem

The last result leads to an easy proof of a well-known extension of Carlitz’s Theorem by Valenza.

Valenza’s Theorem

Let \mathcal{O}_K be the ring of integers in a finite extension of the rationals. Then

$$\rho(\mathcal{O}_K) = \frac{D(\mathcal{C}(\mathcal{O}_K))}{2}.$$