REU projects involving non-unique factorization in integral domains and monoids: Past, Present, and Future.

Scott Chapman

Sam Houston State University

January 6, 2017

Prologue

What is it?

What is the Theory of Non-unique Factorizations?
The usual example used in an undergraduate Abstract Algebra Textbook to demonstrate that the Fundamental Theorem of Arithmetic can fail in an integral domain is:

\[6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}) \quad (1) \]

in the algebraic number ring \(\mathbb{Z}[\sqrt{-5}] \).

The actual argument to complete this observation involves showing two things:

(i) \(2, 3, 1 + \sqrt{-5} \) and \(1 - \sqrt{-5} \) are all irreducible, and

(ii) \(2 \) (resp. \(3 \)) is neither an associate of \((1 + \sqrt{-5}) \) nor of \((1 - \sqrt{-5}) \) (this is clear once \(\pm 1 \) are established as the only units of \(\mathbb{Z}[\sqrt{-5}] \)).
The usual example used in an undergraduate Abstract Algebra Textbook to demonstrate that the Fundamental Theorem of Arithmetic can fail in an integral domain is:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

in the algebraic number ring \(\mathbb{Z}[\sqrt{-5}]\).

The actual argument to complete this observation involves showing two things:

(i) \(2, 3, 1 + \sqrt{-5}\) and \(1 - \sqrt{-5}\) are all irreducible, and

(ii) \(2\) (resp. \(3\)) is neither an associate of \((1 + \sqrt{-5})\) nor of \((1 - \sqrt{-5})\)
 (this is clear once \(\pm 1\) are established as the only units of \(\mathbb{Z}[\sqrt{-5}]\)).
The usual example used in an undergraduate Abstract Algebra Textbook to demonstrate that the Fundamental Theorem of Arithmetic can fail in an integral domain is:

\[6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}) \quad (1) \]

in the algebraic number ring \(\mathbb{Z}[\sqrt{-5}] \).

The actual argument to complete this observation involves showing two things:

(i) 2, 3, \(1 + \sqrt{-5} \) and \(1 - \sqrt{-5} \) are all irreducible, and

(ii) 2 (resp. 3) is neither an associate of \(1 + \sqrt{-5} \) nor of \(1 - \sqrt{-5} \) (this is clear once \(\pm 1 \) are established as the only units of \(\mathbb{Z}[\sqrt{-5}] \)).
Most books fail to point out to the readers that while $\mathbb{Z}[\sqrt{-5}]$ is not a UFD, it does have a rather nice factorization property.

Specifically, if $\alpha_1, \ldots \alpha_n, \beta_1, \ldots, \beta_m$ are irreducible elements of $\mathbb{Z}[\sqrt{-5}]$ with

$$\alpha_1 \cdots \alpha_n = \beta_1 \cdots \beta_m,$$

then $n = m$.

In general, an integral domain with this property is known as a \textit{half-factorial domain} (HFD).
Most books fail to point out to the readers that while \(\mathbb{Z}[\sqrt{-5}] \) is not a UFD, it does have a rather nice factorization property.

Specifically, if \(\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m \) are irreducible elements of \(\mathbb{Z}[\sqrt{-5}] \) with

\[
\alpha_1 \cdots \alpha_n = \beta_1 \cdots \beta_m, \tag{2}
\]

then \(n = m \).

In general, an integral domain with this property is known as a \textit{half-factorial domain} (HFD).
Most books fail to point out to the readers that while $\mathbb{Z}[\sqrt{-5}]$ is not a UFD, it does have a rather nice factorization property.

Specifically, if $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m$ are irreducible elements of $\mathbb{Z}[\sqrt{-5}]$ with

$$\alpha_1 \cdots \alpha_n = \beta_1 \cdots \beta_m,$$

then $n = m$.

In general, an integral domain with this property is known as a \textit{half-factorial domain} (HFD).
Using the ideal class group (and, more generally, the class number), one can construct a very simple proof of this fact for $\mathbb{Z}[\sqrt{-5}]$.

Carlitz first illustrated this argument in *PAMS* 11(1960), 391-392. His proof (while short) leads to a deeper understanding of how elements factor in an algebraic ring of integers.
Using the ideal class group (and, more generally, the class number), one can construct a very simple proof of this fact for $\mathbb{Z}[\sqrt{-5}]$.

Carlitz first illustrated this argument in *PAMS* 11(1960), 391-392.

His proof (while short) leads to a deeper understanding of how elements factor in an algebraic ring of integers.
Using the ideal class group (and, more generally, the class number), one can construct a very simple proof of this fact for \(\mathbb{Z}[\sqrt{-5}] \).

Carlitz first illustrated this argument in *PAMS* 11(1960), 391-392.

His proof (while short) leads to a deeper understanding of how elements factor in an algebraic ring of integers.
Let M be a commutative cancellative monoid in which each nonunit can be written as product of irreducible elements (such a monoid is called \textit{atomic}).

Let $A(M)$ represent the set of irreducible elements of M and M^\times its set of units.

Note that $A(M)$ contains the prime elements of M (if there are any!).
Let M be a commutative cancellative monoid in which each nonunit can be written as product of irreducible elements (such a monoid is called atomic).

Let $A(M)$ represent the set of irreducible elements of M and M^\times its set of units.

Note that $A(M)$ contains the prime elements of M (if there are any!).
Let M be a commutative cancellative monoid in which each nonunit can be written as product of irreducible elements (such a monoid is called *atomic*).

Let $\mathcal{A}(M)$ represent the set of irreducible elements of M and M^\times its set of units.

Note that $\mathcal{A}(M)$ contains the prime elements of M (if there are any!).
For $x \in M \setminus M^\times$, set

$$\mathcal{L}(x) = \{n \mid n \in \mathbb{N} \text{ and there exist } x_1, \ldots, x_n \in \mathcal{A}(M) \text{ with } x = x_1 \cdots x_n\}.$$

We will refer to $\mathcal{L}(x)$ as the set of lengths of x in M.
For $x \in M \setminus M^\times$, set

$$\mathcal{L}(x) = \{ n \mid n \in \mathbb{N} \text{ and there exist } x_1, \ldots, x_n \in \mathcal{A}(M) \text{ with } x = x_1 \cdots x_n \}.$$

We will refer to $\mathcal{L}(x)$ as the *set of lengths of* x in M.
A Little More Terminology

We can extend $\mathcal{L}(x)$ to a global descriptor by setting

$$\mathcal{L}(M) = \{ \mathcal{L}(x) \mid x \in M \setminus M^x \}.$$

We will refer to $\mathcal{L}(M)$ as the set of lengths of M.
We can extend $\mathcal{L}(x)$ to a global descriptor by setting

$$\mathcal{L}(M) = \{ \mathcal{L}(x) \mid x \in M \setminus M^* \}.$$

We will refer to $\mathcal{L}(M)$ as the set of lengths of M.
We can directly read our first two factorization invariants off the set $\mathcal{L}(x)$.

For $x \in M \setminus M^\times$ set

$$L(x) = \sup \{ n \mid \text{there are } x_1, \ldots, x_n \in \mathcal{A}(M) \text{ such that } x = x_1 \cdots x_n \}$$

and

$$l(x) = \inf \{ n \mid \text{there are } x_1, \ldots, x_n \in \mathcal{A}(M) \text{ such that } x = x_1 \cdots x_n \}.$$
We can directly read our first two factorization invariants off the set $\mathcal{L}(x)$. For $x \in M \setminus M^\times$ set

$$L(x) = \sup\{n \mid \text{there are } x_1, \ldots, x_n \in \mathcal{A}(M) \text{ such that } x = x_1 \cdots x_n\}$$

and

$$I(x) = \inf\{n \mid \text{there are } x_1, \ldots, x_n \in \mathcal{A}(M) \text{ such that } x = x_1 \cdots x_n\}.$$
We can directly read our first two factorization invariants off the set $\mathcal{L}(x)$. For $x \in M \setminus M^\times$ set

$$L(x) = \sup \{ n \mid \text{there are } x_1, \ldots, x_n \in A(M) \text{ such that } x = x_1 \cdots x_n \}$$

and

$$l(x) = \inf \{ n \mid \text{there are } x_1, \ldots, x_n \in A(M) \text{ such that } x = x_1 \cdots x_n \}.$$
REU Theorem (Anderson-Pruis, PAMS, 1991)

Let D be an integral domain and x a nonunit of D. Then the limits

$$\bar{L}(x) = \lim_{n \to \infty} \frac{L(x^n)}{n} \quad \text{and} \quad \bar{l}(x) = \lim_{n \to \infty} \frac{l(x^n)}{n}$$

both exist (although the first might be ∞).

REU Theorem (Anderson-Pruis, PAMS, 1991)

Let $\alpha \leq \beta$ be real numbers taken from $[0, \infty]$. There exists an integral domain D and nonunit $x \in D$ with

$$\bar{l}(x) = \alpha \quad \text{and} \quad \bar{L}(x) = \beta.$$
REU Theorem 1 and 2

REU Theorem (Anderson-Pruis, PAMS, 1991)

Let D be an integral domain and x a nonunit of D. Then the limits

$$
\bar{L}(x) = \lim_{n \to \infty} \frac{L(x^n)}{n} \quad \text{and} \quad \bar{l}(x) = \lim_{n \to \infty} \frac{l(x^n)}{n}
$$

both exist (although the first might be ∞).

REU Theorem (Anderson-Pruis, PAMS, 1991)

Let $\alpha \leq \beta$ be real numbers taken from $[0, \infty]$. There exists an integral domain D and nonunit $x \in D$ with

$$
\bar{l}(x) = \alpha \quad \text{and} \quad \bar{L}(x) = \beta.
$$
The elasticity of x is defined as

$$\rho(x) = \frac{L(x)}{l(x)}.$$

We can again extend this definition to all of M by setting

$$\rho(M) = \sup\{\rho(x) \mid x \in M \setminus M^\times\}$$

and call $\rho(M)$ the elasticity of M.

If $\rho(M) = 1$, then M is called half-factorial.
The *elasticity of* x is defined as

$$\rho(x) = \frac{L(x)}{l(x)}.$$

We can again extend this definition to all of M by setting

$$\rho(M) = \sup\{\rho(x) \mid x \in M \setminus M^\times\}$$

and call $\rho(M)$ the *elasticity of* M.

If $\rho(M) = 1$, then M is called *half-factorial*.
The *elasticity of* \(x \) is defined as

\[
\rho(x) = \frac{L(x)}{l(x)}.
\]

We can again extend this definition to all of \(M \) by setting

\[
\rho(M) = \sup\{\rho(x) \mid x \in M \setminus M^x\}
\]

and call \(\rho(M) \) the *elasticity of* \(M \).

If \(\rho(M) = 1 \), then \(M \) is called *half-factorial*.
Suppose $\rho(M) < \infty$. If there is a nonunit x in M with

$$\rho(x) = \rho(M),$$

then we say that the elasticity of M is accepted.

We call M fully elastic if for every rational q with

$$1 \leq q \leq \rho(M),$$

there is a nonunit $x \in M$ with

$$\rho(x) = q.$$
Suppose $\rho(M) < \infty$. If there is a nonunit x in M with

$$\rho(x) = \rho(M),$$

then we say that the elasticity of M is accepted. We call M fully elastic if for every rational q with

$$1 \leq q \leq \rho(M),$$

there is a nonunit $x \in M$ with

$$\rho(x) = q.$$
REU Theorem
(Baginski-Chapman-Crutchfield-Kennedy-Wright, 2006, Results in Mathematics)

Let M be an atomic monoid with accepted elasticity and a prime element. Then M is fully elastic.
A Fundamental Invariant Set

Given $x \in M \setminus M^\times$, write its length set in the form

$$\mathcal{L}(x) = \{n_1, n_2, \ldots, n_k\}$$

where $n_i < n_{i+1}$ for $1 \leq i \leq k - 1$. The Δ-set of x is defined by

$$\Delta(x) = \{n_i - n_{i-1} \mid 2 \leq i \leq k\}$$

and the delta set of M by

$$\Delta(M) = \bigcup_{x \in M \setminus M^\times} \Delta(x).$$

If $d = \min \Delta(M)$, then by a Theorem of Geroldinger

$$\{d\} \subseteq \Delta(M) \subseteq \{d, 2d, \ldots, kd, \ldots\}$$

for some positive integer k.
A Fundamental Invariant Set

Given $x \in M \setminus M^\times$, write its length set in the form

$$\mathcal{L}(x) = \{n_1, n_2, \ldots, n_k\}$$

where $n_i < n_{i+1}$ for $1 \leq i \leq k - 1$. The Δ-set of x is defined by

$$\Delta(x) = \{n_i - n_{i-1} \mid 2 \leq i \leq k\}$$

and the delta set of M by

$$\Delta(M) = \bigcup_{x \in M \setminus M^\times} \Delta(x).$$

If $d = \min \Delta(M)$, then by a Theorem of Geroldinger

$$\{d\} \subseteq \Delta(M) \subseteq \{d, 2d, \ldots, kd, \ldots\}$$

for some positive integer k.
Given \(x \in M \setminus M^\times \), write its length set in the form

\[\mathcal{L}(x) = \{n_1, n_2, \ldots, n_k\} \]

where \(n_i < n_{i+1} \) for \(1 \leq i \leq k - 1 \). The \(\Delta \)-set of \(x \) is defined by

\[\Delta(x) = \{n_i - n_{i-1} \mid 2 \leq i \leq k\} \]

and the delta set of \(M \) by

\[\Delta(M) = \bigcup_{x \in M \setminus M^\times} \Delta(x). \]

If \(d = \min \Delta(M) \), then by a Theorem of Geroldinger

\[\{d\} \subseteq \Delta(M) \subseteq \{d, 2d, \ldots, kd, \ldots\} \]

for some positive integer \(k \).
Questions

Given an atomic monoid M, here are some questions one can always ask.

1. What is the elasticity of M?
2. When is M half-factorial?
3. Is the elasticity accepted?
4. Is M fully elastic?
5. What is $\Delta(M)$?
Given an atomic monoid M, here are some questions one can always ask.

1. What is the elasticity of M?
2. When is M half-factorial?
3. Is the elasticity accepted?
4. Is M fully elastic?
5. What is $\Delta(M)$?
Given an atomic monoid M, here are some questions one can always ask.

1. What is the elasticity of M?
2. When is M half-factorial?
3. Is the elasticity accepted?
4. Is M fully elastic?
5. What is $\Delta(M)$?
Given an atomic monoid M, here are some questions one can always ask.

1. What is the elasticity of M?
2. When is M half-factorial?
3. Is the elasticity accepted?
4. Is M fully elastic?
5. What is $\Delta(M)$?
Given an atomic monoid M, here are some questions one can always ask.

1. What is the elasticity of M?
2. When is M half-factorial?
3. Is the elasticity accepted?
4. Is M fully elastic?
5. What is $\Delta(M)$?
Questions

Given an atomic monoid M, here are some questions one can always ask.

1. What is the elasticity of M?
2. When is M half-factorial?
3. Is the elasticity accepted?
4. Is M fully elastic?
5. What is $\Delta(M)$?
Great REU Monoids

Some basic monoids of factorization theory which are great REU monoids.

1. Block Monoids
2. Numerical Monoids
3. Congruence Monoids - Arithmetic Congruence Monoids
4. Rings of integer-valued polynomials
Some basic monoids of factorization theory which are great REU monoids.

1. Block Monoids
2. Numerical Monoids
3. Congruence Monoids - Arithmetic Congruence Monoids
4. Rings of integer-valued polynomials
Some basic monoids of factorization theory which are great REU monoids.

1. Block Monoids
2. Numerical Monoids
3. Congruence Monoids - Arithmetic Congruence Monoids
4. Rings of integer-valued polynomials
Some basic monoids of factorization theory which are great REU monoids.

1. Block Monoids
2. Numerical Monoids
3. Congruence Monoids - Arithmetic Congruence Monoids
4. Rings of integer-valued polynomials
Great REU Monoids

Some basic monoids of factorization theory which are great REU monoids.

1. Block Monoids
2. Numerical Monoids
3. Congruence Monoids - Arithmetic Congruence Monoids
4. Rings of integer-valued polynomials
Let G be an abelian group. Further, let $\mathcal{F}(G)$ represent the free abelian monoid on G. We write the elements of $\mathcal{F}(G)$ as $C = \prod_{g \in G} g^{v_g(C)}$ where $v_g(C)$ is a nonnegative integer.

Definition

Let G be an abelian group. The set

$$\mathcal{B}(G) = \left\{ C \mid C = \prod_{g \in G} g^{v_g(C)} \text{ with } \sum_{g \in G} v_g(C)g = 0 \right\}$$

forms a submonoid of $\mathcal{F}(G)$ known as the **block monoid of G**.

We call the identity of $\mathcal{B}(G)$, $E = \prod_{g \in G} g^0$, the **empty block**.

A block B divides a block C, denoted $B \mid C$ if there is a block T such that $C = BT$.
Let G be an abelian group. Further, let $\mathcal{F}(G)$ represent the free abelian monoid on G. We write the elements of $\mathcal{F}(G)$ as $C = \prod_{g \in G} g^{v_g(C)}$ where $v_g(C)$ is a nonnegative integer.

Definition

Let G be an abelian group. The set

$$\mathcal{B}(G) = \left\{ C \mid C = \prod_{g \in G} g^{v_g(C)} \text{ with } \sum_{g \in G} v_g(C)g = 0 \right\}$$

forms a submonoid of $\mathcal{F}(G)$ known as the *block monoid of G*. We call the identity of $\mathcal{B}(G)$, $E = \prod_{g \in G} g^0$, the *empty block*. A block B divides a block C, denoted $B \mid C$ if there is a block T such that $C = BT$.
Let G be an abelian group. Further, let $\mathcal{F}(G)$ represent the free abelian monoid on G. We write the elements of $\mathcal{F}(G)$ as $C = \prod_{g \in G} g^{v_g(C)}$ where $v_g(C)$ is a nonnegative integer.

Definition

Let G be an abelian group. The set

$$
\mathcal{B}(G) = \left\{ C \mid C = \prod_{g \in G} g^{v_g(C)} \text{ with } \sum_{g \in G} v_g(C)g = 0 \right\}
$$

forms a submonoid of $\mathcal{F}(G)$ known as the *block monoid of G*. We call the identity of $\mathcal{B}(G)$, $E = \prod_{g \in G} g^0$, the *empty block*.

A block B divides a block C, denoted $B \mid C$ if there is a block T such that $C = BT$.
Let G be an abelian group. Further, let $\mathcal{F}(G)$ represent the free abelian monoid on G. We write the elements of $\mathcal{F}(G)$ as $C = \prod_{g \in G} g^{v_g(C)}$ where $v_g(C)$ is a nonnegative integer.

Definition

Let G be an abelian group. The set

$$\mathcal{B}(G) = \left\{ C \mid C = \prod_{g \in G} g^{v_g(C)} \text{ with } \sum_{g \in G} v_g(C)g = 0 \right\}$$

forms a submonoid of $\mathcal{F}(G)$ known as the *block monoid of G.*

We call the identity of $\mathcal{B}(G)$, $E = \prod_{g \in G} g^0$, the *empty block.*

A block B divides a block C, denoted $B \mid C$ if there is a block T such that $C = BT$.
An Example

Example

Let $G = \mathbb{Z}_4$. Here

$$\mathcal{B}(\mathbb{Z}_4) = \{0^{x_0}1^{x_1}2^{x_2}3^{x_3} \mid \text{each } x_i \geq 0 \text{ and } x_1 + 2x_2 + 3x_3 \equiv 0 \pmod{4}\}.$$

Notice that the non-prime irreducible blocks of $\mathcal{B}(\mathbb{Z}_4)$ are as follows:

$$1^4, 2^2, 3^4, 1^22^1, 1^13^1, \text{ and } 2^13^2.$$

In this monoid it is easy to produce factorizations of blocks into irreducible blocks which differ in length. For instance

$$B = (1^4)(3^4) = (1^13^1)^4$$

is a factorization of B into 2 and 4 irreducible blocks respectfully.
Example

Let $G = \mathbb{Z}_4$. Here

$$\mathcal{B}(\mathbb{Z}_4) = \{0^{x_0}1^{x_1}2^{x_2}3^{x_3} \mid \text{each } x_i \geq 0 \text{ and } x_1 + 2x_2 + 3x_3 \equiv 0 \pmod{4}\}.$$

Notice that the non-prime irreducible blocks of $\mathcal{B}(\mathbb{Z}_4)$ are as follows:

$1^4, 2^2, 3^4, 1^22^1, 1^13^1, \text{ and } 2^13^2.$

In this monoid it is easy to produce factorizations of blocks into irreducible blocks which differ in length. For instance

$$B = (1^4)(3^4) = (1^13^1)^4$$

is a factorization of B into 2 and 4 irreducible blocks respectively.
Let $G = \mathbb{Z}_4$. Here

\[\mathcal{B}(\mathbb{Z}_4) = \{0^{x_0}1^{x_1}2^{x_2}3^{x_3} \mid \text{each } x_i \geq 0 \text{ and } x_1 + 2x_2 + 3x_3 \equiv 0 \pmod{4}\}. \]

Notice that the non-prime irreducible blocks of $\mathcal{B}(\mathbb{Z}_4)$ are as follows:

\[1^4, 2^2, 3^4, 1^22^1, 1^13^1, \text{ and } 2^13^2.\]

In this monoid it is easy to produce factorizations of blocks into irreducible blocks which differ in length. For instance

\[B = (1^4)(3^4) = (1^13^1)^4\]

is a factorization of B into 2 and 4 irreducible blocks respectively.
Example

Let $G = \mathbb{Z}_4$. Here

$$B(\mathbb{Z}_4) = \{0^{x_0}1^{x_1}2^{x_2}3^{x_3} \mid \text{each } x_i \geq 0 \text{ and } x_1 + 2x_2 + 3x_3 \equiv 0 \pmod{4}\}.$$

Notice that the non-prime irreducible blocks of $B(\mathbb{Z}_4)$ are as follows:

$$1^4, 2^2, 3^4, 1^22^1, 1^13^1, \text{ and } 2^13^2.$$

In this monoid it is easy to produce factorizations of blocks into irreducible blocks which differ in length. For instance

$$B = (1^4)(3^4) = (1^13^1)^4$$

is a factorization of B into 2 and 4 irreducible blocks respectively.
Proposition

Let G be an abelian group. The following statements are equivalent.

1. $\mathcal{B}(G)$ is factorial.
2. $\mathcal{B}(G)$ is half-factorial.
3. $|G| \leq 2$.

Factorial vs. Half-Factorial
Factorial vs. Half-Factorial

Proposition

Let G be an abelian group. The following statements are equivalent.

1. $\mathcal{B}(G)$ is factorial.
2. $\mathcal{B}(G)$ is half-factorial.
3. $|G| \leq 2$.
Definition

Let G be an abelian group. The *Davenport constant* of G is defined as

$$D(G) = \sup\{ |B| \mid B \text{ is an irreducible element of } \mathcal{B}(G) \}.$$

No closed formula for the computation of the Davenport constant is known.

Davenport’s constant arises in several unexpected areas. Alford, Granville and Pomerance used the bound $D(G) \leq \exp(G)(1 + \log(|G|/\exp(G))$ to prove there are infinitely many Carmichael numbers.
Definition

Let G be an abelian group. The *Davenport constant* of G is defined as

$$D(G) = \sup \{|B| \mid B \text{ is an irreducible element of } B(G)\}.$$

No closed formula for the computation of the Davenport constant is known.

Davenport’s constant arises in several unexpected areas. Alford, Granville and Pomerance used the bound $D(G) \leq \exp(G)(1 + \log(|G|/\exp(G))$ to prove there are infinitely many Carmichael numbers.
Definition

Let \(G \) be an abelian group. The *Davenport constant* of \(G \) is defined as

\[
D(G) = \sup\{|B| \mid B \text{ is an irreducible element of } \mathcal{B}(G)\}.
\]

No closed formula for the computation of the Davenport constant is known.

Davenport’s constant arises in several unexpected areas. Alford, Granville and Pomerance used the bound \(D(G) \leq \exp(G)(1 + \log(|G|/\exp(G))) \) to prove there are infinitely many Carmichael numbers.
If \(G = \mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_k} \) is a finite abelian group with \(n_i \mid n_{i+1} \) for each \(1 \leq i < k \), then set
\[
M(G) = \left\lfloor \sum_{i+1}^{k} (n_i - 1) \right\rfloor + 1.
\]

Proposition

Let \(G \) be an abelian group.

1. If \(|G| = \infty \), then \(D(G) = \infty \).
2. If \(|G| < \infty \), then \(M(G) \leq D(G) \leq |G| \).
If \(G = \mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_k} \) is a finite abelian group with \(n_i \mid n_{i+1} \) for each \(1 \leq i < k \), then set

\[
M(G) = \left\lfloor \sum_{i+1}^{k} (n_i - 1) \right\rfloor + 1.
\]

Proposition

Let \(G \) be an abelian group.

1. If \(|G| = \infty \), then \(D(G) = \infty \).
2. If \(|G| < \infty \), then \(M(G) \leq D(G) \leq |G| \).
It is possible for the upper inequality in Proposition 2 (2) to be strict. Erdős conjectured in the mid-sixties that $D(G) = M(G)$. It was not until 1969 that this conjecture was disproved. The group of smallest order that is a counterexample is

$$G_1 = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_6.$$

If G is of rank less than or equal to 2, then $D(G) = M(G)$. It is unknown whether there is a counterexample of rank 3, and this, in fact, is an active area of research.
It is possible for the upper inequality in Proposition 2 (2) to be strict. Erdős conjectured in the mid-sixties that $D(G) = M(G)$. It was not until 1969 that this conjecture was disproved. The group of smallest order that is a counterexample is

$$G_1 = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_6.$$

If G is of rank less than or equal to 2, then $D(G) = M(G)$. It is unknown whether there is a counterexample of rank 3, and this, in fact, is an active area of research.
It is possible for the upper inequality in Proposition 2 (2) to be strict. Erdős conjectured in the mid-sixties that $D(G) = M(G)$. It was not until 1969 that this conjecture was disproved. The group of smallest order that is a counterexample is

$$G_1 = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_6.$$

If G is of rank less than or equal to 2, then $D(G) = M(G)$. It is unknown whether there is a counterexample of rank 3, and this, in fact, is an active area of research.
It is possible for the upper inequality in Proposition 2 (2) to be strict. Erdős conjectured in the mid-sixties that $D(G) = M(G)$. It was not until 1969 that this conjecture was disproved. The group of smallest order that is a counterexample is

$$G_1 = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_6.$$

If G is of rank less than or equal to 2, then $D(G) = M(G)$. It is unknown whether there is a counterexample of rank 3, and this, in fact, is an active area of research.
It is possible for the upper inequality in Proposition 2 (2) to be strict. Erdős conjectured in the mid-sixties that $D(G) = M(G)$. It was not until 1969 that this conjecture was disproved.

The group of smallest order that is a counterexample is

$$G_1 = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_6.$$

If G is of rank less than or equal to 2, then $D(G) = M(G)$.

It is unknown whether there is a counterexample of rank 3, and this, in fact, is an active area of research.
If G is a finite abelian group, then $\rho(D) = \frac{D(G)}{2}$. Moreover, the elasticity is accepted.

REU Theorem (Chapman-Holden-Moore, 2006, Rocky Mountain Journal)

Let G be a finite abelian group. If $D(G) = M(G)$ then $B(G)^*$ is fully elastic.
Proposition

If G is a finite abelian group, then $\rho(D) = \frac{D(G)}{2}$. Moreover, the elasticity is accepted.

REU Theorem (Chapman-Holden-Moore, 2006, Rocky Mountain Journal)

Let G be a finite abelian group. If $D(G) = M(G)$ then $B(G)^*$ is fully elastic.
How To Compute Elasticities of Rings of Algebraic Integers

Geroldinger’s Theorem (Simple Form)

Let R be an algebraic ring of integers with divisor class group $G = \mathcal{C}(R)$, R^* the multiplicative monoid of R. There is a monoid homomorphism

$$\varphi : R^* \to \mathcal{B}(G)$$

that is surjective and preserves lengths of factorizations into irreducibles (i.e., $\mathcal{L}(x) = \mathcal{L}(\varphi(x))$ for each $x \in R^*$). Hence

$$\mathcal{L}(R) = \mathcal{L}(\mathcal{B}(G)).$$

Corollary

$$\rho(R) = \frac{D(G)}{2}.$$
Geroldinger’s Theorem (Simple Form)

Let R be an algebraic ring of integers with divisor class group $G = \mathcal{C}(R)$, R^* the multiplicative monoid of R. There is a monoid homomorphism

$$\varphi : R^* \rightarrow \mathcal{B}(G)$$

that is surjective and preserves lengths of factorizations into irreducibles (i.e., $\mathcal{L}(x) = \mathcal{L}(\varphi(x))$ for each $x \in R^*$). Hence

$$\mathcal{L}(R) = \mathcal{L}(\mathcal{B}(G)).$$

Corollary

$$\rho(R) = \frac{D(G)}{2}.$$
Proposition

For $n \geq 3$, $\Delta(\mathcal{B}(\mathbb{Z}_n)) = \{1, 2, \ldots, n - 2\}$.

REU Theorem (Chapman-Gotti-Pelayo, 2014, Colloquium Mathematicum)

Let $n \geq 3$. If $n - 2 \in \Delta(B)$ for $B \in \mathcal{B}(\mathbb{Z}_n)$, then $\Delta(B) = \{n - 2\}$.
Proposition

For $n \geq 3$, $\Delta(\mathcal{B}(\mathbb{Z}_n)) = \{1, 2, \ldots, n - 2\}$.

REU Theorem (Chapman-Gotti-Pelayo, 2014, Colloquium Mathematicum)

Let $n \geq 3$. If $n - 2 \in \Delta(B)$ for $B \in \mathcal{B}(\mathbb{Z}_n)$, then $\Delta(B) = \{n - 2\}$.
Numerical Monoids

Let S be an additive submonoid of $\mathbb{N} \cup \{0\}$. S is called a \textit{numerical monoid}.

If $\{n_1, \ldots, n_t\}$ is a set of elements of S such that every $x \in S$ can be written in the form

$$x = x_1 n_1 + \cdots x_t n_t$$

then $\{n_1, \ldots, n_t\}$ is called a \textit{generating set of S}.

This is commonly denoted by

$$S = \langle n_1, \ldots, n_t \rangle.$$

It follows from Elementary Number Theory that every numerical monoid S possesses a unique minimal set of generators. If $\gcd\{ s \mid s \in S \} = 1$, then S is called \textit{primitive}. It again follows easily from Number Theory that every numerical monoid S is isomorphic to a primitive numerical monoid.
Let S be an additive submonoid of $\mathbb{N} \cup \{0\}$. S is called a numerical monoid.

If $\{n_1, \ldots, n_t\}$ is a set of elements of S such that every $x \in S$ can be written in the form

$$x = x_1 n_1 + \cdots + x_t n_t$$

then $\{n_1, \ldots, n_t\}$ is called a generating set of S.

This is commonly denoted by

$$S = \langle n_1, \ldots, n_t \rangle.$$

It follows from Elementary Number Theory that every numerical monoid S possesses a unique minimal set of generators. If $\gcd\{ s \mid s \in S \} = 1$, then S is called primitive. It again follows easily from Number Theory that every numerical monoid S is isomorphic to a primitive numerical monoid.
Numerical Monoids

Let S be an additive submonoid of $\mathbb{N} \cup \{0\}$. S is called a *numerical monoid*.

If $\{n_1, \ldots, n_t\}$ is a set of elements of S such that every $x \in S$ can be written in the form

$$x = x_1 n_1 + \cdots + x_t n_t$$

then $\{n_1, \ldots, n_t\}$ is called a *generating set of S*. This is commonly denoted by

$$S = \langle n_1, \ldots, n_t \rangle.$$

It follows from Elementary Number Theory that every numerical monoid S possesses a unique minimal set of generators. If $\gcd\{s \mid s \in S\} = 1$, then S is called *primitive*. It again follows easily from Number Theory that every numerical monoid S is isomorphic to a primitive numerical monoid.
Numerical Monoids

Let S be an additive submonoid of $\mathbb{N} \cup \{0\}$. S is called a numerical monoid.

If $\{n_1, \ldots, n_t\}$ is a set of elements of S such that every $x \in S$ can be written in the form

$$x = x_1 n_1 + \cdots + x_t n_t$$

then $\{n_1, \ldots, n_t\}$ is called a generating set of S.

This is commonly denoted by

$$S = \langle n_1, \ldots, n_t \rangle.$$

It follows from Elementary Number Theory that every numerical monoid S possesses a unique minimal set of generators. If $\gcd\{ s \mid s \in S \} = 1$, then S is called primitive. It again follows easily from Number Theory that every numerical monoid S is isomorphic to a primitive numerical monoid.
The Frobenius Number

If \(S = \langle n_1, \ldots, n_t \rangle \) then the largest positive integer not in \(S \) is called the Frobenius number of \(S \), which we denote \(F(S) \).

If \(S = \langle a, b \rangle \), then \(F(S) = ab - a - b \).

For more than two generators, there is no known closed form for \(F(S) \).
The Frobenius Number

If $S = \langle n_1, \ldots, n_t \rangle$ then the largest positive integer not in S is called the Frobenius number of S, which we denote $F(S)$.

If $S = \langle a, b \rangle$, then $F(S) = ab - a - b$.

For more than two generators, there is no known closed form for $F(S)$.
The Frobenius Number

If $S = \langle n_1, \ldots, n_t \rangle$ then the largest positive integer not in S is called the Frobenius number of S, which we denote $F(S)$.

If $S = \langle a, b \rangle$, then $F(S) = ab - a - b$.

For more than two generators, there is no known closed form for $F(S)$.
What is known?

Much is known about the factorization properties of numerical monoids.

REU Theorem (Chapman-Holden-Moore, 2006, Rocky Mountain Journal)

Let $S = \langle n_1, \ldots, n_k \rangle$

1. $\rho(S) = \frac{n_k}{n_1}$.
2. If $k \geq 2$, then S is not fully elastic.

REU Theorem (Bowles-Chapman-Kaplan-Reiser, 2006, JAA)

1. If $S = \langle n, n + d, n + 2d, \ldots, n + kd \rangle$, then $\Delta(S) = \{d\}$.
2. If $k \geq 1$ and $d \geq 1$ are positive integers, then there is a numerical monoid S with $\Delta(S) = \{d, 2d, \ldots, kd\}$.
3. If $S = \langle n, n + 1, n^2 - n - 1 \rangle$, then $\Delta(S) = \{1, 2, \ldots, n - 2, 2n - 5\}$.
What is known?

Much is known about the factorization properties of numerical monoids.

REU Theorem (Chapman-Holden-Moore, 2006, Rocky Mountain Journal)

Let $S = \langle n_1, \ldots, n_k \rangle$

1. $\rho(S) = \frac{n_k}{n_1}$.
2. If $k \geq 2$, then S is not fully elastic.

REU Theorem (Bowles-Chapman-Kaplan-Reiser, 2006, JAA)

1. If $S = \langle n, n + d, n + 2d, \ldots, n + kd \rangle$, then $\Delta(S) = \{d\}$.
2. If $k \geq 1$ and $d \geq 1$ are positive integers, then there is a numerical monoid S with $\Delta(S) = \{d, 2d, \ldots, kd\}$.
3. If $S = \langle n, n + 1, n^2 - n - 1 \rangle$, then $\Delta(S) = \{1, 2, \ldots, n - 2, 2n - 5\}$.
What is known?

Much is known about the factorization properties of numerical monoids.

REU Theorem (Chapman-Holden-Moore, 2006, Rocky Mountain Journal)

Let $S = \langle n_1, \ldots, n_k \rangle$

1. $\rho(S) = \frac{n_k}{n_1}$.
2. If $k \geq 2$, then S is not fully elastic.

REU Theorem (Bowles-Chapman-Kaplan-Reiser, 2006, JAA)

1. If $S = \langle n, n + d, n + 2d, \ldots, n + kd \rangle$, then $\Delta(S) = \{d\}$.
2. If $k \geq 1$ and $d \geq 1$ are positive integers, then there is a numerical monoid S with $\Delta(S) = \{d, 2d, \ldots, kd\}$.
3. If $S = \langle n, n + 1, n^2 - n - 1 \rangle$, then $\Delta(S) = \{1, 2, \ldots, n - 2, 2n - 5\}$.
More of What is known?

REU Theorem (Chapman-Hoyer-Kaplan, 2009, Aequationes Mathematicae)

If $S = \langle n_1, \ldots, n_k \rangle$ is a primitive numerical monoid, with $n_1 < n_2 < \cdots < n_k$, then for all $x \geq 2kn_2n_k^2$ we have $\Delta(x) = \Delta(x + n_1n_k)$. In other words, the sequence $\{\Delta(x)\}_{x \in S}$ is eventually periodic.
Do Sets of Lengths Characterize Numerical Monoids

Conjecture

If G and G' are finite abelian groups with $|G| > 3$ and $|G'| > 3$, then $\mathcal{L}(\mathcal{B}(G)) = \mathcal{L}(\mathcal{B}(G'))$ implies $G \cong G'$.

Numerical Monoids have much different behavior. Let

$$S = \langle a, a + d, \ldots, a + kd \rangle$$

and

$$S' = \langle a', a' + d', \ldots, a' + k'd' \rangle$$

be numerical monoids with $\gcd(a, d) = \gcd(a', d') = 1$, $1 \leq k < a$, and $1 \leq k' < a'$.

$L(S) = L(S')$ if and only if $d = d'$. $\frac{a}{k} = \frac{a'}{d'}$, and $\gcd(a, k) \geq 2$, $\gcd(a', k') \geq 2$.
Conjecture

If G and G' are finite abelian groups with $|G| > 3$ and $|G'| > 3$, then $L(B(G)) = L(B(G'))$ implies $G \cong G'$.

Numerical Monoids have much different behavior. Let

$$S = \langle a, a + d, \ldots, a + kd \rangle$$
and

$$S' = \langle a', a' + d', \ldots, a' + k'd' \rangle$$

be numerical monoids with $\gcd(a, d) = \gcd(a', d') = 1$, $1 \leq k < a$, and $1 \leq k' < a'$.

$L(S) = L(S')$ if and only if $d = d'$. $\frac{a}{k} = \frac{a'}{k'}$, and $\gcd(a, k) \geq 2$, $\gcd(a', k') \geq 2$.
Conjecture

If G and G' are finite abelian groups with $|G| > 3$ and $|G'| > 3$, then $\mathcal{L}(\mathcal{B}(G)) = \mathcal{L}(\mathcal{B}(G'))$ implies $G \cong G'$.

Numerical Monoids have much different behavior. Let

$$S = \langle a, a + d, \ldots, a + kd \rangle \text{ and } S' = \langle a', a' + d', \ldots, a' + k'd' \rangle$$

be numerical monoids with $\gcd(a, d) = \gcd(a', d') = 1$, $1 \leq k < a$, and $1 \leq k' < a'$.

$\mathcal{L}(S) = \mathcal{L}(S')$ if and only if $d = d'$. $\frac{a}{k} = \frac{a'}{d'}$, and $\gcd(a, k) \geq 2$, $\gcd(a', k') \geq 2$.
Definition

Let $\Gamma \subseteq \mathbb{Z}_n = \{0, 1, \ldots, n-1\}$ be a multiplicatively closed subset. The subset

$$\mathbb{Z}_\Gamma = \{ n \in \mathbb{Z} \mid n \equiv x \pmod{n} \text{ for some } \overline{x} \in \Gamma \} \cup \{1\}.$$

is a multiplicatively closed subset of \mathbb{Z} known as a congruence monoid (of modulus n).

Theorem (James & Niven, 1954 PAMS)

Let $n \geq 2$ be a positive integer. A congruence monoid S_Γ is a factorial if and only if $\Gamma = \{ \overline{x} \mid \gcd(x, n) = 1 \}$.
Definition

Let $\Gamma \subseteq \mathbb{Z}_n = \{0, 1, \ldots, n-1\}$ be a multiplicatively closed subset. The subset

$$\mathbb{Z}_\Gamma = \{ n \in \mathbb{Z} \mid n \equiv x \pmod{n} \text{ for some } \overline{x} \in \Gamma \} \cup \{1\}.$$

is a multiplicatively closed subset of \mathbb{Z} known as a *congruence monoid* (of modulus n).

Theorem (James & Niven, 1954 PAMS)

Let $n \geq 2$ be a positive integer. A congruence monoid S_Γ is a factorial if and only if $\Gamma = \{\overline{x} \mid \gcd(x, n) = 1\}$.
REU Theorem (Bannister-Chaika-Chapman-Myerson, 2007, Elemente der Mathematik)

If $\Gamma = \{x \mid \gcd(x, n) \neq 1\}$, then \mathbb{Z}_Γ is a half-factorial monoid.

If $\Gamma = \{x\}$ (i.e., \mathbb{Z}_Γ is an arithmetic sequence that is multiplicatively closed), then \mathbb{Z}_Γ is called an arithmetic congruence monoid or ACM.
REU Theorem (Bannister-Chaika-Chapman-Myerson, 2007, Elemente der Mathematik)

If \(\Gamma = \{ x \mid \gcd(x, n) \neq 1 \} \), then \(\mathbb{Z}_\Gamma \) is a half-factorial monoid.

If \(\Gamma = \{ x \} \) (i.e., \(\mathbb{Z}_\Gamma \) is an arithmetic sequence that is multiplicatively closed), then \(\mathbb{Z}_\Gamma \) is called an arithmetic congruence monoid or ACM.
Examples

Example

\[1, 5, 9, 13, 17, 21, \ldots = 1 + 4\mathbb{N}_0 \]

is known as the *Hilbert Monoid*.

Example

\[1, 4, 10, 16, 22, \ldots = 4 + 6\mathbb{N}_0 \cup \{1\} \]

is known as *Myerson’s monoid*.
Examples

Example

\[1, 5, 9, 13, 17, 21, \ldots = 1 + 4\mathbb{N}_0 \]

is known as the *Hilbert Monoid*.

Example

\[1, 4, 10, 16, 22, \ldots = 4 + 6\mathbb{N}_0 \cup \{1\} \]

is known as *Myerson’s monoid*.
Thus every ACM can be written uniquely in the form

$$M_{a,b} = a + b\mathbb{N}_0 \cup \{1\}$$

and they break into three categories.

Regular ACMs: These correspond to $a = 1$.

Singlar ACMs: These come in two types:

Local: $\gcd(a, b) = p^n$ for some prime p;

Global: $\gcd(a, b) = d > 1$ and d is composite and not a power of a prime.
Thus every ACM can be written uniquely in the form

\[M_{a,b} = a + b\mathbb{N}_0 \cup \{1\} \]

and they break into three categories.

Regular ACMs: These correspond to \(a = 1 \).

Singular ACMs: These come in two types:
- **Local:** \(\gcd(a, b) = p^n \) for some prime \(p \);
- **Global:** \(\gcd(a, b) = d > 1 \) and \(d \) is composite and not a power of a prime.
Types of ACMs

Thus every ACM can be written uniquely in the form

\[M_{a,b} = a + b \mathbb{N}_0 \cup \{1\} \]

and they break into three categories.

Regular ACMs: These correspond to \(a = 1 \).

Singlar ACMs: These come in two types:

- **Local:** \(\gcd(a, b) = p^n \) for some prime \(p \);
- **Global:** \(\gcd(a, b) = d > 1 \) and \(d \) is composite and not a power of a prime.
Types of ACMs

Thus every ACM can be written uniquely in the form

\[M_{a,b} = a + bN_0 \cup \{1\} \]

and they break into three categories.

Regular ACMs: These correspond to \(a = 1 \).

Singlar ACMs: These come in two types:

- **Local:** \(\gcd(a, b) = p^n \) for some prime \(p \);
- **Global:** \(\gcd(a, b) = d > 1 \) and \(d \) is composite and not a power of a prime.
Thus every ACM can be written uniquely in the form

\[M_{a,b} = a + b\mathbb{N}_0 \cup \{1\} \]

and they break into three categories.

Regular ACMs: These correspond to \(a = 1 \).

Singlar ACMs: These come in two types:

- **Local:** \(\gcd(a, b) = p^n \) for some prime \(p \);
- **Global:** \(\gcd(a, b) = d > 1 \) and \(d \) is composite and not a power of a prime.
REU Theorem (Bannister-Chaika-Chapman-Myerson, 2007, Colloquium Mathematicum)

1. $\rho(M_{1,b}) = \frac{D(\mathbb{Z}_n^X)}{2}$.

2. If $M_{a,b}$ is global, then $\rho(M_{a,b}) = \infty$.

3. If $M_{a,b}$ is local, then $\rho(M_{a,b}) = \frac{n+k-1}{k}$ where n is the smallest integer such that $p^n \in M_{a,b}$.
REU Theorem (Bannister-Chaika-Chapman-Myerson, 2007, Colloquium Mathematicum)

1. \(\rho(M_{1,b}) = \frac{D(\mathbb{Z}_n^\times)}{2} \).

2. If \(M_{a,b} \) is global, then \(\rho(M_{a,b}) = \infty \).

3. If \(M_{a,b} \) is local, then \(\rho(M_{a,b}) = \frac{n+k-1}{k} \) where \(n \) is the smallest integer such that \(p^n \in M_{a,b} \).
A Theorem

REU Theorem (Bannister-Chaika-Chapman-Myerson, 2007, Colloquium Mathematicum)

1 \[\rho(M_{1,b}) = \frac{D(\mathbb{Z}_n^\times)}{2}. \]

2 If \(M_{a,b} \) is global, then \(\rho(M_{a,b}) = \infty. \)

3 If \(M_{a,b} \) is local, then \(\rho(M_{a,b}) = \frac{n+k-1}{k} \) where \(n \) is the smallest integer such that \(p^n \in M_{a,b}. \)
REU Theorem (Baginski-Chapman-Schaeffer, 2008, J. Théorie Nombres Bordeaux)

Suppose $M_{a,b}$ is a local ACM with $\gcd(a, b) = p^\alpha$ and β the smallest integer with $p^\beta \in M_{a,b}$.

1. If $\alpha = \beta = 1$, then $\Delta(M_{a,b}) = \emptyset$.

2. If $\alpha = \beta > 1$, then $\Delta(M_{a,b}) = \{1\}$.

3. If $\alpha < \beta$, then $\Delta(M_{a,b}) = [1, \beta/\alpha)$.
REU Theorem (Baginski-Chapman-Schaeffer, 2008, J. Théorie Nombres Bordeaux)

Suppose $M_{a,b}$ is a local ACM with $\gcd(a, b) = p^\alpha$ and β the smallest integer with $p^\beta \in M_{a,b}$.

1. If $\alpha = \beta = 1$, then $\Delta(M_{a,b}) = \emptyset$.

2. If $\alpha = \beta > 1$, then $\Delta(M_{a,b}) = \{1\}$.

3. If $\alpha < \beta$, then $\Delta(M_{a,b}) = [1, \beta/\alpha)$.
REU Theorem (Baginski-Chapman-Schaeffer, 2008, J. Théorie Nombres Bordeaux)

Suppose $M_{a,b}$ is a local ACM with $\gcd(a, b) = p^\alpha$ and β the smallest integer with $p^\beta \in M_{a,b}$.

1. If $\alpha = \beta = 1$, then $\Delta(M_{a,b}) = \emptyset$.

2. If $\alpha = \beta > 1$, then $\Delta(M_{a,b}) = \{1\}$.

3. If $\alpha < \beta$, then $\Delta(M_{a,b}) = [1, \beta/\alpha)$.
Set

\[\text{Int}(\mathbb{Z}) = \{ f(x) \in \mathbb{Q}[x] \mid f(z) \in \mathbb{Z} \forall z \in \mathbb{Z} \}. \]

\text{Int}(\mathbb{Z}) \text{ is the celebrated “ring of polynomials integer-valued over } \mathbb{Z}.”

\text{Int}(\mathbb{Z}) \text{ is a } \mathbb{Z}-\text{module with free basis } \binom{x}{0} = 1 \text{ and for } n \geq 1,

\binom{x}{n} = \frac{x(x - 1) \cdots (x - n + 1)}{n!}.
Set

\[
\text{Int}(\mathbb{Z}) = \{ f(x) \in \mathbb{Q}[x] \mid f(z) \in \mathbb{Z} \forall z \in \mathbb{Z} \}.
\]

\text{Int}(\mathbb{Z}) \text{ is the celebrated “ring of polynomials integer-valued over } \mathbb{Z}.”

\text{Int}(\mathbb{Z}) \text{ is a } \mathbb{Z}\text{-module with free basis } \binom{x}{0} = 1 \text{ and for } n \geq 1,

\[
\binom{x}{n} = \frac{x(x-1) \cdots (x-n+1)}{n!}.
\]
Set

\[\text{Int}(\mathbb{Z}) = \left\{ f(x) \in \mathbb{Q}[x] \mid f(z) \in \mathbb{Z} \forall z \in \mathbb{Z} \right\}. \]

\text{Int}(\mathbb{Z}) \text{ is the celebrated “ring of polynomials integer-valued over } \mathbb{Z}.\]

\text{Int}(\mathbb{Z}) \text{ is a } \mathbb{Z}-\text{module with free basis } \binom{x}{0} = 1 \text{ and for } n \geq 1,

\[\binom{x}{n} = \frac{x(x-1) \cdots (x-n+1)}{n!}. \]
Lemma

For $n \geq 1$, the polynomial $\binom{x}{n}$ is irreducible in $\text{Int}(\mathbb{Z})$.

Corollary

$\rho(\text{Int}(\mathbb{Z})) = \infty$.

Proof.

$$n \cdot \binom{x}{n} = \binom{x}{n-1}(x - n + 1).$$
A Basic Lemma

Lemma

For $n \geq 1$, the polynomial $\binom{x}{n}$ is irreducible in $\text{Int}(\mathbb{Z})$.

Corollary

$\rho(\text{Int}(\mathbb{Z})) = \infty$.

Proof.

$$n \cdot \binom{x}{n} = \binom{x}{n-1}(x - n + 1).$$

Let $q \geq 1$ be a rational number. Then there is a polynomial $f(x) \in \text{Int}(\mathbb{Z})$ with

$$\rho(f(x)) = q.$$

Hence, $\text{Int}(\mathbb{Z})$ is fully elastic.

Let t be a non-zero rational. t is the leading coefficient of infinitely many irreducible polynomials in $\text{Int}(\mathbb{Z})$.
REU Theorem (Chapman-McClain, 2005, Journal of Algebra)

Let $q \geq 1$ be a rational number. Then there is a polynomial $f(x) \in \text{Int}(\mathbb{Z})$ with

$$\rho(f(x)) = q.$$

Hence, $\text{Int}(\mathbb{Z})$ is fully elastic.

REU Theorem (Chapman-McClain, 2005, Journal of Algebra)

Let t be a non-zero rational. t is the leading coefficient of infinitely many irreducible polynomials in $\text{Int}(\mathbb{Z})$.