More exercises on slope

We continue to study the slope of a line, working through several examples.

Find the equation for the line passing through the points \((3, 8)\) and \((6, 20)\). Put your answer in point-slope form.

Solution. First we find the slope of the line passing through \((3, 8)\) and \((6, 20)\). It is \(\frac{20 - 8}{6 - 3} = \frac{12}{3} = 4\).

Since the line goes through the point \((6, 20)\) and has slope 4 then the slope is

\[4 = \frac{y - 20}{x - 6}. \]

Multiplying through by the denominator gives

\[4(x - 6) = y - 20. \]
More exercises on slope

We continue to study the slope of a line, working through several examples.

Find the equation for the line passing through the points \((3, 8)\) and \((6, 20)\). Put your answer in point-slope form.

Solution. First we find the slope of the line passing through \((3, 8)\) and \((6, 20)\). It is
\[
\frac{20 - 8}{6 - 3} = \frac{12}{3} = 4.
\]

Since the line goes through the point \((6, 20)\) and has slope 4 then the slope is

\[
4 = \frac{y - 20}{x - 6}.
\]

Multiplying through by the denominator gives

\[
4(x - 6) = y - 20.
\]
More exercises on slope

We continue to study the slope of a line, working through several examples.

Find the equation for the line passing through the points \((3, 8)\) and \((6, 20)\). Put your answer in point-slope form.

Solution. First we find the slope of the line passing through \((3, 8)\) and \((6, 20)\).
It is \(\frac{20 - 8}{6 - 3} = \frac{12}{3} = 4\).

Since the line goes through the point \((6, 20)\) and has slope 4 then the slope is

\[4 = \frac{y - 20}{x - 6}. \]

Multiplying through by the denominator gives

\[4(x - 6) = y - 20. \]
We continue to study the slope of a line, working through several examples.

Find the equation for the line passing through the points \((3, 8)\) and \((6, 20)\). Put your answer in **point-slope** form.

Solution. First we find the slope of the line passing through \((3, 8)\) and \((6, 20)\).

It is \[\frac{20 - 8}{6 - 3} = \frac{12}{3} = 4.\]

Since the line goes through the point \((6, 20)\) and has slope 4 then the slope is

\[4 = \frac{y - 20}{x - 6}.\]

Multiplying through by the denominator gives

\[4(x - 6) = y - 20.\]
More exercises on slope

We continue to study the slope of a line, working through several examples.

Find the equation for the line passing through the points \((3, 8)\) and \((6, 20)\). Put your answer in **point-slope** form.

Solution. First we find the slope of the line passing through \((3, 8)\) and \((6, 20)\). It is
\[
\frac{20 - 8}{6 - 3} = \frac{12}{3} = 4.
\]

Since the line goes through the point \((6, 20)\) and has slope 4 then the slope is
\[
4 = \frac{y - 20}{x - 6}.
\]

Multiplying through by the denominator gives
\[
4(x - 6) = y - 20.
\]
We continue to study the slope of a line, working through several examples.

Find the equation for the line passing through the points \((3, 8)\) and \((6, 20)\). Put your answer in **point-slope** form.

Solution. First we find the slope of the line passing through \((3, 8)\) and \((6, 20)\).

It is \(\frac{20 - 8}{6 - 3} = \frac{12}{3} = 4\).

Since the line goes through the point \((6, 20)\) and has slope 4 then the slope is

\[4 = \frac{y - 20}{x - 6}. \]

Multiplying through by the denominator gives

\[4(x - 6) = y - 20. \]
More exercises on slope

We continue to study the slope of a line, working through several examples.

Find the equation for the line passing through the points \((3, 8)\) and \((6, 20)\). Put your answer in **point-slope** form.

Solution. First we find the slope of the line passing through \((3, 8)\) and \((6, 20)\). It is
\[
\frac{20 - 8}{6 - 3} = \frac{12}{3} = 4.
\]

Since the line goes through the point \((6, 20)\) and has slope 4 then the slope is
\[
4 = \frac{y - 20}{x - 6}.
\]

Multiplying through by the denominator gives
\[
4(x - 6) = y - 20.
\]
We continue to study the slope of a line, working through several examples.

Find the equation for the line passing through the points \((3, 8)\) and \((6, 20)\). Put your answer in point-slope form.

Solution. First we find the slope of the line passing through \((3, 8)\) and \((6, 20)\). It is \(\frac{20 - 8}{6 - 3} = \frac{12}{3} = 4\).

Since the line goes through the point \((6, 20)\) and has slope 4 then the slope is

\[
4 = \frac{y - 20}{x - 6}.
\]

Multiplying through by the denominator gives

\[
4(x - 6) = y - 20.
\]
More exercises on slope

We continue to study the slope of a line, working through several examples.

Find the equation for the line passing through the points (3, 8) and (6, 20). Put your answer in point-slope form.

Solution. First we find the slope of the line passing through (3, 8) and (6, 20).
It is \[\frac{20 - 8}{6 - 3} = \frac{12}{3} = 4. \]

Since the line goes through the point (6, 20) and has slope 4 then the slope is

\[4 = \frac{y - 20}{x - 6}. \]

Multiplying through by the denominator gives

\[4(x - 6) = y - 20. \]
A related problem Find the x-intercept of the line passing through the points $(3, 8)$ and $(6, 20)$.

Solution. Set $y = 0$ in the solution from the previous problem:

$$4(x - 6) = 0 - 20$$

$$(x - 6) = \frac{-20}{4}$$

$$x - 6 = -5$$

$$x = 1.$$

The x-intercept is $(1, 0)$.
Working some examples on slope

A related problem Find the x-intercept of the line passing through the points $(3, 8)$ and $(6, 20)$.

Solution. Set $y = 0$ in the solution from the previous problem:

\[
4(x - 6) = 0 - 20
\]

\[
(x - 6) = \frac{-20}{4}
\]

\[
x - 6 = -5
\]

\[
x = 1.
\]

The x-intercept is $(1, 0)$.
A related problem: Find the x-intercept of the line passing through the points $(3, 8)$ and $(6, 20)$.

Solution. Set $y = 0$ in the solution from the previous problem:

$$4(x - 6) = 0 - 20$$

$$4(x - 6) = -20$$

$$x - 6 = \frac{-20}{4}$$

$$x - 6 = -5$$

$$x = 1.$$

The x-intercept is $(1, 0)$.
A related problem Find the x-intercept of the line passing through the points $(3, 8)$ and $(6, 20)$.

Solution. Set $y = 0$ in the solution from the previous problem:

\[4(x - 6) = 0 - 20\]

\[(x - 6) = \frac{-20}{4}\]

\[x - 6 = -5\]

\[x = 1.\]

The x-intercept is $(1, 0)$.

A related problem. Find the x-intercept of the line passing through the points $(3, 8)$ and $(6, 20)$.

Solution. Set $y = 0$ in the solution from the previous problem:

\[
4(x - 6) = 0 - 20
\]

\[
(x - 6) = \frac{-20}{4}
\]

\[
x - 6 = -5
\]

\[
x = 1.
\]

The x-intercept is $(1, 0)$.
A related problem Find the x-intercept of the line passing through the points $(3, 8)$ and $(6, 20)$.

Solution. Set $y = 0$ in the solution from the previous problem:

\[4(x - 6) = 0 - 20 \]

\[(x - 6) = \frac{-20}{4} \]

\[x - 6 = -5 \]

\[x = 1. \]

The x-intercept is $(1, 0)$.
A related problem Find the x-intercept of the line passing through the points $(3, 8)$ and $(6, 20)$.

Solution. Set $y = 0$ in the solution from the previous problem:

$$4(x - 6) = 0 - 20$$

$$(x - 6) = \frac{-20}{4}$$

$$x - 6 = -5$$

$$x = 1.$$

The x-intercept is

$$(1, 0).$$
A related problem Find the x-intercept of the line passing through the points $(3, 8)$ and $(6, 20)$.

Solution. Set $y = 0$ in the solution from the previous problem:

\[4(x - 6) = 0 - 20 \]

\[(x - 6) = \frac{-20}{4} \]

\[x - 6 = -5 \]

\[x = 1. \]

The x-intercept is $(1, 0)$.
The line \(y = f(x) \) has slope 4 and passes through the point \((12400, 999900)\). Find \(f(12402) \).

Let's keep this as simple as possible.

Solution. A line of slope 4 has the property that every step to the right creates a rise of 4.

So 2 steps to the right (from \(x = 12400 \) to \(x = 12402 \)) creates a rise of 8.

Since we began at height 999900 we must end at \(999900 + 8 = 999908 \).

Notice that we did not need to deal with any equations. Merely understanding the *meaning* of slope was enough to quickly do this problem!
The line $y = f(x)$ has slope 4 and passes through the point $(12400, 999900)$. Find $f(12402)$.

Let’s keep this as simple as possible.

Solution. A line of slope 4 has the property that every step to the right creates a rise of 4.

So 2 steps to the right (from $x = 12400$ to $x = 12402$) creates a rise of 8.

Since we began at height 999900 we must end at $999900 + 8 = 999908$.

Notice that we did not need to deal with any equations. Merely understanding the meaning of slope was enough to quickly do this problem!
The line $y = f(x)$ has slope 4 and passes through the point $(12400, 999900)$. Find $f(12402)$.

Let’s keep this as simple as possible.

Solution. A line of slope 4 has the property that every step to the right creates a rise of 4.

So 2 steps to the right (from $x = 12400$ to $x = 12402$) creates a rise of 8.

Since we began at height 999900 we must end at $999900 + 8 = 999908$.

Notice that we did not need to deal with any equations. Merely understanding the meaning of slope was enough to quickly do this problem!
The line $y = f(x)$ has slope 4 and passes through the point $(12400, 999900)$. Find $f(12402)$.

Let’s keep this as simple as possible.

Solution. A line of slope 4 has the property that every step to the right creates a rise of 4.

So 2 steps to the right (from $x = 12400$ to $x = 12402$) creates a rise of 8.

Since we began at height 999900 we must end at $999900 + 8 = 999908$.

Notice that we did not need to deal with any equations. Merely understanding the meaning of slope was enough to quickly do this problem!
Practice with slope

The line $y = f(x)$ has slope 4 and passes through the point $(12400, 999900)$. Find $f(12402)$.

Let’s keep this as simple as possible.

Solution. A line of slope 4 has the property that every step to the right creates a rise of 4.

So 2 steps to the right (from $x = 12400$ to $x = 12402$) creates a rise of 8.

Since we began at height 999900 we must end at $999900 + 8 = 999908$.

Notice that we did not need to deal with any equations. Merely understanding the meaning of slope was enough to quickly do this problem!
The line $y = f(x)$ has slope 4 and passes through the point $(12400, 999900)$. Find $f(12402)$.

Let’s keep this as simple as possible.

Solution. A line of slope 4 has the property that every step to the right creates a rise of 4.

So 2 steps to the right (from $x = 12400$ to $x = 12402$) creates a rise of 8.

Since we began at height 999900 we must end at $999900 + 8 = 999908$.

Notice that we did not need to deal with any equations. Merely understanding the meaning of slope was enough to quickly do this problem!
Practice with slope

The line $y = f(x)$ has slope 4 and passes through the point $(12400, 999900)$. Find $f(12402)$.

Let’s keep this as simple as possible.

Solution. A line of slope 4 has the property that every step to the right creates a rise of 4.

So 2 steps to the right (from $x = 12400$ to $x = 12402$) creates a rise of 8.

Since we began at height 999900 we must end at $999900 + 8 = 999908$.

Notice that we did not need to deal with any equations. Merely understanding the meaning of slope was enough to quickly do this problem!
The line $y = f(x)$ has slope 4 and passes through the point $(12400, 999900)$. Find $f(12402)$.

Let’s keep this as simple as possible.

Solution. A line of slope 4 has the property that every step to the right creates a rise of 4.

So 2 steps to the right (from $x = 12400$ to $x = 12402$) creates a rise of 8.

Since we began at height 999900 we must end at 999900 + 8 = 999908.

Notice that we did not need to deal with any equations. Merely understanding the meaning of slope was enough to quickly do this problem!
The graph of $y = f(x)$ is a straight line of slope 12.

If $f(gazillion) = google$ then what is $f(gazillion + 3)$?

Solution. $f(gazillion + 3) = google + (3)(12) = google + 36$.

That's it!
The graph of $y = f(x)$ is a straight line of slope 12.

If $f(gazillion) = google$ then what is $f(gazillion + 3)$?

Solution. $f(gazillion + 3) = google + (3)(12) = google + 36$.

That's it!
The graph of \(y = f(x) \) is a straight line of slope 12.

If \(f(\text{gazillion}) = \text{google} \) then what is \(f(\text{gazillion} + 3) \)?

Solution. \(f(\text{gazillion} + 3) = \text{google} + (3)(12) = \text{google} + 36 \).

That's it!
Practicing with slope

The graph of \(y = f(x)\) is a straight line of slope 12.

If \(f(\text{gazillion}) = \text{google}\) then what is \(f(\text{gazillion} + 3)\)?

Solution. \(f(\text{gazillion} + 3) = \text{google} + (3)(12) = \boxed{\text{google} + 36}\).

That's it!
Practicing with slope

The graph of \(y = f(x) \) is a straight line of slope 12.

If \(f(\text{gazillion}) = \text{google} \) then what is \(f(\text{gazillion} + 3) \)?

Solution. \(f(\text{gazillion} + 3) = \text{google} + (3)(12) = \text{google} + 36 \).

That's it!
Practicing with slope

The graph of $y = f(x)$ is a straight line of slope 12.

If $f(gazillion) = google$ then what is $f(gazillion + 3)$?

Solution. $f(gazillion + 3) = google + (3)(12) = google + 36$.

Easy!
The average rate of change of a function

Suppose two points \(P \) and \(Q \) are on the graph \(y = f(x) \) of a function \(f \).

Since \(f \) is a function, then by the vertical line test, these two points cannot have the same \(x \)-value.

Concentrate on the point \(P \) and write its coordinates as \((x, f(x))\).

The other point, \(Q \) has \(x \)-coordinate \(x + h \) for some value of \(h \).
(\(h \) is the “run” between the points \(P \) and \(Q \).)

The coordinates of \(Q \) are \(Q(x + h, f(x + h)) \).

The slope of the line joining \(P \) to \(Q \) is

\[
m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}. \tag{5}
\]

This expression, \(\frac{f(x+h)-f(x)}{h} \), is the difference quotient, the slope of the line connecting the points \(P(x, f(x)) \) and \(Q(x + h, f(x + h)) \).

It is the average rate of change (ARC) of the function \(f(x) \) between the points \(P \) and \(Q \).
The average rate of change of a function

Suppose two points P and Q are on the graph $y = f(x)$ of a function f. Since f is a function, then by the vertical line test, these two points cannot have the same x-value.

Concentrate on the point P and write its coordinates as $(x, f(x))$.

The other point, Q has x-coordinate $x + h$ for some value of h. (So h is the “run” between the points P and Q.) The coordinates of Q are $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.$$ \hspace{1cm} (5)

This expression, $\frac{f(x+h)-f(x)}{h}$, is the difference quotient, the slope of the line connecting the points $P(x, f(x))$ and $Q(x + h, f(x + h))$. It is the average rate of change (ARC) of the function $f(x)$ between the points P and Q.

Smith (SHSU) Elementary Functions 2013 15 / 19
The average rate of change of a function

Suppose two points P and Q are on the graph $y = f(x)$ of a function f. Since f is a function, then by the vertical line test, these two points cannot have the same x-value.

Concentrate on the point P and write its coordinates as $(x, f(x))$.

The other point, Q has x-coordinate $x + h$ for some value of h. (So h is the “run” between the points P and Q.) The coordinates of Q are $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.$$ (5)

This expression, $\frac{f(x+h)-f(x)}{h}$, is the difference quotient, the slope of the line connecting the points $P(x, f(x))$ and $Q(x + h, f(x + h))$. It is the average rate of change (ARC) of the function $f(x)$ between the points P and Q.

Smith (SHSU) Elementary Functions 2013 15 / 19
The average rate of change of a function

Suppose two points P and Q are on the graph $y = f(x)$ of a function f. Since f is a function, then by the vertical line test, these two points cannot have the same x-value.

Concentrate on the point P and write its coordinates as $(x, f(x))$.

The other point, Q has x-coordinate $x + h$ for some value of h. (So h is the “run” between the points P and Q.) The coordinates of Q are $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.$$ \hspace{1cm} (5)

This expression, $\frac{f(x+h)-f(x)}{h}$, is the difference quotient, the slope of the line connecting the points $P(x, f(x))$ and $Q(x + h, f(x + h))$. It is the average rate of change (ARC) of the function $f(x)$ between the points P and Q.
The average rate of change of a function

Suppose two points P and Q are on the graph $y = f(x)$ of a function f. Since f is a function, then by the vertical line test, these two points cannot have the same x-value.

Concentrate on the point P and write its coordinates as $(x, f(x))$.

The other point, Q has x-coordinate $x + h$ for some value of h. (So h is the “run” between the points P and Q.) The coordinates of Q are $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.$$ \(5\)

This expression, $\frac{f(x+h)-f(x)}{h}$, is the difference quotient, the slope of the line connecting the points $P(x, f(x))$ and $Q(x + h, f(x + h))$. It is the average rate of change (ARC) of the function $f(x)$ between the points P and Q.

Smith (SHSU) Elementary Functions 2013 15 / 19
The average rate of change of a function

Suppose two points P and Q are on the graph $y = f(x)$ of a function f. Since f is a function, then by the vertical line test, these two points cannot have the same x-value.

Concentrate on the point P and write its coordinates as $(x, f(x))$.

The other point, Q has x-coordinate $x + h$ for some value of h. (So h is the “run” between the points P and Q.) The coordinates of Q are $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.$$ \hfill (5)

This expression, $\frac{f(x+h)-f(x)}{h}$, is the difference quotient, the slope of the line connecting the points $P(x, f(x))$ and $Q(x + h, f(x + h))$. It is the average rate of change (ARC) of the function $f(x)$ between the points P and Q.

The average rate of change of a function

Suppose two points \(P \) and \(Q \) are on the graph \(y = f(x) \) of a function \(f \). Since \(f \) is a function, then by the vertical line test, these two points cannot have the same \(x \)-value.

Concentrate on the point \(P \) and write its coordinates as \((x, f(x))\).

The other point, \(Q \) has \(x \)-coordinate \(x + h \) for some value of \(h \). (So \(h \) is the “run” between the points \(P \) and \(Q \).) The coordinates of \(Q \) are \(Q(x + h, f(x + h)) \).

The slope of the line joining \(P \) to \(Q \) is

\[
m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.
\]

This expression, \(\frac{f(x+h)-f(x)}{h} \), is the difference quotient, the slope of the line connecting the points \(P(x, f(x)) \) and \(Q(x + h, f(x + h)) \).

It is the average rate of change (ARC) of the function \(f(x) \) between the points \(P \) and \(Q \).
The average rate of change of a function

Suppose two points P and Q are on the graph $y = f(x)$ of a function f. Since f is a function, then by the vertical line test, these two points cannot have the same x-value.

Concentrate on the point P and write its coordinates as $(x, f(x))$.

The other point, Q has x-coordinate $x + h$ for some value of h. (So h is the “run” between the points P and Q.) The coordinates of Q are $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.$$ (5)

This expression, $\frac{f(x+h)-f(x)}{h}$, is the difference quotient, the slope of the line connecting the points $P(x, f(x))$ and $Q(x + h, f(x + h))$. It is the average rate of change (ARC) of the function $f(x)$ between the points P and Q.

The average rate of change of a function

Suppose two points P and Q are on the graph $y = f(x)$ of a function f. Since f is a function, then by the vertical line test, these two points cannot have the same x-value.

Concentrate on the point P and write its coordinates as $(x, f(x))$.

The other point, Q has x-coordinate $x + h$ for some value of h. (So h is the “run” between the points P and Q.) The coordinates of Q are $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}. \quad (5)$$

This expression, $\frac{f(x+h)-f(x)}{h}$, is the difference quotient, the slope of the line connecting the points $P(x, f(x))$ and $Q(x + h, f(x + h))$. It is the average rate of change (ARC) of the function $f(x)$ between the points P and Q.

The average rate of change of a function

Suppose two points P and Q are on the graph $y = f(x)$ of a function f. Since f is a function, then by the vertical line test, these two points cannot have the same x-value.

Concentrate on the point P and write its coordinates as $(x, f(x))$.

The other point, Q has x-coordinate $x + h$ for some value of h. (So h is the “run” between the points P and Q.) The coordinates of Q are $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}. \quad (5)$$

This expression, $\frac{f(x+h)-f(x)}{h}$, is the difference quotient, the slope of the line connecting the points $P(x, f(x))$ and $Q(x + h, f(x + h))$. It is the average rate of change (ARC) of the function $f(x)$ between the points P and Q.
The average rate of change of a function

Suppose two points P and Q are on the graph $y = f(x)$ of a function f. Since f is a \textit{function}, then by the vertical line test, these two points cannot have the same x-value.

Concentrate on the point P and write its coordinates as $(x, f(x))$.

The other point, Q has x-coordinate $x + h$ for some value of h. (So h is the “run” between the points P and Q.) The coordinates of Q are $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.$$ \hspace{1cm} (5)

This expression, $\frac{f(x+h)-f(x)}{h}$, is the \textit{difference quotient}, the slope of the line connecting the points $P(x, f(x))$ and $Q(x + h, f(x + h))$. It is the \textit{average rate of change} (ARC) of the function $f(x)$ between the points P and Q.
Suppose two points P and Q are on the graph $y = f(x)$ of a function f. Since f is a function, then by the vertical line test, these two points cannot have the same x-value.

Concentrate on the point P and write its coordinates as $(x, f(x))$.

The other point, Q has x-coordinate $x + h$ for some value of h. (So h is the “run” between the points P and Q.) The coordinates of Q are $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.$$

This expression, $\frac{f(x+h)-f(x)}{h}$, is the difference quotient, the slope of the line connecting the points $P(x, f(x))$ and $Q(x + h, f(x + h))$.

It is the average rate of change (ARC) of the function $f(x)$ between the points P and Q.

The average rate of change of a function
The average rate of change of a function

Suppose two points P and Q are on the graph $y = f(x)$ of a function f. Since f is a function, then by the vertical line test, these two points cannot have the same x-value.

Concentrate on the point P and write its coordinates as $(x, f(x))$.

The other point, Q has x-coordinate $x + h$ for some value of h. (So h is the “run” between the points P and Q.) The coordinates of Q are $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}. \quad (5)$$

This expression, $\frac{f(x+h)-f(x)}{h}$, is the difference quotient, the slope of the line connecting the points $P(x, f(x))$ and $Q(x + h, f(x + h))$. It is the average rate of change (ARC) of the function $f(x)$ between the points P and Q.

The average rate of change of a function

Suppose two points P and Q are on the graph $y = f(x)$ of a function f. Since f is a function, then by the vertical line test, these two points cannot have the same x-value.

Concentrate on the point P and write its coordinates as $(x, f(x))$.

The other point, Q has x-coordinate $x + h$ for some value of h. (So h is the “run” between the points P and Q.) The coordinates of Q are $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}. \tag{5}$$

This expression, $\frac{f(x+h)-f(x)}{h}$, is the difference quotient, the slope of the line connecting the points $P(x, f(x))$ and $Q(x + h, f(x + h))$. It is the average rate of change (ARC) of the function $f(x)$ between the points P and Q.

Smith (SHSU)
Elementary Functions
2013 15 / 19
The average rate of change of a function

Suppose two points P and Q are on the graph $y = f(x)$ of a function f. Since f is a function, then by the vertical line test, these two points cannot have the same x-value.

Concentrate on the point P and write its coordinates as $(x, f(x))$.

The other point, Q has x-coordinate $x + h$ for some value of h. (So h is the “run” between the points P and Q.) The coordinates of Q are $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.$$ \hspace{1cm} (5)

This expression, $\frac{f(x+h)-f(x)}{h}$, is the difference quotient, the slope of the line connecting the points $P(x, f(x))$ and $Q(x + h, f(x + h))$. It is the average rate of change (ARC) of the function $f(x)$ between the points P and Q.

Smith (SHSU)
Elementary Functions
2013
15 / 19
The average rate of change of a function

Suppose two points P and Q are on the graph $y = f(x)$ of a function f. Since f is a function, then by the vertical line test, these two points cannot have the same x-value.

Concentrate on the point P and write its coordinates as $(x, f(x))$.

The other point, Q has x-coordinate $x + h$ for some value of h. (So h is the “run” between the points P and Q.) The coordinates of Q are $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.$$ (5)

This expression, $\frac{f(x+h)-f(x)}{h}$, is the difference quotient, the slope of the line connecting the points $P(x, f(x))$ and $Q(x + h, f(x + h))$. It is the average rate of change (ARC) of the function $f(x)$ between the points P and Q.

Smith (SHSU)
Elementary Functions
2013 15 / 19
The average rate of change of a function

Suppose two points P and Q are on the graph $y = f(x)$ of a function f. Since f is a function, then by the vertical line test, these two points cannot have the same x-value.

Concentrate on the point P and write its coordinates as $(x, f(x))$.

The other point, Q has x-coordinate $x + h$ for some value of h. (So h is the “run” between the points P and Q.) The coordinates of Q are $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.$$ \hspace{1cm} (5)

This expression, $\frac{f(x+h)-f(x)}{h}$, is the **difference quotient**, the slope of the line connecting the points $P(x, f(x))$ and $Q(x + h, f(x + h))$.

It is the **average rate of change (ARC)** of the function $f(x)$ between the points P and Q.
The average rate of change of a function

Suppose two points \(P \) and \(Q \) are on the graph \(y = f(x) \) of a function \(f \).
Since \(f \) is a function, then by the vertical line test, these two points cannot have the same \(x \)-value.

Concentrate on the point \(P \) and write its coordinates as \((x, f(x))\).

The other point, \(Q \) has \(x \)-coordinate \(x + h \) for some value of \(h \).
(So \(h \) is the “run” between the points \(P \) and \(Q \).)
The coordinates of \(Q \) are \(Q(x + h, f(x + h)) \).

The slope of the line joining \(P \) to \(Q \) is

\[
m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}. \tag{5}
\]

This expression, \(\frac{f(x+h) - f(x)}{h} \), is the difference quotient, the slope of the line connecting the points \(P(x, f(x)) \) and \(Q(x + h, f(x + h)) \).

It is the average rate of change (ARC) of the function \(f(x) \) between the points \(P \) and \(Q \).
The average rate of change of a function

Suppose two points \(P \) and \(Q \) are on the graph \(y = f(x) \) of a function \(f \). Since \(f \) is a function, then by the vertical line test, these two points cannot have the same \(x \)-value.

Concentrate on the point \(P \) and write its coordinates as \((x, f(x))\).

The other point, \(Q \) has \(x \)-coordinate \(x + h \) for some value of \(h \).
(So \(h \) is the “run” between the points \(P \) and \(Q \).)
The coordinates of \(Q \) are \(Q(x + h, f(x + h)) \).

The slope of the line joining \(P \) to \(Q \) is

\[
m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.
\]

This expression, \(\frac{f(x+h)-f(x)}{h} \), is the difference quotient, the slope of the line connecting the points \(P(x, f(x)) \) and \(Q(x + h, f(x + h)) \).

It is the average rate of change (ARC) of the function \(f(x) \) between the points \(P \) and \(Q \).
The average rate of change of a function

Suppose two points P and Q are on the graph $y = f(x)$ of a function f. Since f is a function, then by the vertical line test, these two points cannot have the same x-value.

Concentrate on the point P and write its coordinates as $(x, f(x))$.

The other point, Q has x-coordinate $x + h$ for some value of h. (So h is the “run” between the points P and Q.) The coordinates of Q are $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.$$ \hspace{1cm} (5)

This expression, $\frac{f(x+h)-f(x)}{h}$, is the difference quotient, the slope of the line connecting the points $P(x, f(x))$ and $Q(x + h, f(x + h))$. It is the average rate of change (ARC) of the function $f(x)$ between the points P and Q.

Smith (SHSU)
Elementary Functions

2013
The average rate of change of a function

Suppose two points P and Q are on the graph $y = f(x)$ of a function f. Since f is a function, then by the vertical line test, these two points cannot have the same x-value.

Concentrate on the point P and write its coordinates as $(x, f(x))$.

The other point, Q has x-coordinate $x + h$ for some value of h. (So h is the “run” between the points P and Q.) The coordinates of Q are $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$m := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.$$ \hfill (5)

This expression, $\frac{f(x+h) - f(x)}{h}$, is the difference quotient, the slope of the line connecting the points $P(x, f(x))$ and $Q(x + h, f(x + h))$. It is the average rate of change (ARC) of the function $f(x)$ between the points P and Q.

The **ARC** of the function $f(x)$ from x to $x + h$ is the slope between the points $P(x, f(x))$ and $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$ARC := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}. \quad (6)$$

The ARC is a critical concept in calculus.
The **ARC** of the function $f(x)$ from x to $x + h$ is the **slope** between the points $P(x, f(x))$ and $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$ARC := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.$$ \hspace{1cm} (6)

The ARC is a critical concept in calculus.
The **ARC** of the function $f(x)$ from x to $x+h$ is the **slope** between the points $P(x, f(x))$ and $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$ARC := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}. \quad (6)$$

The ARC is a critical concept in calculus.
The **ARC** of the function $f(x)$ from x to $x + h$ is the **slope** between the points $P(x, f(x))$ and $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$ARC := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.$$ \hspace{1cm} (6)

The ARC is a critical concept in calculus.
The **ARC** of the function $f(x)$ from x to $x + h$ is the **slope** between the points $P(x, f(x))$ and $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$
ARC := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.
$$

(6)

The ARC is a critical concept in calculus.
The Average Rate of Change

The **ARC** of the function \(f(x) \) from \(x \) to \(x + h \) is the **slope** between the points \(P(x, f(x)) \) and \(Q(x + h, f(x + h)) \).

The slope of the line joining \(P \) to \(Q \) is

\[
ARC := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.
\]

(6)

The ARC is a critical concept in calculus.
The **ARC** of the function \(f(x) \) from \(x \) to \(x + h \) is the **slope** between the points \(P(x, f(x)) \) and \(Q(x + h, f(x + h)) \).

The slope of the line joining \(P \) to \(Q \) is

\[
ARC := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}.
\]

The ARC is a critical concept in calculus.
The **ARC** of the function $f(x)$ from x to $x + h$ is the slope between the points $P(x, f(x))$ and $Q(x + h, f(x + h))$.

The slope of the line joining P to Q is

$$ARC := \frac{\Delta y}{\Delta x} = \frac{f(x + h) - f(x)}{(x + h) - x} = \frac{f(x + h) - f(x)}{h}. \quad (6)$$

The ARC is a critical concept in calculus.
Let's do an example or two.

Worked Examples. Consider the quadratic function \(f(x) = x^2 \). Find the difference quotient for this function.

Solution. We compute

\[
\frac{f(x+h) - f(x)}{h} = \frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2xh + h^2 - x^2}{h} = \frac{2xh + h^2}{h} = 2x + h.
\]
Let's do an example or two.

Worked Examples. Consider the quadratic function $f(x) = x^2$. Find the difference quotient for this function.

Solution. We compute

$$ \frac{f(x+h) - f(x)}{h} = \frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2xh + h^2 - x^2}{h} = \frac{2xh + h^2}{h} = 2x + h.$$
Let’s do an example or two.

Worked Examples. Consider the quadratic function $f(x) = x^2$. Find the difference quotient for this function.

Solution. We compute

\[
\frac{f(x + h) - f(x)}{h} = \frac{(x + h)^2 - x^2}{h} = \frac{x^2 + 2xh + h^2 - x^2}{h} = \frac{2xh + h^2}{h} = 2x + h.
\]
Let's do an example or two.

Worked Examples. Consider the quadratic function \(f(x) = x^2 \). Find the difference quotient for this function.

Solution. We compute

\[
\frac{f(x + h) - f(x)}{h} = \frac{(x + h)^2 - x^2}{h} = \frac{x^2 + 2xh + h^2 - x^2}{h} = \frac{2xh + h^2}{h} = 2x + h.
\]
Let's do an example or two.

Worked Examples. Consider the quadratic function $f(x) = x^2$. Find the difference quotient for this function.

Solution. We compute

$$\frac{f(x + h) - f(x)}{h} = \frac{(x + h)^2 - x^2}{h} = \frac{x^2 + 2xh + h^2 - x^2}{h} = \frac{2xh + h^2}{h} = 2x + h.$$
Let's do an example or two.

Worked Examples. Consider the quadratic function $f(x) = x^2$. Find the difference quotient for this function.

Solution. We compute

$$
\frac{f(x + h) - f(x)}{h} = \frac{(x + h)^2 - x^2}{h} = \frac{x^2 + 2xh + h^2 - x^2}{h} = \frac{2xh + h^2}{h} = 2x + h.
$$
Let's do an example or two.

Worked Examples. Consider the quadratic function $f(x) = x^2$. Find the difference quotient for this function.

Solution. We compute

\[
\frac{f(x + h) - f(x)}{h} = \frac{(x + h)^2 - x^2}{h} = \frac{x^2 + 2xh + h^2 - x^2}{h} = \frac{2xh + h^2}{h} = 2x + h.
\]
Find the average rate of change of $f(x) = x^2$ as x varies from $x = 2$ to $x = 5$.

Solution. The slope of the line through $(2, f(2))$ and $(5, f(5))$ is the slope between $(2, 4)$ and $(5, 25)$ and this is equal to

$$\frac{25 - 4}{5 - 2} = \frac{21}{3} = 7.$$
Find the average rate of change of $f(x) = x^2$ as x varies from $x = 2$ to $x = 5$.

Solution. The slope of the line through $(2, f(2))$ and $(5, f(5))$

is the slope between $(2, 4)$ and $(5, 25)$

and this is equal to

$$\frac{25 - 4}{5 - 2} = \frac{21}{3} = 7.$$
Find the average rate of change of $f(x) = x^2$ as x varies from $x = 2$ to $x = 5$.

Solution. The slope of the line through $(2, f(2))$ and $(5, f(5))$

is the slope between $(2, 4)$ and $(5, 25)$

and this is equal to

$$\frac{25 - 4}{5 - 2} = \frac{21}{3} = 7.$$
Find the average rate of change of \(f(x) = x^2 \) as \(x \) varies from \(x = 2 \) to \(x = 5 \).

Solution. The slope of the line through \((2, f(2))\) and \((5, f(5))\) is the slope between \((2, 4)\) and \((5, 25)\) and this is equal to

\[
\frac{25 - 4}{5 - 2} = \frac{21}{3} = 7.
\]
Find the average rate of change of \(f(x) = x^2 \) as \(x \) varies from \(x = 2 \) to \(x = 5 \).

Solution. The slope of the line through \((2, f(2))\) and \((5, f(5))\)

is the slope between \((2, 4)\) and \((5, 25)\)

and this is equal to

\[
\frac{25 - 4}{5 - 2} = \frac{21}{3} = 7.
\]
Find the average rate of change of $f(x) = x^2$ as x varies from $x = 2$ to $x = 5$.

Solution. The slope of the line through $(2, f(2))$ and $(5, f(5))$

is the slope between $(2, 4)$ and $(5, 25)$

and this is equal to

$$\frac{25 - 4}{5 - 2} = \frac{21}{3} = 7.$$
Find the average rate of change of \(f(x) = x^2 \) as \(x \) varies from \(x = 2 \) to \(x = 5 \).

Solution. The slope of the line through \((2, f(2))\) and \((5, f(5))\) is the slope between \((2, 4)\) and \((5, 25)\) and this is equal to

\[
\frac{25 - 4}{5 - 2} = \frac{21}{3} = 7.
\]
In the next presentation, we explore “quadratic” functions.

(END)
In the next presentation, we explore “quadratic” functions.
In the next presentation, we explore “quadratic” functions.

(END)