We study the most fundamental concept in mathematics, that of a function. In this lecture we first define a function and then examine the domain of functions defined as equations involving real numbers.

Definition of a function.
A function \(f : X \rightarrow Y \) assigns to each element of the set \(X \) an element of \(Y \). Picture a function as a machine,
We study the most fundamental concept in mathematics, that of a **function**. In this lecture we first define a function and then examine the domain of functions defined as equations involving real numbers.

Definition of a function.
A function $f : X \rightarrow Y$ assigns to each element of the set X an element of Y.

Picture a function as a machine,
We study the most fundamental concept in mathematics, that of a function. In this lecture we first define a function and then examine the domain of functions defined as equations involving real numbers.

Definition of a function.
A function $f : X \rightarrow Y$ assigns to each element of the set X an element of Y. Picture a function as a machine,
We study the most fundamental concept in mathematics, that of a function. In this lecture we first define a function and then examine the domain of functions defined as equations involving real numbers.

Definition of a function.
A function \(f : X \rightarrow Y \) assigns to each element of the set \(X \) an element of \(Y \).
We study the most fundamental concept in mathematics, that of a **function**. In this lecture we first define a function and then examine the domain of functions defined as equations involving real numbers.

Definition of a function.
A function \(f : X \rightarrow Y \) assigns to each element of the set \(X \) an element of \(Y \). Picture a function as a machine,
We study the most fundamental concept in mathematics, that of a **function**. In this lecture we first define a function and then examine the domain of functions defined as equations involving real numbers.

Definition of a function
A function $f : X \rightarrow Y$ assigns to each element of the set X an element of Y. Picture a function as a machine,

![Diagram of a function machine](image)

dropping x-values into one end of the machine and picking up y-values at the other end.
A function machine

We study the most fundamental concept in mathematics, that of a **function**. In this lecture we first define a function and then examine the domain of functions defined as equations involving real numbers.

Definition of a function
A function $f : X \rightarrow Y$ assigns to each element of the set X an element of Y. Picture a function as a machine,

![Diagram of a function machine]

dropping x-values into one end of the machine and picking up y-values at the other end.
We study the most fundamental concept in mathematics, that of a function. In this lecture we first define a function and then examine the domain of functions defined as equations involving real numbers.

Definition of a function
A function $f : X \rightarrow Y$ assigns to each element of the set X an element of Y. Picture a function as a machine,

![Diagram of a function machine]

dropping x-values into one end of the machine and picking up y-values at the other end.
The set X of inputs is called the **domain** of the function f. The set Y of all conceivable outputs is the **codomain** of the function f. The set of all outputs is the **range** of f. (The range is a subset of Y.)

The most important criteria for a function is this:

> A function must assign to each input a **unique** output.

We cannot allow several different outputs to correspond to an input.
The set X of inputs is called the **domain** of the function f. The set Y of all conceivable outputs is the **codomain** of the function f. The set of all outputs is the **range** of f. (The range is a subset of Y.)

The most important criteria for a function is this:

\[
\text{A function must assign to each input a unique output.}
\]

We cannot allow several different outputs to correspond to an input.
The set X of inputs is called the **domain** of the function f. The set Y of all conceivable outputs is the **codomain** of the function f. The set of all outputs is the **range** of f.

(The range is a subset of Y.)

The most important criteria for a function is this:

A function must assign to each input a **unique** output.

We cannot allow several different outputs to correspond to an input.
The set X of inputs is called the **domain** of the function f. The set Y of all conceivable outputs is the **codomain** of the function f. The set of all outputs is the **range** of f. (The range is a subset of Y.)

The most important criteria for a function is this:

A function must assign to each input a unique output.

We cannot allow several different outputs to correspond to an input.
The set X of inputs is called the **domain** of the function f. The set Y of all conceivable outputs is the **codomain** of the function f. The set of all outputs is the **range** of f. (The range is a subset of Y.)

The most important criteria for a function is this:

A function must assign to each input a **unique** output.

We cannot allow several different outputs to correspond to an input.
The set X of inputs is called the **domain** of the function f. The set Y of all conceivable outputs is the **codomain** of the function f. The set of all outputs is the **range** of f. (The range is a subset of Y.)

The most important criteria for a function is this:

A function must assign to each input a **unique** output.

We cannot allow several different outputs to correspond to an input.
The set X of inputs is called the **domain** of the function f. The set Y of all conceivable outputs is the **codomain** of the function f. The set of all outputs is the **range** of f. (The range is a subset of Y.)

The most important criteria for a function is this:

> A function must assign to each input a **unique** output.

We cannot allow several different outputs to correspond to an input.
We give an example (from Wikipedia) of a function from a set X to the set Y.

The function maps 1 to D, 2 to C and 3 to C.

Note that each element of X has a unique output in Y.
Examples of functions

We give an example (from Wikipedia) of a function from a set X to the set Y.

The function maps 1 to D, 2 to C and 3 to C.

Note that each element of X has a unique output in Y.
Examples of functions

We give an example (from Wikipedia) of a function from a set X to the set Y.

The function maps 1 to D, 2 to C and 3 to C.

Note that each element of X has a unique output in Y.
Not a function

However the map below is not a function.

Some items in X are not mapped anywhere; worse, the item 2 has two outputs, both B and C.

Functions are not allowed to change a single input into several outputs!
Not a function

However the map below is not a function.

Some items in X are not mapped anywhere; worse, the item 2 has two outputs, both B and C.

Functions are not allowed to change a single input into several outputs!
Not a function

However the map below is not a function.

Some items in X are not mapped anywhere; worse, the item 2 has two outputs, both B and C.

Functions are not allowed to change a single input into several outputs!
Not a function

However the map below is not a function.

Some items in \(X \) are not mapped anywhere; \textit{worse}, the item 2 has \textit{two} outputs, \textit{both} \(B \) and \(C \).

Functions are not allowed to change a single input into several outputs!
Functions as questions

Functions occur naturally in our world.

When we pull out an attribute of an object, we are essentially creating a function.

For example, the set X below has polygons with various colors. The question, “What is the color of a polygon?” could be viewed as a function that maps to polygons to colors.

\[X \quad \rightarrow \quad Y \]

\[\triangle \rightarrow \text{red} \]
\[\square \rightarrow \text{yellow} \]
\[\square \rightarrow \text{green} \]
\[\square \rightarrow \text{purple} \]
Functions as questions

Functions occur naturally in our world.

When we pull out an attribute of an object, we are essentially creating a function.

For example, the set X below has polygons with various colors. The question, “What is the color of a polygon?” could be viewed as a function that maps to polygons to colors.
Functions as questions

Functions occur naturally in our world.

When we pull out an attribute of an object, we are essentially creating a function.

For example, the set X below has polygons with various colors. The question, “What is the color of a polygon?” could be viewed as a function that maps to polygons to colors.
Functions as questions

Functions occur naturally in our world.

When we pull out an attribute of an object, we are essentially creating a function.

For example, the set X below has polygons with various colors. The question, “What is the color of a polygon?” could be viewed as a function that maps to polygons to colors.
Functions occur throughout our modern technological society.

The US social security number is a function SSN mapping US citizens to nine digit numbers.

At Sam Houston State University, all students and staff are assigned a Sam ID. This as a function $SamID$, mapping students/staff to nine digit numbers.

For example,

$$SamID(Ken \ W \ Smith) = 000354765.$$

(This function exists so that data about students/staff – classes, grades, wages, etc. – can be kept in a computer database, tracked by a single number.)
Functions occur throughout our modern technological society.

The US social security number is a function SSN mapping US citizens to nine digit numbers.

At Sam Houston State University, all students and staff are assigned a Sam ID. This as a function $SamID$, mapping students/staff to nine digit numbers.

For example,

$$SamID(Ken \ W \ Smith) = 000354765.$$

(This function exists so that data about students/staff – classes, grades, wages, etc. – can be kept in a computer database, tracked by a single number.)
Functions occur throughout our modern technological society.

The US social security number is a function SSN mapping US citizens to nine digit numbers.

At Sam Houston State University, all students and staff are assigned a Sam ID. This as a function $SamID$, mapping students/staff to nine digit numbers.

For example,

$$SamID(Ken \ W \ Smith) = 000354765.$$

(This function exists so that data about students/staff – classes, grades, wages, etc. – can be kept in a computer database, tracked by a single number.)
Functions occur throughout our modern technological society.

The US social security number is a function SSN mapping US citizens to nine digit numbers.

At Sam Houston State University, all students and staff are assigned a Sam ID. This as a function $SamID$, mapping students/staff to nine digit numbers.

For example, $SamID(Ken \ W \ Smith) = 000354765$.

(This function exists so that data about students/staff – classes, grades, wages, etc. – can be kept in a computer database, tracked by a single number.)
Functions occur throughout our modern technological society.

The US social security number is a function SSN mapping US citizens to nine digit numbers.

At Sam Houston State University, all students and staff are assigned a Sam ID. This as a function $SamID$, mapping students/staff to nine digit numbers.

For example,

$$SamID(Ken \ W \ Smith) = 000354765.$$

(This function exists so that data about students/staff — classes, grades, wages, etc. — can be kept in a computer database, tracked by a single number.)
Functions occur throughout our modern technological society.

The US social security number is a function SSN mapping US citizens to nine digit numbers.

At Sam Houston State University, all students and staff are assigned a Sam ID. This as a function $SamID$, mapping students/staff to nine digit numbers.

For example,

$$SamID(Ken W Smith) = 000354765.$$

(This function exists so that data about students/staff – classes, grades, wages, etc. – can be kept in a computer database, tracked by a single number.)
Functions occur throughout our modern technological society.

The US social security number is a function SSN mapping US citizens to nine digit numbers.

At Sam Houston State University, all students and staff are assigned a Sam ID. This as a function $SamID$, mapping students/staff to nine digit numbers.

For example,

$$SamID(Ken \ W \ Smith) = 000354765.$$

(This function exists so that data about students/staff – classes, grades, wages, etc. – can be kept in a computer database, tracked by a single number.)
Although functions in science are often defined by equations, they do not have to be. (The SamID function is not defined by an equation.)

In its most general form, a function is a collection of ordered pairs satisfying certain requirements. Consider the sets \(D := \{1, a, b, z, \text{orange}\} \) and \(C := \{r, s, t, u, v, 1000\} \).

We create a function \(f \) by assigning to each member of \(D \) a member of \(C \).

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(r)</td>
</tr>
<tr>
<td>(a)</td>
<td>(s)</td>
</tr>
<tr>
<td>(b)</td>
<td>(r)</td>
</tr>
<tr>
<td>(z)</td>
<td>1000</td>
</tr>
<tr>
<td>(\text{orange})</td>
<td>1000</td>
</tr>
</tbody>
</table>

This is a function: the domain is the elements of \(D \). And each element of \(D \) has a unique output!

We may sometimes define a function by a table or by a list of ordered pairs.

\[
 f = \{(1, r), (a, s), (b, r), (z, 1000), (\text{orange}, 1000)\}
\]

(The ordered pairs are simply the entries in the table.)
Functions as ordered pairs

Although functions in science are often defined by equations, they do not have to be. (The SamID function is not defined by an equation.)

In its most general form, a function is a collection of ordered pairs satisfying certain requirements.
Consider the sets $D := \{1, a, b, z, \text{orange}\}$ and $C := \{r, s, t, u, v, 1000\}$.
We create a function f by assigning to each member of D a member of C.

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>r</td>
</tr>
<tr>
<td>a</td>
<td>s</td>
</tr>
<tr>
<td>b</td>
<td>r</td>
</tr>
<tr>
<td>z</td>
<td>1000</td>
</tr>
<tr>
<td>orange</td>
<td>1000</td>
</tr>
</tbody>
</table>

This is a function: the domain is the elements of D. And each element of D has a unique output!
We may sometimes define a function by a table or by a list of ordered pairs.

$$f = \{(1, r), (a, s), (b, r), (z, 1000), (\text{orange}, 1000)\}$$
(The ordered pairs are simply the entries in the table.)
Functions as ordered pairs

Although functions in science are often defined by equations, they do not have to be. (The SamID function is not defined by an equation.)

In its most general form, a function is a collection of ordered pairs satisfying certain requirements.

Consider the sets $D := \{1, a, b, z, \text{orange}\}$ and $C := \{r, s, t, u, v, 1000\}$. We create a function f by assigning to each member of D a member of C.

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>r</td>
</tr>
<tr>
<td>a</td>
<td>s</td>
</tr>
<tr>
<td>b</td>
<td>r</td>
</tr>
<tr>
<td>z</td>
<td>1000</td>
</tr>
<tr>
<td>orange</td>
<td>1000</td>
</tr>
</tbody>
</table>

This is a function: the domain is the elements of D. And each element of D has a unique output!

We may sometimes define a function by a table or by a list of ordered pairs.

$$f = \{(1, r), (a, s), (b, r), (z, 1000), (\text{orange}, 1000)\}$$

(The ordered pairs are simply the entries in the table.)
Although functions in science are often defined by equations, they do not have to be. (The SamID function is not defined by an equation.)

In its most general form, a function is a collection of ordered pairs satisfying certain requirements.

Consider the sets $D := \{1, a, b, z, \text{orange}\}$ and $C := \{r, s, t, u, v, 1000\}$.

We create a function f by assigning to each member of D a member of C.

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>r</td>
</tr>
<tr>
<td>a</td>
<td>s</td>
</tr>
<tr>
<td>b</td>
<td>r</td>
</tr>
<tr>
<td>z</td>
<td>1000</td>
</tr>
<tr>
<td>orange</td>
<td>1000</td>
</tr>
</tbody>
</table>

This is a function: the domain is the elements of D. And each element of D has a unique output!

We may sometimes define a function by a table or by a list of ordered pairs.

$$f = \{(1, r), (a, s), (b, r), (z, 1000), (\text{orange}, 1000)\}$$

(The ordered pairs are simply the entries in the table.)
Although functions in science are often defined by equations, they do \textit{not} have to be. (The SamID function is not defined by an equation.)

In its most general form, a function is a \textit{collection of ordered pairs} satisfying certain requirements.
Consider the sets $D := \{1, a, b, z, \text{orange}\}$ and $C := \{r, s, t, u, v, 1000\}$.
We create a function f by assigning to each member of D a member of C.

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>r</td>
</tr>
<tr>
<td>a</td>
<td>s</td>
</tr>
<tr>
<td>b</td>
<td>r</td>
</tr>
<tr>
<td>z</td>
<td>1000</td>
</tr>
<tr>
<td>orange</td>
<td>1000</td>
</tr>
</tbody>
</table>

This is a function: the domain is the elements of D. And each element of D has a unique output!
We may sometimes define a function by a table or by a list of ordered pairs.

$$f = \{(1, r), (a, s), (b, r), (z, 1000), (\text{orange}, 1000)\}$$
(The ordered pairs are simply the entries in the table.)
Functions as ordered pairs

Although functions in science are often defined by equations, they do not have to be. (The SamID function is not defined by an equation.)

In its most general form, a function is a collection of ordered pairs satisfying certain requirements.

Consider the sets $D := \{1, a, b, z, \text{orange}\}$ and $C := \{r, s, t, u, v, 1000\}$. We create a function f by assigning to each member of D a member of C.

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>r</td>
</tr>
<tr>
<td>a</td>
<td>s</td>
</tr>
<tr>
<td>b</td>
<td>r</td>
</tr>
<tr>
<td>z</td>
<td>1000</td>
</tr>
<tr>
<td>orange</td>
<td>1000</td>
</tr>
</tbody>
</table>

This is a function: the domain is the elements of D. And each element of D has a unique output!

We may sometimes define a function by a table or by a list of ordered pairs.

$$f = \{(1, r), (a, s), (b, r), (z, 1000), (\text{orange}, 1000)\}$$

(The ordered pairs are simply the entries in the table.)
Functions as ordered pairs

Although functions in science are often defined by equations, they do not have to be. (The SamID function is not defined by an equation.)

In its most general form, a function is a collection of ordered pairs satisfying certain requirements. Consider the sets \(D := \{1, a, b, z, \text{orange}\} \) and \(C := \{r, s, t, u, v, 1000\} \). We create a function \(f \) by assigning to each member of \(D \) a member of \(C \).

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(r)</td>
</tr>
<tr>
<td>(a)</td>
<td>(s)</td>
</tr>
<tr>
<td>(b)</td>
<td>(r)</td>
</tr>
<tr>
<td>(z)</td>
<td>1000</td>
</tr>
<tr>
<td>\text{orange}</td>
<td>1000</td>
</tr>
</tbody>
</table>

This is a function: the domain is the elements of \(D \). And each element of \(D \) has a unique output!

We may sometimes define a function by a table or by a list of ordered pairs.

\[
f = \{(1, r), (a, s), (b, r), (z, 1000), (\text{orange}, 1000)\}
\]

(The ordered pairs are simply the entries in the table.)
Functions as ordered pairs

Although functions in science are often defined by equations, they do not have to be. (The SamID function is not defined by an equation.)

In its most general form, a function is a collection of ordered pairs satisfying certain requirements.
Consider the sets \(D := \{1, a, b, z, \text{orange}\} \) and \(C := \{r, s, t, u, v, 1000\} \).
We create a function \(f \) by assigning to each member of \(D \) a member of \(C \).

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(r)</td>
</tr>
<tr>
<td>(a)</td>
<td>(s)</td>
</tr>
<tr>
<td>(b)</td>
<td>(r)</td>
</tr>
<tr>
<td>(z)</td>
<td>1000</td>
</tr>
<tr>
<td>(\text{orange})</td>
<td>1000</td>
</tr>
</tbody>
</table>

This is a function: the domain is the elements of \(D \). And each element of \(D \) has a unique output!
We may sometimes define a function by a table or by a list of ordered pairs.

\[
f = \{(1, r), (a, s), (b, r), (z, 1000), (\text{orange}, 1000)\}
\]
(The ordered pairs are simply the entries in the table.)
Although functions in science are often defined by equations, they do not have to be. (The SamID function is not defined by an equation.)

In its most general form, a function is a collection of ordered pairs satisfying certain requirements.

Consider the sets $D := \{1, a, b, z, \text{orange}\}$ and $C := \{r, s, t, u, v, 1000\}$.

We create a function f by assigning to each member of D a member of C.

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>r</td>
</tr>
<tr>
<td>a</td>
<td>s</td>
</tr>
<tr>
<td>b</td>
<td>r</td>
</tr>
<tr>
<td>z</td>
<td>1000</td>
</tr>
<tr>
<td>orange</td>
<td>1000</td>
</tr>
</tbody>
</table>

This is a function: the domain is the elements of D. And each element of D has a unique output!

We may sometimes define a function by a table or by a list of ordered pairs.

\[f = \{(1, r), (a, s), (b, r), (z, 1000), (\text{orange}, 1000)\} \]

(The ordered pairs are simply the entries in the table.)
Functions as ordered pairs

Although functions in science are often defined by equations, they do not have to be. (The `SamID` function is not defined by an equation.)

In its most general form, a function is a collection of ordered pairs satisfying certain requirements.

Consider the sets $D := \{1, a, b, z, \text{orange}\}$ and $C := \{r, s, t, u, v, 1000\}$. We create a function f by assigning to each member of D a member of C.

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>r</td>
</tr>
<tr>
<td>a</td>
<td>s</td>
</tr>
<tr>
<td>b</td>
<td>r</td>
</tr>
<tr>
<td>z</td>
<td>1000</td>
</tr>
<tr>
<td>orange</td>
<td>1000</td>
</tr>
</tbody>
</table>

This is a function: the domain is the elements of D. And each element of D has a unique output!

We may sometimes define a function by a table or by a list of ordered pairs.

$$f = \{(1, r), (a, s), (b, r), (z, 1000), (\text{orange}, 1000)\}$$

(The ordered pairs are simply the entries in the table.)
A worked exercise

Worked Exercise. Consider the function with domain $D = \{-2, -1, 0, 1, 2\}$, codomain the real numbers \mathbb{R}, defined by the formula $g(x) = x^2$.

1. Display the function g in tabular form, and
2. Display the function g as a set of ordered pairs.
3. Give the range of the function g.

Solution.

1. As a table, we can write out the function g as

<table>
<thead>
<tr>
<th>x</th>
<th>$g(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>4</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

2. As a set of order pairs, $g = \{(-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)\}$
3. The range of the function g is $\{0, 1, 4\}$.
A worked exercise

Worked Exercise. Consider the function with domain $D = \{-2, -1, 0, 1, 2\}$, codomain the real numbers \mathbb{R}, defined by the formula $g(x) = x^2$.

1. Display the function g in tabular form, and
2. Display the function g as a set of ordered pairs.
3. Give the range of the function g.

Solution.

1. As a table, we can write out the function g as

 $\begin{array}{|c|c|}
 \hline
 x & g(x) \\
 \hline
 -2 & 4 \\
 -1 & 1 \\
 0 & 0 \\
 1 & 1 \\
 2 & 4 \\
 \hline
 \end{array}$

2. As a set of ordered pairs, $g = \{(−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4)\}$

3. The range of the function g is $\{0, 1, 4\}$.
A worked exercise

Worked Exercise. Consider the function with domain $D = \{-2, -1, 0, 1, 2\}$, codomain the real numbers \mathbb{R}, defined by the formula $g(x) = x^2$.

1. Display the function g in tabular form, and
2. Display the function g as a set of ordered pairs.
3. Give the range of the function g.

Solution.

1. As a table, we can write out the function g as

<table>
<thead>
<tr>
<th>x</th>
<th>$g(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>4</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

2. As a set of order pairs, $g = \{(-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)\}$

3. The range of the function g is $\{0, 1, 4\}$.
Worked Exercise. Consider the function with domain $D = \{-2, -1, 0, 1, 2\}$, codomain the real numbers \mathbb{R}, defined by the formula $g(x) = x^2$.

1. Display the function g in tabular form, and
2. Display the function g as a set of ordered pairs.
3. Give the range of the function g.

Solution.

1. As a table, we can write out the function g as

 \[
 \begin{array}{|c|c|}
 \hline
 x & g(x) \\
 \hline
 -2 & 4 \\
 -1 & 1 \\
 0 & 0 \\
 1 & 1 \\
 2 & 4 \\
 \hline
 \end{array}
 \]

2. As a set of order pairs, $g = \{(-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)\}$

3. The range of the function g is $\{0, 1, 4\}$.
Worked Exercise. Consider the function with domain \(D = \{-2, -1, 0, 1, 2\} \), codomain the real numbers \(\mathbb{R} \), defined by the formula \(g(x) = x^2 \).

1. Display the function \(g \) in tabular form, and
2. Display the function \(g \) as a set of ordered pairs.
3. Give the range of the function \(g \).

Solution.

1. As a table, we can write out the function \(g \) as

\[
\begin{array}{c|c}
 x & g(x) \\
 \hline
 -2 & 4 \\
 -1 & 1 \\
 0 & 0 \\
 1 & 1 \\
 2 & 4 \\
\end{array}
\]

2. As a set of order pairs, \(g = \{(-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)\} \)
3. The range of the function \(g \) is \(\{0, 1, 4\} \).
Worked Exercise. Consider the function with domain \(D = \{-2, -1, 0, 1, 2\} \), codomain the real numbers \(\mathbb{R} \), defined by the formula \(g(x) = x^2 \).

1. Display the function \(g \) in tabular form, and
2. Display the function \(g \) as a set of ordered pairs.
3. Give the range of the function \(g \).

Solution.

1. As a table, we can write out the function \(g \) as

\[
\begin{array}{|c|c|}
\hline
x & g(x) \\
\hline
-2 & 4 \\
-1 & 1 \\
0 & 0 \\
1 & 1 \\
2 & 4 \\
\hline
\end{array}
\]

2. As a set of order pairs, \(g = \{(-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)\} \)

3. The range of the function \(g \) is \(\{0, 1, 4\} \).
A worked exercise

Worked Exercise. Consider the function with domain $D = \{-2, -1, 0, 1, 2\}$, codomain the real numbers \mathbb{R}, defined by the formula $g(x) = x^2$.

1. Display the function g in tabular form, and
2. Display the function g as a set of ordered pairs.
3. Give the range of the function g.

Solution.

1. As a table, we can write out the function g as

<table>
<thead>
<tr>
<th>x</th>
<th>$g(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>4</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

2. As a set of order pairs, $g = \{(-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)\}$

3. The range of the function g is $\{0, 1, 4\}$.
Another example. Consider the function defined earlier.

Write this function in both tabular form and as a set of ordered pairs.

Solution. In tabular form we have:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
</tbody>
</table>

As ordered pairs, the function is the set \{ (1, D), (2, C), (3, C) \}.
Another example. Consider the function defined earlier.

Write this function in both tabular form and as a set of ordered pairs.

Solution. In tabular form we have:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
</tbody>
</table>

As ordered pairs, the function is the set \{(1, D), (2, C), (3, C)\}.
Another example. Consider the function defined earlier.

![Diagram](image)

Write this function in both tabular form and as a set of ordered pairs.

Solution. In tabular form we have:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
</tbody>
</table>

As ordered pairs, the function is the set \{(1, D), (2, C), (3, C)\}.
Another example. Consider the function defined earlier.

![Diagram of a function with inputs 1, 2, 3 mapping to outputs D, B, C]

Write this function in both tabular form and as a set of ordered pairs.

Solution. In tabular form we have:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
</tbody>
</table>

As ordered pairs, the function is the set \{(1, D), (2, C), (3, C)\}.
Definition of a function

In the next lecture we examine functions defined by equations.
In the next lecture we examine functions defined by equations.

(END)