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ABSTRACT

Wecompute the catenary degree of elements contained in numericalmonoids
generated by arithmetic sequences. We �nd that this can be done by describ-
ing each element in terms of the cardinality of its length set and of its set
of factorizations. As a corollary, we �nd for such monoids that the catenary
degree becomes �xed on large elements. This allows us to de�ne and compute
the dissonance number- the largest element with a catenary degree di�erent
from the �xed value. We determine the dissonance number in terms of the
arithmetic sequence’s starting point and its number of generators.
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1. Introduction

The study of the arithmetic of integral domains and monoids which fail to satisfy the fundamental
theorem of arithmetic has become a popular area of research over the past 20 years (see the monograph
[11] for a survey of this area as well as an extensive bibliography). Of the various combinatorial constants
studied in this �eld, the catenary degree (cf. Section 2) has been the subject of many recent papers in the
literature (for example, see [1, 3, 5, 6, 9, 10, 12, 13]). If c(S) denotes the catenary degree of the monoid S,
then in [5], the authors show the following for a numerical monoid generated by an arithmetic sequence.

Theorem 1.1 ([5, Theorem 14]). Let S = 〈a, a + d, . . . , a + kd〉 where a, d, and k are positive integers,
gcd(a, d) = 1, and 1 ≤ k ≤ a − 1. Then

c(S) =
⌈a

k

⌉

+ d.

The papers cited previously consider (as does Theorem 1.1) the computation of the catenary degree
of an entire monoid. In this paper, we explore a di�erent avenue and consider the catenary degrees of
individual elements of a monoid. We note that this is similar in spirit to previous research with respect
to the elasticity of a monoid in [7]. We show in Theorem 3.1 that aside from the value obtained in
Theorem 1.1, the elements of such an S can take on only two other catenary degrees (namely 0 and 2)
and completely characterize which elements take on which values. If c(s) denotes the catenary degree
of an individual element s ∈ S, then as a by-product of Theorem 3.1, we show that the sequence
{c(s)}s∈S eventually becomes constant at the value c(S) given in Theorem 1.1. We set the dissonance
of S, denoted dis(S), equal to the largest s ∈ S with c(s) 6= c(S). In Theorem 4.3, we determine
the dissonance of all numerical monoids covered by Theorem 1.1. We begin our work with a brief
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5444 S. T. CHAPMAN ET AL.

introduction in Section 2. Section 3 contains a proof of Theorem 3.1 and Section 4 a proof of Theorem
4.3. Any unde�ned notation concerning numerical monoids can be found in [15] and unde�ned terms
concerning factorization theory in [11]. Calculations done to support this work were completed using
the GAP numerical semigroup package [8]. We believe this paper is but a �rst step, as computing the
complete set of catenary degrees in various classes of integral domains and monoids promises to be a
challenging question.

2. De�nitions and preliminaries

A numerical monoid S is a co-�nite additive submonoid of N0. A set of positive integers n1, . . . , nk is
said to generate S if S = 〈n1, . . . , nk〉 = {a1n1 + · · · + aknk | a1, . . . , ak ∈ N0}. It easily follows from
elementary number theory that every numerical monoid is �nitely generated and in fact has a unique
set of generators of minimal length. If k is the cardinality of this minimal set of generators, then we call
k the embedding dimension of S. Moreover, co-�nite additivity forces gcd(n1, . . . , nk) = 1. Since N0 \ S
is �nite, the largest number in the complement of S has special algebraic properties and is called the
Frobenius number of S, denoted F(S).

Let S = 〈n1, . . . , nk〉 be a numerical monoid. We assume that n1 < n2 < · · · < nk. Hence, the
minimal generating set {n1, . . . , nk} of S constitutes the set of irreducibles of S in the normal sense. For
s ∈ S, let Z(s) be the set of factorizations of s. We denote an arbitrary element z ∈ Z(s) with the k-tuple
of natural numbers (a1, . . . , ak), which represents the factorization (a1)n1 + (a2)n2 + . . . + (ak)nk. We
say that the length of a factorization z ∈ Z(s) is

|z| = a1 + · · · + ak.

The set of lengths of an element, denotedL(s), is the set containing the numerical values of the length of
each factorizations of s, that is,

L(s) = {|z| : z ∈ Z(s)}.

The delta set of an element, denoted 1(s), is the set containing the di�erences of lengths of consecutive
elements of L(s). That is, if L(s) = {m1, . . . ,mt} withm1 < m2 < · · · < mt , then

1(s) = {mi+1 − mi | 1 ≤ i < t}.

The delta set of S is then de�ned as

1(S) =
⋃

s∈S,s>0

1(s).

Let z = (a1, . . . , ak) and z′ = (b1, . . . , bk) ∈ Z(s). We say that the greatest common divisor (GCD) of
z and z′ is

gcd(z, z′) = (min{a1, b1}, . . . , min{ak, bk}),

and we de�ne the distance between z and z′ as

d(z, z′) = max{|z − gcd(z, z′)|, |z′ − gcd(z, z′)|},

where the subtraction is taken component-wise. By [11, Proposition 1.2.5], this distance function yields
a well-de�ned metric.

De�nition 2.1. Given two factorizations z and z′ of s ∈ S, anN-chain connecting them is a sequence of
factorizations

z = z0, z1, . . . , zn−1, zn = z′
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such that each zi ∈ Z(s) and d(zi, zi+1) ≤ N for all i < n. For s ∈ S, we de�ne the catenary degree of
s (denoted c(s)) to be the minimal N such that there is an N-chain between any two factorizations of s.
We de�ne the catenary degree of the whole monoid as

c(S) = sup{c(s) | s ∈ S}.

Remark 2.2. We note that computing catenary degrees for elements in an embeddding dimension 2
monoid is essentially trivial. If S = 〈a, b〉 with gcd(a, b) = 1 and a < b, then moving from one
factorization to another is merely an application of the rule

b + · · · + b
︸ ︷︷ ︸

a times

= a + · · · + a
︸ ︷︷ ︸

b times

(see [15, Example 8.22]). Thus the catenary degree of an element in S is either 0 or b and can be described
as follows.

c(s) =



















0 if s < ab
b if s = ab
0 if ab < s < 2ab − a − b and s − ab 6∈ 〈a, b〉
b if ab < s < 2ab − a − b and s − ab ∈ 〈a, b〉
0 if s = 2ab − a − b
b if 2ab − a − b < s.

3. The catenary degree of elements in numerical monoids generated by an arithmetic
sequence

Throughout the remainder of our work, S = 〈a, a+d, . . . , a+kd〉 is a numerical monoid with 1 < k < a
and gcd(a, d) = 1. When presented in this form, we assume that {a, a + d, . . . , a + kd} is the minimal
generating set for S. Notice that if a = 2, then k < a implies that we are in the two generator case. Since
this is addressed in Remark 2.2, we assume a > 2. For monoids generated by an arithmetic sequence,
the Frobenius number is known to be F(S) = (⌊ a−2

k ⌋ + 1)a + (d − 1)(a − 1) − 1 [14]. Moreover, by
[4], 1(S) = {d}. The remainder of this section contains a proof of the following Theorem.

Theorem 3.1. Given S = 〈a, a + d, . . . , a + kd〉, where gcd(a, d) = 1, 1 < k < a, and s ∈ S, then

c(s) =







0 if |Z(s)| = 1,
2 if |Z(s)| > 1 and |L(s)| = 1,
⌈
a
k

⌉

+ d if |L(s)| > 1.

We begin developing the machinery needed to prove Theorem 3.1 with a distance two factorization
lemma. We will eventually deduce that all factorizations produced in this manner can be connected by
chains where each step has distance 2.

Lemma 3.2. Let s ∈ S and take z ∈ Z(s), z = (ρ0, . . . , ρk). If ρi 6= 0 and ρj 6= 0 for some i, j ∈ {0, . . . , k},
i < j − 2, then, z′ = (ρ0, . . . , ρi − 1, ρi+1 + 1, . . . , ρj−1 + 1, ρj − 1, . . . , ρk) ∈ Z(s) and |z| = |z′|. In
addition, d(z, z′) = 2.

Proof. Clearly, |z| = |z′|. Now notice that

(ρi − 1)(a + id) + (ρi+1 + 1)(a + (i + 1)d) + (ρj−1 + 1)(a + (j − 1)d) + (ρj − 1)(a + jd)

= ρi(a + id) + ρi+1(a + (i + 1)d) + ρj−1(a + (j − 1)d) + ρj(a + jd).
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5446 S. T. CHAPMAN ET AL.

Since the other factors besides ρi, ρi+1, ρj−1, ρj in z are the same as the ones in z′, we can say that z′ ∈

Z(s). Also, since

gcd (z, z′) = (ρ0, . . . , ρi − 1, ρi, . . . , ρj−1, ρj − 1, . . . , ρk)

we have that

d(z, z′) = max{|z − gcd (z, z′)|, |z′ − gcd (z, z′)|} = 2.

Lemma 3.3. Let s ∈ S and take z = (ρ0, . . . , ρk) ∈ Z(s). If ρi 6= 0 and ρj 6= 0 for some i, j ∈ {0, . . . , k},
i = j − 2, then, z′ = (ρ0, . . . , ρi − 1, ρi+1 + 2, ρj − 1, . . . , ρk) ∈ Z(s) and |z| = |z′|. In addition,
d(z, z′) = 2.

Proof. Clearly, |z| = |z′|. Recall that j = i + 2. Now notice that

(ρi − 1)(a + id) + (ρi+1 + 2)(a + (i + 1)d) + (ρi+2 − 1)(a + (i + 2)d)

= ρi(a + id) + ρi+1(a + (i + 1)d) + ρi+2(a + (i + 2)d).

Since the other factors besides ρi, ρi+1, ρi+2 in z are the same as the ones in z′, we can say that z′ ∈ Z(s).
Also, since

gcd (z, z′) = (ρ0, . . . , ρi − 1, ρi+1, ρi+2 − 1, . . . , ρk)

we have that

d(z, z′) = max{|z − gcd (z, z′)|, |z′ − gcd (z, z′)|} = 2.

Lemma 3.4. Let s ∈ S and take z ∈ Z(s). Then, there exists z′ ∈ Z(s) such that |z| = |z′| and z′ has at
most two nonzero entries at i and j such that j = i + 1 or i = j, where j ∈ {0, . . . , k}. In addition, there
exists a 2-chain between z and z′.

Proof. Let z = (ρ0, . . . , ρk). Take the smallest i such that ρi 6= 0. Similarly, take the maximum j such
that ρj 6= 0. If i = j or i = j − 1, then the proof is complete.

Suppose i = j−2. By Lemma 3.3, we have that there exists z1 ∈ Z(s)with |z1| = |z|with the following
structure

z1 = (0, . . . , ρi − 1, ρi+1 + 2, ρj − 1, . . . , 0).

Suppose i < j−2. By Lemma 3.2, we have that there exists z1 ∈ Z(s)with |z1| = |z|with the following
structure

z1 = (0, . . . , ρi − 1, ρi+1 + 1, ρi+2, . . . , ρj−1 + 1, ρj − 1, . . . , 0).

Observe that by applying Lemma 3.2 or Lemma 3.3min{ρi, ρj}-times, we will obtain other factorizations
with the same length as z in which either the i-coordinate or the j-coordinate is zero. Thus, if i 6= j and
i 6= j − 1, we can always create a new factorization with the same length as z in which the element’s
nonzero coordinates are indexed closer together. A�er �nitely many iterations, it will be reduced to
a factorization z′ with the desired properties. In addition, in each application of Lemmas 3.2 and 3.3,
d(z, z1) = 2. A�er �nitely many applications, we have created 2-chain from z to z′.

Lemma 3.5. Let s ∈ S and take z, z′ ∈ Z(s), with |z| = |z′|. If for some i, j ∈ {0, . . . , k − 1} we have that
z = (0, . . . , ρi, ρi+1, . . . , 0) and z

′ = (0, . . . ,βj,βj+1, . . . , 0), where ρi and βj are nonzero, then z = z′.

Proof. If pi+1 = βj+1 = 0, then the result is trivial. So assume that at least one is nonzero.
Assume without loss of generality that i ≥ j. Since |z| = |z′|,

ρi + ρi+1 = βj + βj+1. (1)
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In addition,

ρi(a + id) + ρi+1(a + (i + 1)d) = βj(a + jd) + βj+1(a + (j + 1)d)

H⇒ (ρi + ρi+1)a + (iρi + iρi+1 + ρi+1)d = (βj + βj+1)a + (jβj + jβj+1 + βj+1)d. (2)

By (1), we can eliminate the a’s from (2), which results in:

(iρi + iρi+1 + ρi+1)d = (jβj + jβj+1 + βj+1)d

H⇒ iρi + iρi+1 + ρi+1 = jβj + jβj+1 + βj+1

H⇒ i(ρi + ρi+1) + ρi+1 = j(βj + βj+1) + βj+1. (3)

By (1), we have that (3) can be transformed to

(i − j)(ρi + ρi+1) + ρi+1 = βj+1. (4)

If i = j, then by (4), ρi+1 = βj+1, and so ρi = βi. Moreover, z = z′.
Now if i 6= j, then i − j ≥ 1. Let i − j = m. We have that

m(ρi + ρi+1) + ρi+1 = βj+1. (5)

Substituting (5) into (1), we get

mρi + mρi+1 + ρi+1 + βj = ρi + ρi+1.

Cancelling common terms, we get

mρi + mρi+1 + βj = ρi.

This is a contradiction as we assumed thatm > 0 and βj 6= 0. Therefore i = j and thus z = z′.

Lemma 3.6. Let s ∈ S and take z, z′ ∈ Z(s), with |z| = |z′|. Then, there exists a 2-chain from z to z′.

Proof. By Lemma 3.4, we have that there exists f , f ′ ∈ Z(s) such that |f | = |z|, |f ′| = |z′|, both have at
most two nonzero consecutive entries, and there exists a 2-chain from f to z as well as from f ′ to z′. In
addition, by Lemma 3.5, we have that f ′ = f . Then, there exists a 2-chain from z to z′.

Finally, we can state the much anticipated �rst theorem.

Theorem 3.7. Let s ∈ S. Then, c(s) = 2 if and only if |Z(s)| > 1 and |L(s)| = 1.

Proof.
(⇒) The proof in this direction follows immediately from [11, Lemma 1.6.2].

(⇐) Now suppose |Z(s)| > 1 and all the factorizations of s have the same length. Let us show that
c(s) = 2. Take two arbitrary factorizations of s, say z, z′ ∈ Z(s). Notice that we can take two di�erent
factorizations because |Z(s)| > 1. By Lemma 3.6, there exists a 2-chain from z to z′. Clearly, c(s) = 2.

To complement the last result, we consider what happens when the set of factorizations yields more
than one length.

Theorem 3.8. If s ∈ S with |L(s)| > 1, then c(s) = c(S).

Proof. Let s ∈ S with |L(s)| > 1. Consider an N-chain of minimal value N connecting two elements of
di�erent lengths. Such a chain must also have a link between elements of di�erent lengths. Take z, z′ ∈

Z(s) such that d(z, z′) ≤ N to be such a link. Denote z = (a0, a1, a2, . . . , ak) and z
′ = (b0, b1, b2, . . . , bk).

Without loss of generality, assume that |z| > |z′|. For simplicity, for each 0 ≤ i ≤ k set ni = a + id.
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5448 S. T. CHAPMAN ET AL.

We can say that

s =

k
∑

i=0

aini =

k
∑

i=0

bini.

Let y = z − gcd(z, z′) = (y0, y1, . . . , yk) and y′ = z′ − gcd(z, z′) = (y′
0, y

′
1, . . . , y

′
k). Observe that

d(z, z′) = max{|y|, |y′|} = |y|. Also, |y′| = |z′ − gcd(z, z′)|.
Notice that since |Z(s)| > 1 and 1(S) = {d} [4], we have |z| = |z′| + qd where q ∈ N. Since y and y′

are factorizations of the same element, we have |y| = |y′| + qd. So, we obtain

k
∑

i=0

y′
ink ≥

k
∑

i=0

y′
ini =

k
∑

i=0

yini ≥

k
∑

i=0

yin1

which implies that

k
∑

i=0

y′
ink ≥

k
∑

i=0

yin1 = n1

(
k
∑

i=0

y′
i + qd

)

.

Thus,

k
∑

i=0

y′
ink ≥ n1

k
∑

i=0

y′
i + n1qd

which implies that

k
∑

i=0

y′
i(nk − n1) ≥ n1qd.

Now, |y′| =
∑k

i=0 y
′
i ≥

n1qd
kd which implies that |y′| ≥

⌈
a
kq
⌉

and so

|y| =

k
∑

i=0

yi ≥
⌈a

k
· q
⌉

+ q · d ≥
⌈a

k

⌉

+ d = c(S).

Therefore, d(z, z′) = |y| ≥ c(S). Since by de�nition c(s) ≤ c(S), the result follows.

The piecewise representation of c(s) as represented in Theorem 3.1 now follows.

4. The dissonance number

As in the previous section, we continue assuming that S = 〈a, a + d, . . . , a + kd〉 with 1 < k < a and
gcd(a, d) = 1. Moreover, F(S) = (⌊ a−2

k ⌋ + 1)a + (d − 1)(a − 1) − 1 and c(S) =
⌈
a
k

⌉

+ d. In our
calculations below, residues (i.e., a mod b) are always computed as least positive residues.

Proposition 4.1. If s ∈ S with s > a · c(S) + F(S), then c(s) = c(S). Thus the sequence {c(s)}s∈S is
eventually constant.

Proof. If v > 0 is an integer, then clearly s = a · c(S) +F(S) + v is in S and has at least one factorization
in terms of irreducibles in S. Now, by [5, Lemma 13], a · c(S) can be represented in terms of irreducibles
in at least two di�erent ways. One as c(S) many copies of a and other as

a · c(S) =









a

k
(a + kd) if k | a

⌊a

k

⌋

(a + kd) + (a + (a mod k)d) otherwise.
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In either case, ak or ⌊ a
k⌋ + 1 are strictly less than c(S), so |L(s)| > 1. Therefore, by Theorem 3.8, we can

conclude that c(s) = c(S). The second statement now follows.

Based on Proposition 4.1, we make the following de�nition.

De�nition 4.2. If s ∈ S is the biggest element in S such that c(s) 6= c(S), then we call s the dissonance
of S and we denote it by dis(S) = s.

FromProposition 4.1 it is clear that dis(S) ≤ a·c(S)+F(S). In this section, we compute the dissonance
as follows.

Theorem 4.3.

dis(S) =

{

a · c(S) + F(S) if 1 ≤ k < 2 + [a − 1 mod k] + [a − 2 mod k]
a · c(S) + F(S) − a if k ≥ 2 + [a − 1 mod k] + [a − 2 mod k].

Note that by Remark 2.2, when k = 1 and S = 〈a, b〉, then dis(S) = 2ab − a − b, which matches the
value in the formula above. Hence, we can assume throughout the remainder of our work that k > 1
and we can freely use the results of Section 3. In the next theorem, we begin to verify the second part of
this equality.

Theorem 4.4. dis(S) < a · c(S) + F(S) if and only if k ≥ 2 + (a − 1 mod k) + (a − 2 mod k).

Proof. By Lemma 3.8, we know if an element s ∈ S has |L(s)| > 1, then c(s) = c(S). Thus, we will look
at when a · c(S) + F(S) has |L(s)| > 1. From Lemma 2.1 in [2], for any s ∈ S there exist c1, c2 ∈ N and
0 ≤ c2 < a such that s = c1a + c2d. So let s = a · c(S) + F(S), and simplify to

s =

(
⌈a

k

⌉

+

⌊
a − 2

k

⌋

+ d

)

a + (a − 1)d.

By Theorem 2.2 in [2], we know |L(s)| > 1 if and only if c2−c1k
a+kd ≤ −1. Therefore,

(a − 1) − k

(
⌈a

k

⌉

+

⌊
a − 2

k

⌋

+ d

)

≤ −a − kd implies that 2a − 1 − k
⌈a

k

⌉

− k

⌊
a − 2

k

⌋

≤ 0.

Hence, 2a − 1 ≤ k
⌈
a
k

⌉

+ k
⌊
a−2
k

⌋

implies that

2a − 1 ≤ k

⌊
a − 1

k

⌋

+ k + k

⌊
a − 2

k

⌋

. (6)

We know that

k

⌊
a − 1

k

⌋

+ k + k

⌊
a − 2

k

⌋

= (a − 1) − [a − 1 mod k] + k + (a − 2) − [a − 2 mod k]

= 2a − 3 − [a − 1 mod k] − [a − 2 mod k] + k.

Therefore,

2a − 1 ≤ 2a − 3 − [a − 1 mod k] − [a − 2 mod k] + k ⇒

k ≥ 2 + [a − 1 mod k] + [a − 2 mod k].

Thus, if a, k satis�es the above inequality, then dis(S) < a ·c(S)+F(S) because |L(a ·c(S)+F(S))| > 1.
Every statement in this proof is reversible, so the proof is complete.

In the case that the dissonance number is not a · c(S) +F(S), we next provide a lower bound for the
dissonance number.
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Corollary 4.5. For S satisfying dis(S) < a · c(S) + F(S), it follows that c(a · c(S) + F(S) − a) 6= c(S).

Proof. Assume that |L(a · c(S) + F(S) − a)| > 1. We have that

s = a · c(S) + F(S) − a = a
(⌈a

k

⌉

+ d
)

+ a

(⌊
a − 2

k

⌋

+ 1

)

+ (d − 1)(a − 1) − 1 − a

= a

(
⌈a

k

⌉

+

⌊
a − 2

k

⌋

+ d − 1

)

+ (a − 1)d.

By Theorem 2.2 in [2] and our assumption that |L(s)| > 1, we have that

a − 1 − k(

(
⌈a

k

⌉

+

⌊
a − 2

k

⌋

+ d − 1

)

≤ −a − kd

and hence

2a − 1 − k

⌊
a − 1

k

⌋

− k − k

⌊
a − 2

k

⌋

+ k ≤ 0. (7)

We know,

k

⌊
a − 1

k

⌋

+ k

⌊
a − 2

k

⌋

= (a − 1) − [a − 1 mod k] + (a − 2) − [a − 2 mod k]

= 2a − 3 − [a − 1 mod k] − [a − 2 mod k]. (8)

Now, substituting (8) into (7) and simplifying, we get

2 + [a − 1 mod k] + [a − 2 mod k] ≤ 0

which is a contradiction. Hence, we have proved that a · c(S) + F(S) − a has factorizations of only one
length and thus its catenary degree cannot be c(S).

This next lemma will provide us with a necessary condition for any of these “in between” numbers to
be the dissonance number.

Lemma 4.6. If c(a · c(S) + F(S) − v) = 0 or 2 for 0 < v < a, then
⌈
a−1
k

⌉

=
⌊
a−1
k + 1

2

⌋

.

Proof. Notice that F(S) ≡ −d (mod a). So,write ma + nd = a · c(S) + F(S) − v, where 0 ≤ n < a.
Clearly, nd ≡ −d− v (mod a). Thus, (n+ 1)d+ v ≡ 0 (mod a). Suppose that n = a− 1. Then we get
v ≡ 0 (mod a), which contradicts our bounds on v. Hence, 0 ≤ n ≤ a − 2.

Since d(n+1)+v ≡ 0 (mod a), there exists l ∈ N such that la = d(n+1)+v ≤ d(a−1)+(a−1) =

(d+1)(a−1). Then, l ≤ (d+1)(a−1)
a , and l ∈ N, so l ≤

⌊
(d+1)(a−1)

a

⌋

. We observe that
⌊

(d+1)(a−1)
a

⌋

≤ d.

Reorganizing and then plugging in for c(S) and for F(S), we see that

m =
a · c(S) + F − v − nd

a
=

(
⌈
a
k

⌉

+ d)a + [(
⌊
a−2
k

⌋

+ 1)a + (d − 1)(a − 1) − 1] − v − nd

a

=
⌈a

k

⌉

+ 2d +

⌊
a − 2

k

⌋

−
d(n + 1) + v

a
.

Observe that
⌈
a
k

⌉

+
⌊
a−2
k

⌋

=
⌈
a−1
k

⌉

+
⌊
a−1
k

⌋

, and that d(n+1)+v
a = l ≤ d as above. So we can write

m =

⌈
a − 1

k

⌉

+

⌊
a − 1

k

⌋

+ 2d − l ≥

⌈
a − 1

k

⌉

+

⌊
a − 1

k

⌋

+ d.
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If c(a · c(S) + F − v) = 0 or 2, then L(a · c(S) + F − v) contains one integer. Then by Theorem 2.2

in [2], we have that
⌈
n−mk
a+kd

⌉

= 0. Then n−mk
a+kd > −1. Rearranging, we get

m <
a + kd + n

k
≤

a + kd + (a − 2)

k
=

2(a − 1)

k
+ d.

Som ≤
⌊
2(a−1)

k

⌋

+d =
⌊
a−1
k

⌋

+
⌊
a−1
k + 1

2

⌋

+d. Combining our two results so far, we get the inequality

⌈
a − 1

k

⌉

+

⌊
a − 1

k

⌋

+ d ≤ m ≤

⌊
a − 1

k

⌋

+

⌊
a − 1

k
+

1

2

⌋

+ d.

So
⌈
a−1
k

⌉

≤
⌊
a−1
k + 1

2

⌋

. Note that it is impossible for this inequality to be strict. We obtain that
⌈
a − 1

k

⌉

=

⌊
a − 1

k
+

1

2

⌋

.

Using Lemma 4.6 and its proof, we prove the next theorem by contradiction.

Theorem 4.7. Suppose dis(S) < a · c(S)+F(S), and let s ∈ {a · c(S)+F(S)− v | 0 < v < a} ⊆ S. Then
c(s) = c(S).

Proof. We use the notation of Lemma 4.6. From its proof, we know that

m ≥

⌈
(a − 1)

k

⌉

+

⌊
(a − 1

k

⌋

+ d

as well as

m <
2(a − 1)

k
+ d =

(2a − 1)

k
−

1

k
+ d.

Now assume dis(S) < ac(S) + F(S). By (6)

2(a − 1)

k
≤

⌊
(a − 1)

k

⌋

+

⌊
(a − 2)

k

⌋

+ 1.

Thus it follows immediately that
⌈

(a − 1)

k

⌉

<

⌊
(a − 2)

k

⌋

+

(

1 −
1

k

)

.

This is a contradiction, because
⌈

(a−1)
k

⌉

≥
⌊

(a−2)
k

⌋

+ 1. Thus, the proof is complete.

Theorem 4.4 veri�es the �rst part of the formula for dis(S) in Theorem 4.3. A combination of
Corollary 4.5 and Theorem 4.7 veri�es the second part, completing the proof of Theorem 4.3.
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