GENERATING IDEALS IN SUBRINGS OF $K[[X]]$
VIA NUMERICAL SEMIGROUPS

SCOTT T. CHAPMAN

Abstract. Let K be a field and S be the numerical semigroup generated by the positive integers n_1, \ldots, n_k. We discuss issues involving ideal generation in the subring $K[[X^{n_1}, \ldots, X^{n_k}]] = K[[X;S]]$ of $K[[X]]$. Bounding the generators of a numerical semigroup, and its ideals, requires no more than elementary number theory; we take advantage of this and offer similar bounds on the ideals of $K[[X;S]]$. The closeness of this connection allows us to say much about how the generators of an ideal can be chosen. We will show that the first generator in a minimal generating set of an ideal I of $K[[X;S]]$ can “almost” be chosen at random.

1. Introduction

In an introductory abstract algebra course, a central focus in ring theory is the introduction of polynomial rings. In fact, a major step in conceptualization in this course is the jump from the usual division algorithm in the ring of integers (or \mathbb{Z}) to a similar statement for the polynomial ring over a field (or $K[X]$). Once a student masters these ideas, the introduction of formal power series rings, not usually a mainstay of such a course, might be in order. Recall that if K is a field, then the formal power series ring over K is denoted by

$$K[[X]] = \left\{ \sum_{i=0}^{\infty} a_i X^i \mid a_i \in K \right\}$$

with addition and multiplication defined in the usual polynomial manner. For readers unfamiliar with power series rings, Brewer [1] is a good reference.

Why power series rings? While division works nicely via the division algorithm in $K[X]$ (where we assume K to be a field) it works even better in $K[[X]]$, as the following easily proved result indicates.

Proposition 1.1. Let f and g be nonzero elements of $K[[X]]$. Then either $f|g$ or $g|f$.

This paper is based on an unpublished manuscript [4] which deals with similar problems in power series rings of the form $D[[X]]$ where D is a general integral domain.

The author gratefully acknowledges support under an Academic Leave funded by Sam Houston State University.
So once we pass to power series rings, remainders are not necessary - in some sense, division here is perfect. This has extremely deep implications with regards to the ideal theory in $K[[X]]$. While the division algorithm in $K[X]$ implies that $K[X]$ is a principal ideal domain (or PID), Proposition 1.1 implies (with a little work) that $K[[X]]$ is a discrete valuation ring (or DVR). The ramifications of this with respect to the structure of the ideals in $K[[X]]$ is staggering (the interested reader can consult a variety of references to admire the ideal theoretic properties of the DVR $K[[X]]$ - we like the presentation in [11, Chapter V]).

In more general terms, consider this impressive list of easily verified properties of $K[[X]]$.

Proposition 1.2. Let K be a field and $f = \sum_{i=0}^{\infty} a_i X^i \in K[[X]]$.

1. f is a unit of $K[[X]]$ if and only if $a_0 \neq 0$.
2. The only irreducible elements of $K[[X]]$ are uX where u is a unit of $K[[X]]$.
3. If f is a nonunit of $K[[X]]$, then there is a $k \in \mathbb{N}$ and u a unit of $K[[X]]$ such that $f = uX^k$.
4. The ideal $(X) = \{ fX \mid f \in K[[X]] \}$ is the unique maximal ideal of $K[[X]]$.
5. If I is a proper ideal of $K[[X]]$, then $I = (X^k) = \{ fX^k \mid f \in K[[X]] \}$ for some $k \in \mathbb{N}$.
6. If I and J are proper ideals of $K[[X]]$, then either $I \subseteq J$ or $J \subseteq I$.
7. $K[[X]]$ is a principal ideal domain (or PID) and thus a unique factorization domain (or UFD).

In this paper, we play off the above list, particularly (4) and (5), and consider a natural class of subrings of $K[[X]]$. We describe, using fairly elementary methods, exactly how their ideals are generated. To describe this class of subrings, we will require the notion of a numerical semigroup, which is merely a subsemigroup of $\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$ under addition. If S is any such subsemigroup generated by n_1, \ldots, n_k, then set

$$K[[X; S]] = K[[X^{n_1}, \ldots, X^{n_k}]] = \{ \sum_{i=0}^{\infty} a_i X^i \mid a_i = 0 \text{ if } i \not\in S \}. $$

We will refer to $K[[X; S]]$ as a subring of $K[[X]]$ generated by monomials.

Our interest in these subrings lies in the close connection between the ideal theory of the semigroup S, and the ideal theory of $K[[X; S]]$. Bounding the generators of a numerical semigroup, and its ideals, requires no more than elementary number theory; we take advantage of this and offer similar bounds on the ideals of $K[[X; S]]$. The closeness of this connection allows us to not only bound the number of generators of an ideal in $K[[X; S]]$, but say much about how the generators can be chosen. We will show that the first generator in a minimal generating set of an ideal I of $K[[X; S]]$ can “almost” be chosen at random.
The paper is constructed as follows. We open in Section 2 with a summary of facts concerning numerical semigroups and their ideals. Simple corollaries to these facts give lower bounds on the numbers of generators required on an ideal I of $K[[X; S]]$. In Section 3, we use a variant of the division algorithm to give an upper bound on the number of generators of I. In Section 4, we consider questions related to how the first generator of I can be chosen.

We now describe the terminology, notation, and background that will be required for the discussion in Section 4. A commutative ring R is said to have the n-generator property if each finitely generated ideal of R has a basis of n elements. The study of questions involving the choice of generators of ideals in Noetherian rings is not new. Using J to denote the Jacobson radical of a ring R and I any proper ideal of R, Heitman [6] and Heitman and Levy [7] define a commutative ring to have the 1-generator property if R has the two-generator property and any element of $I - IJ$ can be arbitrarily chosen as one of two generators of I. (Elements of IJ can be eliminated from consideration as generators by a simple application of Nakayama’s Lemma [9, Theorem 78].) A proper ideal I of such a ring R is said to be strongly two-generated if any nonzero element α of I can be chosen as one of two generators of I. Strongly two-generated ideals are studied in detail by Lantz and Martin in [10]. Further, define R to have the strong two-generator property if each proper ideal is strongly two-generated. Under the hypothesis that R is semisimple (i.e., $J = (0)$), the $1 \frac{1}{2}$ and strong two-generator properties are equivalent. Clearly if $J \neq (0)$, then R cannot be strongly two-generated, while R strongly two-generated implies that R is $1 \frac{1}{2}$-generated. It is a well-known fact that Dedekind domains possess the strong two-generator property and thus the $1 \frac{1}{2}$-generator property. In a similar manner, a nonzero element α of R is called a strong n-generator of R if it can be chosen as one of n generators of every finitely generated ideal in which it is contained.

For our purposes, we will generalize the definitions above. Let R be a ring with the n-generator property. We shall call R ($n - \frac{1}{2}$)-generated if any nonzero element of $I - IJ$ can be chosen as one of n-generators of I, for any proper ideal I of R. Further, if α is any nonzero element of R, then α is a strong n-generator if it can be chosen as one of n generators of every finitely generated ideal in which it is contained. For the domains $K[[X; S]]$, the set of strong n_1-generators can be characterized (where n_1 is the smallest positive element in S) using the properties of the semigroup S. Further, we show that the $K[[X; S]]$ are $(n_1 - \frac{1}{2})$-generated, but since $J \neq (0)$, they are not "strongly n-generated."

It is important to note that these questions have been studied in a broader setting. In particular, since the domains $K[[X; S]]$ are one dimensional Noetherian local rings, our results are special cases of theorems from Herzog and Kunz [8] and Sally [13].

Before continuing, we set some notation. If $f \in K[[X; S]]$, then the smallest power of X with a nonzero coefficient is called the order of f and
denoted ∂f. The first nonzero coefficient in such an element f will be called the *initial term of f*. For a proper ideal I of $K[[X; S]]$, define the *order of I* to be $\partial I = \inf\{\partial f | f \in I\}$. We note that it is easy to argue that Proposition \ref{prop:1.2} (1) also holds for the rings $K[[X; S]]$, and hence $\partial I > 0$.

2. **Numerical Semigroups, Their Ideals, and a Lower Bound on the Number of Generators**

We begin with a brief summary of facts concerning a numerical semigroup S. Both \cite{5} and \cite{12} are good general references on this subject. Using elementary number theory, it is easy to show that there is a finite set of positive integers n_1, \ldots, n_k such that if $s \in S$, then $s = x_1n_1 + \cdots + x_kn_k$ where each x_i is a nonnegative integer. The elements n_1, \ldots, n_k are called a *generating set* for S, and to denote this we use the notation

$$S = \langle n_1, \ldots, n_k \rangle = \{x_1n_1 + \cdots + x_kn_k \mid x_i \in \mathbb{N}_0\}.$$

If the generators n_1, \ldots, n_k are relatively prime, then S is called *primitive*. We shall need three elementary facts concerning numerical semigroups; we offer brief explanations of each.

Elementary Fact A. *If $S = \langle n_1, \ldots, n_k \rangle$ is a numerical semigroup, then S is isomorphic to a primitive numerical semigroup S'.*

Proof. Let $d = \gcd(n_1, \ldots, n_k)$ with $n_i = dn'_i$ for each i and set $S' = \langle n'_1, \ldots, n'_k \rangle$. Define a map $\varphi : S \to S'$ by

$$\varphi(x_1n_1 + \cdots + x_kn_k) = x_1n'_1 + \cdots + x_kn'_k.$$

That φ is a semigroup isomorphism can be easily checked. \qed

Elementary Fact B. *A numerical semigroup S has a unique minimal cardinality generating set. The elements of this minimal generating set are pairwise mutually incongruent modulo n_1, where n_1 is the minimal positive element of S. This minimal generating set is also contained in every generating set for S.*

Proof. Let $y_i = n_1 + i$ for $0 \leq i \leq n_1 - 1$ and set $S_{y_i} = \{s \mid s \in S$ and $s \equiv y_i \pmod{n_1}\}$. Clearly $\bigcup_{i=0}^{n_1-1} S_{y_i} = S$ and set $m_i = \min S_{y_i}$ for $0 \leq i \leq n_1 - 1$. Since each element s in S_{y_k} can be written as $s = m_i + kn_1$ for some k, we easily see that $S = \langle m_0, \ldots, m_{n_1-1} \rangle$. By deleting any m_i with $m_i \in \langle m_1, \ldots, m_{i-1}, m_{i+1}, \ldots, m_{n_1-1} \rangle$, we obtain a generating set whose minimality and uniqueness are straightforward. By construction, these generators are clearly pairwise incongruent modulo n_1. The last statement follows as the minimal generators cannot be written in a nontrivial manner as a sum of other elements in the semigroup. \qed

Elementary Fact C. *If $S = \langle n_1, \ldots, n_k \rangle$ is a primitive numerical semigroup, then there is a largest element $F(S) \not\in S$ with the property that any $s > F(S)$ is in S.***
Proof. Write

\begin{equation}
1 = x_1n_1 + \cdots + x_kn_k
\end{equation}

where each \(x_i \) is an integer. Let \(M > n_1 \max \{|x_1|, \ldots, |x_k|\} \) and set \(z = Mn_1 + \cdots + Mn_k \) in \(S \). By adding \((2.1)\) to \(z \) a total of \(n_1 \) times, we obtain that \(z, z + 1, \ldots, z + n_1 - 1 \) are in \(S \). By repeatedly adding \(n_1 \) to these elements, we obtain that all elements larger than \(z \) are in \(S \). If \(z' \) is the minimal such \(z \), then the hypothesized \(F(S) \) is \(z' - 1 \). \(\square \)

Due to Elementary Fact A we assume that \(S \) is primitive throughout the remainder of this work. The value \(F(S) \) is known as the Frobenius number of \(S \) and its computation remains a matter of current mathematical research. If \(S = \langle a, b \rangle \), then it is well-known that \(F(S) = ab - a - b \) (see [12, Section 1.3]), but for more than 2 generators, no general formula is known (see [12, Section 1.3] for more on Frobenius numbers).

A semigroup ideal of \(S \) is any nonempty subset \(D \) of \(S \) such that \(D \supseteq s + D = \{s + d|d \in D\} \) for each \(s \in S \). A subset \(\{d_1, \ldots, d_t\} \) of \(D \) is said to generate \(D \) as a semigroup ideal (denoted \(D = \ll d_1, \ldots, d_k \gg \)) if for any \(\alpha \in D \) there exists a representation

\begin{equation}
\alpha = \gamma_1n_1 + \gamma_2n_2 + \cdots + \gamma_kn_k + \delta_1d_1 + \delta_2d_2 + \cdots + \delta_td_t
\end{equation}

with \(\{\gamma_i\}_{i=1}^k \) and \(\{\delta_j\}_{j=1}^t \) nonnegative integers and \(\delta_j \neq 0 \) for some \(j \). (To avoid ambiguity, if \(n_i \in D \) for any \(i \) between 1 and \(k \), then we will require that \(n_i \) be listed as a generator of \(D \).) We need a further elementary fact before proceeding.

Elementary Fact D. Let \(S = \langle n_1, \ldots, n_k \rangle \) be a numerical semigroup and \(D \) a semigroup ideal of \(S \). Then \(D \) has a unique minimal cardinality generating set which is contained in every generating set for \(D \). Moreover, the elements of this minimal generating set are mutually incongruent modulo \(n_1 \).

The proof of Elementary Fact D is nearly identical to that of Elementary Fact B.

Let \(\mu(D) \) denote the cardinality of a minimal generating set of \(D \). Thus if

\[
\mu(S) = \sup \{\mu(D)|D \text{ is a semigroup ideal of } S\}
\]

then \(\mu(D) \leq n_1 \) and \(\mu(S) \leq n_1 \). We begin by pointing out that the last inequality is actually an equality.

Proposition 2.1. If \(S = \langle n_1, \ldots, n_k \rangle \) is a numerical semigroup, then the semigroup ideal

\[
D = \ll F(S) + 1, F(S) + 2, \ldots, F(S) + n_1 \gg
\]

requires \(n_1 \) generators. Thus \(\mu(D) = n_1 \) and it follows that \(\mu(S) = n_1 \).

Proof. We use Elementary Fact D and argue that none of the listed generators of \(D \) can be omitted. Note that \(n_1 \leq F(S) + 1 \). Suppose that we omit \(F(S) + i \). In the expansion of \(F(S) + i \) via \((2.2)\), \(\delta_j \neq 0 \) for some \(j \) with
0 \leq j \leq n_1 - 2$. Since $F(S) + i$ is not a multiple of any of the other listed generators, some other coefficient in (2.2) is nonzero, which forces the sum to be bigger than $F(S) + n_1 - 1$, a contradiction. Hence, $F(S) + i$ cannot be omitted. The last two assertions now follow. □

If an ideal I of $K[[X;S]]$ is generated by f_1, \ldots, f_t, then we use the notation $I = (f_1, \ldots, f_t)$. Define analogously as above $\mu(I)$ to be the minimum number of generators required for I, and

$$\mu(K[[X;S]]) = \sup\{\mu(I) | I \text{ a nonzero ideal of } K[[X;S]]\}.$$

We finally define

$$D_I = \{\partial f | f \in I\}.$$

As D_I is clearly closed under addition, it is a semigroup ideal of S and moreover $D_I = \ll \partial(f_1), \ldots, \partial(f_t) \gg$. We immediately deduce the following.

Proposition 2.2. If S, K, and I are as above, then

$$\mu(I) \geq \mu(D_I).$$

Example 2.3. The inequality in Proposition 2.2 may be strict. Let $D = \mathbb{R}$, $S = \langle 4, 5 \rangle$ and

$$I = (X^4 + X^5, X^9 + X^{12}, X^{13}).$$

Thus $D_I = \ll 4, 9 \gg$ which clearly can be reduced to $D_I = \ll 4 \gg$. By noting that

$$X^{13} = (X^4 + X^5)(-X^{12} + \sum_{i=0}^{\infty} (-1)^{i+1} X^{16+i}) + (X^9 + X^{12})(X^4 + X^8)$$

we can reduce the generating set for I down to $I = (X^4 + X^5, X^9 + X^{12})$. Since $X^4 + X^5$ does not divide $X^9 + X^{12}$ over $K[[X;S]]$, I is not principal, and clearly $\mu(I) = 2 > \mu(D_I)$.

Although not a necessary condition, requiring I to be generated by monomials is sufficient to guarantee that $\mu(I) = \mu(D)$. Corollary 2.4 now follows directly from Propositions 2.1 and 2.2.

Corollary 2.4. Let S and $F(S)$ be as in Proposition 2.1. The ideal

$$I = \left(X^{F(S)+1}, X^{F(S)+2}, \ldots, X^{F(S)+n_1}\right)$$

requires n_1 generators over $K[[X;S]]$. Thus $\mu(K[[X;S]]) \geq n_1$.

3. Generating Ideals in $K[[X;S]]$

We return for a moment to Proposition 1.1. If S is a nontrivial numerical semigroup (i.e., it requires more than one generator), then Proposition 1.1 clearly fails in $K[[X;S]]$. As an example, if $S = \langle 2, 3 \rangle$, then neither $X^2|X^3$ nor $X^3|X^2$ in $K[[X;S]]$. As we show below, while the proposition fails, in some sense, it “almost” works.
Almost Division Algorithm for $K[[X; S]]$. Let f and g be elements of $K[[X; S]]$ with $\partial g \leq \partial f$. Then there exists q and r in $K[[X; S]]$ such that

$$f = qg + r$$

where $r = 0$ or $\partial g < \partial r \leq \partial g + \mathcal{F}(S)$.

Proof. Over $K[[X]]$ there exists q_0 such that

$$f = q_0g.$$ If $q_0 \in K[[X; S]]$ we are done for $r = 0$ satisfies our conclusion. Suppose $q_0 \not\in K[[X; S]]$. Then

$$q_0 = \alpha_0 + \alpha_1X + \ldots + \alpha_{\mathcal{F}(S)}X^{\mathcal{F}(S)} + \sum_{i=\mathcal{F}(S)+1}^{\infty} \alpha_iX^i$$

with at least one of the $\alpha_1, \ldots, \alpha_{\mathcal{F}(S)}$ not zero and the series $\sum_{i=\mathcal{F}(S)+1}^{\infty} a_iX^i$ an element of $K[[X; S]]$. Then

$$f = q_0g = (q_0 - [\alpha_1X + \ldots + \alpha_{\mathcal{F}(S)}X^{\mathcal{F}(S)}])g + [\alpha_1X + \ldots + \alpha_{\mathcal{F}(S)}X^{\mathcal{F}(S)}]g.$$ Setting $q = q_0 - [\alpha_1X + \ldots + \alpha_{\mathcal{F}(S)}X^{\mathcal{F}(S)}]$ and $r = [\alpha_1X + \ldots + \alpha_{\mathcal{F}(S)}X^{\mathcal{F}(S)}]g$ provides the result. \qed

We note that a similar almost division algorithm holds for many polynomial subrings of $K[X]$ (see [3] for details). With the correct conditions on f and g, a result similar to Proposition 1.1 can be salvaged.

Corollary 3.1. Suppose $f, g \in K[[X; S]]$ with $\partial g = m$ and $\partial f > m + \mathcal{F}(S)$. Then there exists $q \in K[[X; S]]$ such that $f = qg$.

Proof. Since the division yields no terms in the quotient q of power less than $X^{\mathcal{F}(S)+1}$, the result follows directly from the proof of the almost division algorithm. \qed

Using the machinery thus far developed, we produce an upper bound on $\mu(I)$.

Theorem 3.2. If I is a proper ideal of $K[[X; S]]$ with $\partial I = m$, then $\mu(I) \leq n_1$.

Proof. In D_I choose d_0, \ldots, d_{n_1-1} so that d_i is the smallest element of D with $d_i \equiv i \pmod{n_1}$. Notice that $\ll d_0, \ldots, d_{n_1-1} \gg$ forms a generating set of D_I over S (which may not be minimal). For convenience, we set $\Delta_I = \{d_0, \ldots, d_{n_1-1}\}$ and $d^* = \min \Delta_I$. For each d_i, choose $f_i \in I$ such that $\partial f_i = d_i$. We claim that $I = (f_0, \ldots, f_{n_1-1})$ and thus have produced a generating set of I of cardinality n_1. Since we can multiply generators by units and not affect I, assume without loss of generality that each f_i has an initial term one.
Let \(g \in I \). Suppose that
\[
\partial g = \gamma_0 d_0 + \ldots + \gamma_{n_1-1} d_{n_1-1} + \alpha_1 n_1 + \alpha_k n_k
\]
and suppose further that \(t_1 \) is the smallest integer \(i \) for which \(\gamma_i \neq 0 \). Let
\[
g_1 = g - a_{i} \cdot f_{t_1} \cdot X^\partial g - t_1
\]
where \(a_{i} \partial g \) is the coefficient of \(X^\partial g \) in \(g \). Thus \(g_1 \in I \) and the coefficient of \(X^\partial g \) in \(g_1 \) is zero. Hence either \(\partial g_1 > \partial g \) or \(g_1 = 0 \). Now, if the later is true, \(g \in (f_{d_1}) \). So suppose \(\partial g_1 > \partial g \). Perform the same process on \(g_1 \) and obtain an element \(g_2 \in I \) with \(\partial g_2 > \partial g_1 \) or \(g_2 = 0 \). If \(g_2 = 0 \) then \(g_1 \in (f_{d_2}) \); consequently \(g \in (f_{d_1}, f_{d_2}) \). Repeat this process until it terminates (i.e., \(g_k = 0 \)) or \(\partial g_k > \mathcal{F}(S) + d^* \). In the latter case, by Corollary 3.2, \(g_k = f \cdot d^* \) for some \(f \in K[[X; S]] \). Hence, in either case \(g \in (f_1, \ldots, f_{n_1-1}) \) and \(I = (f_1, \ldots, f_{n_1-1}) \).

Corollary 2.4 and Theorem 3.2 immediately imply the following.

Corollary 3.3. Let \(S = \langle n_1, \ldots, n_k \rangle \) be as in Theorem 3.2 and \(I \) be an ideal of \(K[[X; S]] \).

1. \(\mu(K[[X; S]]) = n_1 \).
2. If \(f \in I \) and \(\partial(f) \in \Delta_I \), then \(f \) can be chosen as one of \(n_1 \) generators of \(I \).

As an added bonus to Theorem 3.2, the generators of an ideal \(I \) of \(K[[X; S]] \) can be chosen to be polynomials.

Theorem 3.4. Let \(I \) be a proper ideal of \(K[[X; S]] \) with \(\partial I = m \). The generating set selected for \(I \) in Theorem 3.2 can be chosen so that its elements are polynomials of degree no more than \(m + \mathcal{F}(S) \).

Proof. Suppose \(\{\beta_1, \ldots, \beta_k\} \) is a generating set for \(I \) as described in Theorem 3.2 with the elements listed in increasing order. By the proof of Theorem 3.2, the \(\beta_i \)'s are chosen such that \(\partial \beta_i \leq m + \mathcal{F}(S) \) for \(1 \leq i \leq k \). If \(\beta_i \), \(1 \leq i \leq k \), is not a polynomial consider
\[
\beta_i = \sum_{i=m}^{\mathcal{F}(S)+m} a_i X^i + \sum_{j=\mathcal{F}(S)+m+1}^{\infty} a_j X^j.
\]
Let \(H = \sum_{j=\mathcal{F}(S)+m+1}^{\infty} a_j X^j \). By Corollary 3.1 there exists \(q \in K[[X; S]] \) such that \(\beta_i q = H \). Thus \(H \in I \). Then
\[
\delta_i = \beta_i - H = \sum_{i=m}^{\mathcal{F}(S)+m} a_i X^i \in I
\]
and has the same order as \(\beta_i \). By Theorem 3.2, \(\delta_i \) may be chosen as a generator in place of \(\beta_i \). \(\square \)
In the case that \(S = \langle n, n+1, \ldots, 2n - 1 \rangle\), we can easily characterize the ideals of \(K[[X; S]]\) which requires \(n\) generators.

Lemma 3.5. Suppose \(S = \langle n, n+1, \ldots, 2n - 1 \rangle\) and that \(I\) is an ideal of \(K[[X; S]]\) which requires \(n\) generators. Then \(I = \langle X^m, X^{m+1}, \ldots, X^{m+n-1} \rangle\) for some positive integer \(m \geq n\).

Proof: Suppose \(\partial I = m\). By Theorem 3.4 there is a set of generators \(G\) of \(I\), each of degree no more than \(m + n - 1\). If \(I\) requires \(n\) generators, then there must be one of each degree \(i\) for \(m \leq i \leq m + n - 1\). Since, by Theorem 3.2, any element of a particular order can be chosen as a generator, repeated reduction of the elements of \(G\) will result in the claimed set of monomials. □

Example 3.6. We demonstrate the results of this section with an example. Let \(S = \langle 3, 5 \rangle\) and thus \(\mathcal{F}(S) = 7\). Consider the ideal \(I = \langle h, f, g, \rangle\) generated by

\[
h = X^5 + \sum_{i=13}^{\infty} 2X^i, \quad f = \sum_{i=3}^{\infty} i \cdot X^{2i}, \quad \text{and} \quad g = X^9 + X^{12}
\]

over \(Q[[X; S]]\). Clearly \(\Delta_I = \{5, 6\}\) and \(D_I = \langle 5, 6 \rangle\). Thus by Theorem 3.2 \(I = \langle f, h \rangle\). By Theorem 3.4 we can reduce the generators of \(I\) to polynomials of degree no more than 12. We can achieve this by the following. Let \(h = X^5 \cdot j\) with \(j\) a unit in \(Q[[X; S]]\). Then

\[
f = 3X^6 + 4X^8 + 5X^{10} + 6X^{12} + X^5 \cdot \left(\sum_{i=7}^{\infty} i \cdot X^{2i-5} \right) = 3X^6 + 4X^8 + 5X^{10} + 6X^{12} + h(\frac{1}{2} \sum_{i=7}^{\infty} i \cdot X^{2i-5})
\]

and thus \(\bar{f} = 3X^6 + 4X^8 + 5X^{10} + 6X^{12} \in I\). In a similar manner we can reduce \(h\) to \(\bar{h} = X^5\). By the appropriate manipulation with \(\bar{f}\) and \(\bar{h}\), the ideal can be further reduced to \(I = \langle X^5, X^6 \rangle\).

4. Choosing Generators of Ideals in \(K[[X; S]]\)

We close by considering more specific results concerning which elements of an ideal \(I\) of \(K[[X; S]]\) can be chosen as one of \(n_1\) generators of \(I\).

Corollary 4.1. Let \(S = \langle n_1, \ldots, n_k \rangle\) be a numerical monoid \(S\). Any power series of order \(n_i\), \(1 \leq i \leq k\), is a strong \(n_1\)-generator of \(K[[X; S]]\).

Proof. By Theorem 3.2 if \(I\) is a proper ideal of \(K[[X; S]]\) and \(\Delta_I = \{d_0, \ldots, d_{n_1-1}\}\), then any power series of order \(d_i\), \(0 \leq i \leq n_1 - 1\), can be chosen as a generator of \(I\). By definition, if \(n_i \in D\) then \(n_i\) is one of the \(d_i\’s\) and thus any power series \(f_{n_i}\) of order \(n_i\), \(1 \leq i \leq j\), can be chosen as a generator of \(I\). It follows that \(f_{n_i}\) is a strong \(n_1\)-generator. □

Lemma 4.2. Let \(S = \langle n_1, \ldots, n_k \rangle\) be as in the previous corollary and let

\[
M = \langle X^{n_1}, X^{n_2}, \ldots, X^{n_k} \rangle
\]
be the maximal ideal of $K[[X;S]]$. If f is any nonunit of $K[[X;S]]$ with order $\neq n_i$, $1 \leq i \leq k$, then f cannot be chosen as one of n_1-generators of M.

Proof. Again, we will use the fact that $S = \langle n_1, \ldots, n_k \rangle$ is a minimal set of generators. The generating set Δ_M is $\{n_1, \ldots, n_k\}$. Note that this is the minimal generating set, and by Elementary Fact [D] must be unique.

Suppose f is an element of $K[[X;S]]$ as in the statement of the lemma. Since M consists of all the nonunits of $K[[X;S]], f \in M$. Suppose f could be chosen as one of n_1 generators of M. Then ∂f would be a member of the minimal set of generators of D_I over S. This contradicts the uniqueness property from Elementary Fact [D] mentioned above. \qed

We combine Corollary 4.1 and Lemma 4.2 to get the following.

Corollary 4.3. Let $S = \langle n_1, \ldots, n_k \rangle$ be a minimum set of generators for the monoid S. The set of strong n_1-generators of $K[[X;S]]$, denoted \mathcal{L}, is

$$\mathcal{L} = \{f \in K[[X;S]] | \partial f = n_i, 1 \leq i \leq k\}.$$ \[EQUATION 4.3\]

Example 4.4. The idea behind Lemma 4.2 can be illustrated with an example. Let $S = \langle 2, 3 \rangle$ and $M = (X^2, X^3)$ be as in Lemma 4.2. Suppose that X^4 could be chosen as a generator of M. Then there exists an element g of M such that $(X^4, g) = M$. Since X^4 contributes no term of order 2 or 3, g must have order 2 or $X^2 \notin M$. Thus there must exist a linear combination of X^4 and g such that

$$h_1 \cdot X^4 + h_2 \cdot g = X^3$$

with h_1 and $h_2 \in K[[X;S]]$. Now if $\partial h_2 = 0$, then $\partial(h_1 \cdot X^4 + h_2 \cdot g) = 2$. If $\partial h_2 \geq 2$ then $\partial(h_1 \cdot X^4 + h_2 \cdot g) \geq 4$. Thus no possible linear combination exists.

Note that if D and C are semigroup ideals of S, then we can define $D + C = \{\delta + \zeta | \delta \in D \text{ and } \zeta \in C\}$. We are now ready to show for any numerical monoid S that $K[[X;S]]$ is $(n_1 - \frac{1}{2})$ generated.

Theorem 4.5. $K[[X;S]]$ has the $(n_1 - \frac{1}{2})$-generator property.

Proof. Let $I = \langle f_1, \ldots, f_{n_1} \rangle$ be an ideal of $K[[X;S]]$ which requires n_1 generators. We consider only ideals of this type since clearly any element of $I - IJ$ could be chosen as the first of n_1 generators of an ideal which requires less than n_1 generators.

Let $\Delta_I = \{d_1, \ldots, d_{n_1}\}$ and let $J = (X^{n_1}, \ldots, X^{n_k})$ be the maximal ideal of $K[[X;S]]$. Let f be an element of I with $\partial f \neq d_i$ for any i from 1 to n_1. Then

$$f = \varepsilon_1 f_1 + \varepsilon_2 f_2 + \ldots + \varepsilon_{n_1} f_{n_1}$$

with ε_i a nonunit or zero for all $1 \leq i \leq n_1$ (otherwise $\partial f = d_i$ for some i). Since each ε_i is in J, $f \in IJ$ and $f \notin I - IJ$. Thus by Theorem 3.2 any element of $I - IJ$ can be chosen as one of n_1 generators of I since $\{\partial g | g \in I - IJ\} = \{d_1, \ldots, d_{n_1}\}. \qed
The result of Theorem 4.5 fails for the associated semigroup rings $K[X; S]$ (see [5] for a general description of these rings). For example, an almost identical argument to the one used in the Example 4.4 shows that X^4 cannot be chosen as a generator of (X^2, X^3) in $K[X^2, X^3]$. Since $J = (0)$ for this ring, it clearly does not have the $1 \frac{1}{2}$ generator property [2]. As can be seen, this argument easily generalizes to the element X^{2n} in the ideals $(X^n, X^{n+1}, \ldots, X^{2n-1})$ in the semigroup rings $K[X; S]$ for $S = \langle n, n+1, \ldots, 2n-1 \rangle$.

REFERENCES

Department of Mathematics and Statistics, Sam Houston State University, Huntsville, TX 77341
E-mail address: scott.chapman@shsu.edu
URL: \url{www.shsu.edu/~stc008/}