Minimum Latency Gossiping in Wireless Sensor Networks

Min Kyung An, Nhat X. Lam, Dung T. Huynh and Trac N. Nguyen
Department of Computer Science
University of Texas at Dallas
Richardson, Texas 75080
Email: {mka081000, lxnhat, huynh, nguyentn}@utdallas.edu

Abstract—Gossiping is one of the most crucial applications in Wireless Sensor Networks (WSNs) which has been the focus of many researchers. A main issue of gossiping is how to assign timeslots to nodes for interference-free data transmission. There are three models concerning gossiping in WSNs: unit-sized, bounded-sized, or unbounded-sized messages. For these models, the problem of constructing minimum latency gossiping schedules has been widely studied in the literature although most of the existing studies are based on the graph model.

In this paper, we study the Minimum Latency Gossiping (MLG) problem with unbounded-sized messages in the graph model as well as the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR) where there exist relatively few works [1] on the three gossiping models. In the SINR model, we prove the NP-hardness of the MLG problem with unbounded-sized messages. In both the graph model and SINR model, we propose a constant factor approximation algorithm that yields schedules whose latency is bounded by $O(\Delta + R)$, where Δ is the maximum node degree of a network and R is its radius. We also study the performance of the algorithm through simulation.

Index Terms—Gossiping, All-to-All Broadcast, NP-hardness, Geometric Graph, Signal-to-Interference-Noise-Ratio, Approximation Algorithm

I. INTRODUCTION

The gossiping problem has been the focus of many researchers as it is one of the crucial applications in Wireless Sensor Networks (WSNs) along with the broadcast problem. In a WSN that consists of a number of sensor nodes, the gossiping problem, which is also known as all-to-all broadcast, is to distribute the message of each node to all the other nodes in the network, whereas the broadcast problem is to distribute a unique message from a source node to all the other nodes. As the small-sized sensors have limited energy resources, researchers have focused on reducing energy consumption while distributing data in a network so that the network life time is extended. An interesting approach is to assign timeslots to nodes to obtain a good (short) schedule thereby avoiding unnecessary transmissions. As data distribution may occur periodically, reducing the latency of the schedule, that is, constructing schedules with a minimum number of timeslots, has been a fundamental issue in such applications.

In the literature on the gossiping problem, there are three models: unit-sized, bounded-sized, or unbounded-sized messages. In the unit-sized-message model, a node can send a single unit-sized message, and therefore combining messages is not allowed. In the bounded-sized-message model, a node can combine messages that have been received so far (up to some limit), whereas in the unbounded-sized-message model, there is no limit on the length of the combined message.

The gossiping problem in the graph model has been investigated by many researchers over the last several years. In the collision-free graph model, for the unit-sized-message model, [2] introduced a 1974-approximation algorithm, and [3] proposed an optimal randomized schedule with a latency bounded by $O(n \log n)$, where n is the number of sensor nodes in the network. Later, [4] introduced a 27-approximation algorithm which produces gossiping schedules with a latency bounded by $27(n + R - 1)$, where R is the network radius. In [5], two approximation algorithms with constant factors of 20 and 34 have been studied. For the bounded-sized-message model, [6] studied the gossiping problem where messages can be combined into a single message whose size is bounded by $\log n$, and [7] gave an improvement over [6]. For the unbounded-sized-message model, [8] showed that their algorithm produces gossiping schedules with $O(g + \frac{\nu \log n}{\log \nu - \log \log n})$ timeslots, where $\nu = \Omega(\log n)$ and g is the network diameter, and [9] introduced a constant factor approximation algorithm whose latency is bounded by $7\Delta + 258R$. Although there have been many studies in the collision-free graph model for the gossiping problem, surprisingly there exists no study in the collision-interference-free graph model, to the best of our knowledge.

The graph model which has been used in many studies, however, is not an adequate model since cumulative interference caused by all the other concurrently transmitting nodes is ignored. Thus, researchers have started investigating problems in WSNs in the more realistic physical interference model which is known as the Signal-to-Interference-Noise-Ratio (SINR) model since its introduction by Gupta et al. in [10]. For the SINR model, [1] introduced a constant factor approximation algorithm for the gossiping problem in the unit-sized-message model, and [11] proposed a $O(\log n)$-approximation algorithm for the unbounded-sized-message model. However, [11] considered only the concurrently sending nodes within some predefined interference area from a receiver, and therefore, some interference caused by senders located far away is ignored.

While these studies have been concerned with gossiping,
some other researchers have focused on related applications such as data aggregation and broadcast. Table I shows a summary of some related works. Although there have been several approximation algorithms for these related problems, there are surprisingly few studies regarding the complexity of the problems. For the problem of data aggregation, NP-hardness was proved for the collision-free model by [12], and [13] and [14] showed not only an $\Omega(\log n)$ approximation lower bound for the problem, but also the NP-hardness in the collision-interference-free graph model and the geometric SINR model, respectively. For the broadcast problem, [2] proved its NP-hardness in the collision-free model. However, to the best of our knowledge, the NP-hardness of the broadcast problem in both the collision-interference-free and SINR models as well as that of the gossiping problem in all network models remain open. (Note that the existing NP-hardness of the broadcast problem in [2] holds for the collision-free graph model, but not for the other models.)

![Table I: Summary of Works on Problems Related to Gossiping](image)

In this paper, we continue the study of the gossiping problem with unbounded-sized messages in the graph model and the geometric SINR model. Extending the proof in [14], we show that this problem is NP-hard in the geometric SINR model. Additionally, for the uniform power model, we introduce a constant factor approximation algorithm yielding schedules whose latency is bounded by $O(\Delta + R)$ in both the graph model and the geometric SINR model. Our algorithm gives an improved approximation ratio of 224 over the existing ratio of 285 given by [9] in the collision-free graph model. In the collision-interference-free graph model and the SINR model, our approximation algorithm is the first one to the best of our knowledge. Moreover, regarding broadcast, the broadcast subroutine of our gossiping algorithm provides broadcast schedules with a better approximation ratio than existing ones given by [20], [21] for the collision-interference-free model.

This paper is organized as follows. Section II describes our network models and defines the Minimum Latency Gossiping (MLG) problem with unbounded-sized messages. In Section III, we show the NP-hardness of MLG in the geometric SINR model. Section IV introduces a constant factor approximation algorithm for the MLG problem and shows some simulation results. Section V contains some concluding remarks.

II. PRELIMINARIES

A. Network Models

In our paper, we model a wireless sensor network as \((V, D, p)\), where \(V\) represents a set of \(n\) nodes, and \(D : V \times V \rightarrow R^+\) represents the distance function between nodes. Letting \(p_{max} : V \rightarrow R^+\) be the maximum power level function, we define a power assignment function as \(p : V \rightarrow R^+, p(u) \leq p_{max}(u), u \in V\).

1) Graph Model: In the graph model, given a transmission power level \(p(u)\) for each node \(u\), let \(R_{p(u)}^v = \{v \in V, D(u, v) \leq p(u)\}\) denote the set of all nodes that can be reached by \(u\) with the power level \(p(u)\). Two nodes \(u\) and \(v\) can communicate only if they are in the coverage area of each other, i.e., \(u \in R_{p(u)}^v\) and \(v \in R_{p(v)}^u\). However, we also need to consider the collision or interference that interferes with the communication. Given a power level \(p(u)\) of \(u\), the interference range of \(u\) is defined as \(\rho \cdot p(u)\), where \(\rho \geq 1\) is the interference factor. Given \(\rho \geq 1\), let \(F_{p(u)}^v = \{v \in V, D(u, v) \leq \rho \cdot p(u)\}\) denote the set of all nodes in the interference range of \(u\). Then, collision (or conflict) is said to occur at a receiver node \(w\) if there exist other concurrently sending nodes \(u\) and \(v\) such that \(w \in R_{p(u)}^w \cap F_{p(v)}^w\) where \(\rho > 1\).

In the literature, the graph model concerning only collision (i.e., when \(\rho = 1\)) is called the collision-free model, whereas the graph model concerning both collision and interference (i.e., when \(\rho \geq 1\)) is called the collision-interference-free model. In the graph model, the communication graph can be modeled as a bidirectional graph \(G(V, E)\), where \(E = \{(u, v) | u, v \in V, D(u, v) \leq p(u)\}\) and \(D(v, u) \leq p(v)\).

2) SINR Model: In the physical interference model (SINR) [10], if a node \(u\) transmits with its power level \(p(u)\), then the power received at another node \(v\) is \(p(u) \cdot D(u, v)^{-\alpha}\), where \(\alpha\), the path loss exponent, is commonly assumed to be in the interval [2, 6]. In order that node \(v\) can receive and decode data sent by \(u\), the ratio of the received power at \(v\) to the interference caused by all the other concurrently transmitting nodes and background noise must be beyond an SINR threshold \(\beta \geq 1\). Formally, node \(v\) can receive data successfully via the link \((u, v)\) only if

\[
\text{SINR}(u, v) = \frac{p(u) \cdot D(u, v)^{-\alpha}}{N + I_v} \geq \beta
\]

where \(N > 0\) is the background noise, and

\[
I_v = \sum_{w \notin \{u, v\}, w \in X} p(w) \cdot D(w, v)^{-\alpha}
\]

is the cumulative interference at \(v\) caused by nodes in \(X\) that is the set of other concurrently transmitting nodes. Observing that \(u\) can send its data to the nodes within the distance \((D(u))^{\frac{1}{\alpha}}\), the communication graph can be modeled as a directed graph \(G(V, E)\), where \(E = \{(u \rightarrow v) | u, v \in V, D(u, v) \leq (D(u))^{\frac{1}{\alpha}}\}\).

B. Problem Definition

In this paper, we are concerned with gossiping in the unbounded-sized-message model, i.e., we assume that multiple messages can be combined as a single message, and there is no limit on the length of a message that one node can transmit.
The Minimum Latency Gossiping (MLG) problem is defined as follows. A schedule is defined as a sequence of timeslots, at each of which, several nodes are scheduled to send its data to its receivers. Formally, at each timeslot t, we have an assignment vector $\pi_t = \langle(s_{t_1}, p(s_{t_1})), \ldots, (s_{t_k}, p(s_{t_k}))\rangle$ in which s_{t_i} is assigned to send data with its power level $p(s_{t_i})$, $1 \leq i \leq k$, and

1. (Graph Model) neither collision nor interference occurs at any receiver r, or
2. (SINR Model) the SINR threshold inequality is satisfied for all receivers r, where (s_{t_i}, r) is an edge in the communication graph $G(V, E)$, i.e., all the senders s_{t_i} can transmit concurrently.

A schedule is a sequence of assignment vectors $\Pi = (\pi_1, \pi_2, \ldots, \pi_M)$, where M is the length of the schedule which is also known as its latency. A schedule Π is successful if the message $m(v)$ of each node $v \in V$ is received by all the other nodes in the network. In a schedule, a node may be scheduled at several timeslots with different power levels. The MLG problem is defined as follows:

Input. A set of nodes V, a distance function D which is defined as the Euclidean distance between nodes, a maximum power level function p.

Output. A successful schedule of minimum length.

III. NP-HARDNESS

In this section, we prove the NP-hardness for the minimum latency gossiping (MLG) problem. The structure of this proof is similar to the one in the proof of the NP-hardness of the minimum latency aggregation problem in [14], which, as the proof of the NP-hardness of scheduling with power control in geometric SINR [27], is based on a construction in [28]. We restate the construction in [14] for reader’s convenience and omit the details.

In order to prove MLG’s NP-hardness, we construct a polynomial time reduction from the Partition problem which was proven NP-complete in [29]. This decision problem is defined as follows. Given a finite set of distinct and positive integers, the objective is to determine if it is possible to divide this set into two subsets such that the sums of all integers in each subset are equal.

Let I_P be an instance of Partition which consists of a set S of n distinct and positive integers a_1, a_2, \ldots, a_n. Without loss of generality, assume that $a_1 < a_2 < \ldots < a_n$. We construct in polynomial time an instance I_M of the MLG problem as follows.

In the instance I_M, we have $2n + 3$ nodes including $2n$ nodes s_1 and r_i, $1 \leq i \leq n$, 2 nodes s_{n+1} and s_{n+2} and a center node s. These nodes are deployed on the plane at the following positions.

$$
\begin{align*}
pos(s) &= (0, 0) \\
pos(s_{n+1}) &= (0, -\left(\frac{24P}{N\beta(A^2 + \beta + 2A)}\right)^\frac{1}{2}) \\
pos(s_{n+2}) &= (-\left(\frac{24P}{N\beta(A^2 + \beta + 2A)}\right)^\frac{1}{2}, 0)
\end{align*}
$$

and, for all $1 \leq i \leq n$,

$$
\begin{align*}
pos(s_i) &= \left(\left(\frac{P}{N\beta}\right)^\frac{1}{2}, 0\right) \\
pos(r_i) &= \left(\left(\frac{P}{N\beta}\right)^\frac{1}{2}, d_0\right)
\end{align*}
$$

where P is the maximum power value to be defined below. Let $\sigma = \sum_{i=1}^n a_i$, $A = \left(\frac{1}{a_{n-1}}\right) - \left(\frac{1}{a_n}\right)^2$, $b_1 = \frac{a_1A^2}{12\sigma}$ and $d_0 = \left(\frac{12\sigma N^2 \beta + n N^2}{A^2}\right)^\frac{1}{2}$.

With $d(u, v)$ denoting the Euclidean distance between u and v, we define the maximum power level for the nodes as follow:

$$
\begin{align*}
p_{max}(s_i) &= p_{max}(s_{n+1}) = p_{max}(s_{n+2}) = P \\
p_{max}(r_i) &= N\beta d(r_i, r_{i+1})^\alpha, 1 \leq i \leq n, r_{n+1} \equiv s \\
p_{max}(s) &= N\beta d(s, s_1)^\alpha = \frac{P}{b_1} = \frac{12\sigma}{A^2} > P
\end{align*}
$$

Fact 1. Let $T_i = \{s_j | 1 \leq j \leq n + 1 \land i \neq j\}$. It holds for all $1 \leq i \leq n$ that $\text{SINR}(s_i, r_i)$ exceeds β when node s_i is assigned to send data to r_i at the same timeslot as the nodes in T_i.

Fact 2. For all $1 \leq i \leq n$, s_i can send data only to r_i.

Fact 3. s_{n+1} and s_{n+2} can send data only to s.

Fact 4. r_{i+1} can receive data from r_i (where $r_{n+1} \equiv s$) if and only if there is no other nodes sending in r_i’s timeslot.

Fact 5. It holds for all $1 \leq i < n$ that r_i can send data to s through r_{i+1} only.

Fact 6. s_1 can receive data from s if and only if there is no other node sending in that timeslot.

Lemma 1. I_P has a solution if and only if I_M has an optimal gossiping schedule of length $n + 3$.

Proof: Omitted.

From Lemma 1 we obtain

Theorem 2. The MLG problem is NP-hard.

IV. CONSTANT FACTOR APPROXIMATION ALGORITHM

In this section, we introduce a constant factor approximation algorithm for the MLG problem in the graph model and the physical interference (SINR) model, assuming a uniform power level P, i.e., for all $v \in V$, $p(v) = P$. In those models, we make the following assumptions:

For the graph model, we set the maximum link length $r = \frac{1}{\sqrt{2}}$.

$$
\begin{align*}
\mathbf{s} = \{(s_{n+1}, s_{n+2}), (s_{n+2}, r_1), (s_{n+1}, r_1)\} \\
p = \left(\frac{P}{\sqrt{2}}\right)^\frac{1}{2} = \left(\frac{P}{\sqrt{2}}\right)^\frac{1}{2}
\end{align*}
$$

$$
\begin{align*}
\text{pos}(s_{n+1}) &= \left(\left(\frac{P}{\sqrt{2}}\right)^\frac{1}{2}, 0\right) \\
\text{pos}(s_{n+2}) &= \left(\left(\frac{P}{\sqrt{2}}\right)^\frac{1}{2}, d_0\right)
\end{align*}
$$

$$
\begin{align*}
p_{max}(s_i) &= p_{max}(s_{n+1}) = p_{max}(s_{n+2}) = \left(\frac{P}{\sqrt{2}}\right)^{\frac{1}{2}} \\
p_{max}(r_i) &= N\beta d(r_i, r_{i+1})^\alpha, 1 \leq i \leq n, r_{n+1} \equiv s \\
p_{max}(s) &= N\beta d(s, s_1)^\alpha = \frac{P}{b_1} = \frac{12\sigma}{A^2} > \left(\frac{P}{\sqrt{2}}\right)^{\frac{1}{2}}
\end{align*}
$$
For the SINR model, define $r_{\text{max}} = \left(\frac{P}{N_\delta}\right)^{\frac{1}{\gamma}}$ and notice that if node u on link (u, v) of length r_{max} is transmitting, then none of the remaining nodes can transmit concurrently. Thus we are interested in links (u, v), where $d(u, v) \leq \delta\left(\frac{P}{N_\delta}\right)^{\frac{1}{\gamma}}$ for some constant $\delta \in (0, 1)$ as considered in [23]. Thus, in the SINR model, we let $r = \delta\left(\frac{P}{N_\delta}\right)^{\frac{1}{\gamma}}$, and assume that the undirected graph $G = (V, E)$, where $E = \{(u, v)|d(u, v) \leq r\}$, is connected and $\rho \geq 1$.

The constant C is set as follows in the two different models:

- **Graph model:** $C = \lceil \rho \cdot \sqrt{2} + 2 \rceil$
- **SINR model:** $C = \lceil (\frac{\sqrt{\frac{P_3}{N_\delta}}}{\sqrt{\frac{P}{N}\sqrt{2}}}) \cdot \sqrt{2} \cdot \delta^{-1}(\frac{N_\delta}{P})^{\frac{1}{\gamma}} + 2 \rceil$

Algorithm 1: Gossiping

Input: A set V of nodes with a uniform power level P

Output: Length of schedule

1. Partition the network into square cells each of which has diagonal length r.
2. Construct a gossip tree T using the algorithm in [23].
3. Set the first timeslot $t \leftarrow 1$.
4. // Data Gathering starts.
5. $t \leftarrow$ CCA(V, T, t)
6. // Broadcasting start.
7. $TS(c) \leftarrow TS(c) \cup \{t\}$
8. $t \leftarrow t + 1$
9. for $i = 1$ to $R - 1$ do
10. Let $S_i \subseteq V$ be the set of connectors at level i in T.
11. if $S_i \neq \emptyset$ then $t \leftarrow$ RBS(S_i, t) end if
12. Let $S_{i+1} \subseteq V$ be the set of dominators at level $i + 1$ in T.
13. if $S_{i+1} \neq \emptyset$ then $t \leftarrow$ SBS(S_{i+1}, t) end if
14. end for
15. return $t - 1$

Data Gathering

In order to gather data to c, we use the data aggregation algorithm called Cell Coloring algorithm in [13], which is included in Algorithm 2. The Cell Coloring algorithm, which is based on an algorithm in [23], is originally built for the graph model assuming $\rho \geq 1$. We use the algorithm not only for the graph model, but also for SINR model where the constant C is defined accordingly.

Broadcast

Once all the data is gathered to c, c broadcasts the collected data combined with its own to the whole network. We introduce a new broadcast scheduling algorithm which is also based on the data aggregation algorithm of [23]. The details of our broadcast algorithm are contained in Algorithm 1 (Steps 6 – 14). In Step 7, c (which is also a dominator) broadcasts the data to its neighbors (lower level connectors). In Steps 10 – 11, the connectors which have just received data from the upper level dominators relay the data to their lower level dominators. These steps are based on the receivers’ locations (Algorithm 4), i.e., the connectors whose receivers (lower level dominators) are C cells apart from each other are assigned to the same timeslot. Then, in Steps 12 – 13, the dominators relay the data to its dominates and lower level connectors. These dominators are scheduled based on their (senders’) locations (Algorithm 3), i.e., the dominators which are C cells apart from each other are assigned to the same timeslot. These Steps 10 – 13 are repeated until the data is
disseminated to the whole network.

In Algorithms 1, 3 and 4, \(TS(v) \) denotes the set of timeslots at which node \(v \) is activated to send data.

Algorithm 2 Cell Coloring Algorithm (CCA) [13]

Input: A set \(V \) of nodes, a tree \(T \) and a starting timeslot \(t \)

Output: Timeslot \(t \)

1. Let \(S \subseteq V \) be the set of dominatees in \(T \).
2. if \(S \neq \emptyset \) then \(t \leftarrow SBS(S, t) \) end if
3. for \(i = R \) to 2 do
4. Let \(S_i \subseteq V \) be the set of dominators at level \(i \) in \(T \).
5. if \(S_i \neq \emptyset \) then \(t \leftarrow SBS(S_i, t) \) end if
6. Let \(S_{i-1} \subseteq V \) be the set of connectors at level \(i-1 \) in \(T \).
7. if \(S_{i-1} \neq \emptyset \) then \(t \leftarrow SBS(S_{i-1}, t) \) end if
8. end for
9. return \(t \)

Algorithm 3 AssignTimeSlot (SBS) [13]

Input: A set \(S \) of nodes and a starting timeslot \(t \)

Output: Timeslot \(t \)

1. while \(S \neq \emptyset \) do
2. Pick one node \(v_s \in S \) in each cell. Let \(S' \subseteq S \) be the set of such nodes.
3. for \(c_1 = 0, ..., C-1 \) and \(c_2 = 0, ..., C-1 \) do
4. \(X \leftarrow \emptyset, X \leftarrow \{v_s \in S' \text{ with } CL(x, y) \text{ such that } c_1 = x \mod C \text{ and } c_2 = y \mod C\} \)
5. if \(X \neq \emptyset \) then
6. for each \(v_s \in X \) do
7. \(TS(v_s) \leftarrow TS(v_s) \cup \{t\} \)
8. end for
9. \(t \leftarrow t + 1, S \leftarrow S \setminus X \)
10. end if
11. end for
12. end while
13. return \(t \)

B. Analysis

In this section, we analyze Algorithm 1 and bound the latency of the gossip schedules produced by it. First, we set the constant value \(C \) for the graph model and the SINR model based on [13, 32].

Lemma 3 (Graph Model). [13] Let \(C = [\rho \cdot \sqrt{2} + 2] \), where \(\rho \geq 1 \) is the interference factor. Then any two sender (receiver) nodes that are at least \(C \) cells apart from each other can concurrently send (receive) data without any collision and interference.

Lemma 4 (SINR Model). [32] For SINR threshold \(\beta \geq 1 \), path loss exponent \(\alpha > 2 \), background noise \(N > 0 \), and some constant \(\delta \in (0, 1) \), let

\[
C = \left[\frac{P \cdot 2\pi}{N(\delta - \alpha - 1)(\alpha - 2)} \right]^{\frac{1}{\alpha-2}} \cdot \sqrt{2} \cdot \delta^{-1}(N\delta)^{\frac{1}{\alpha}} + 2
\]

Then any two sender nodes that are at least \(C \) cells apart from each other can concurrently send (receive) data without interference.

Next, we prove that the latency of a gossip schedule found by Algorithm 1 is bounded by \(O(\Delta + R) \). We need the following lemmas.

Lemma 5. [23] The number of connectors in a cell is at most \(12 \).

Lemma 6. In Algorithm 1, gathering data from all the other nodes to center node \(c \) takes at most \(\Delta \cdot C^2 + 6 \cdot C^2 \cdot R \) timeslots.

Proof: First consider the dominatees in each cell and their dominator \(v \) (Steps 1–2 in Algorithm 2). Obviously, there are at most \(\Delta \) dominatees in each cell, and one of those \(\Delta \) dominatees must be a connector to connect the dominator \(v \) to another dominator. Therefore, the number of dominatees is bounded by \(\Delta - 1 \), and gathering data from all the dominatees to the corresponding dominators takes at most \((\Delta - 1)C^2 \) timeslots.

Next, consider the dominators at level \(i \) (Steps 4–5 in Algorithm 2). Since there is at most one dominator in each cell, gathering data from all the dominators at level \(i \) to the connectors at level \(i - 1 \) takes \(C^2 \) timeslots. As this process is repeated at most \(\frac{R}{2} \) times, gathering data from all dominators to upper level connectors takes at most \(\frac{R}{2} \cdot C^2 \) timeslots.

Now, let us consider only the connectors at level \(j \), where \(1 < j < R \) (Steps 6–7 in Algorithm 2). In one cell, at most 11 of those connectors at level \(j \) have the role of sending the collected data to their dominators at level \(j - 1 \); one remaining connector in the cell must relay data from the dominator at level \(j - 1 \) to another dominator at level \(j - 3 \). Therefore, gathering data from the connectors at level \(j \) to the dominators at level \(j - 1 \) takes at most \(11C^2 \) timeslots. As this process is repeated \(\frac{R-2}{2} \) times, it takes at most \(\frac{R-2}{2} \cdot 11C^2 \) timeslots.
On the other hand, all the connectors at level 1 send data to a sink, and this requires at most $12C^2$ timeslots.

Thus, the latency of data gathering is at most $\Delta C^2 + \frac{R}{2} \cdot C^2 + \frac{R^2}{2} \cdot 11 \cdot C^2 + 12C^2 = \Delta \cdot C^2 + 6 \cdot C^2 \cdot R$. □

Lemma 7. In Algorithm 1, broadcasting data takes at most $1 + C^2 \cdot (R - 1)$ timeslots.

Proof: First, note that in Steps 7–8 in Algorithm 1, the center node sends data to its neighbors in one timeslot. Next, consider the connectors at level i (Steps 10–11). Any two of those connectors cannot share one dominator at level $i + 1$ on the gossip tree T; otherwise a cycle would result. This means that those connectors can be scheduled based on the receivers’ locations, i.e., the locations of the corresponding dominators at level $i + 1$. As there is at most 1 dominator in each cell, relaying data from the connectors at level i to the dominators at level $i + 1$ takes at most C^2 timeslots. Since Steps 10–11 are repeated $\frac{R - 1}{2}$ times, at most $\frac{R - 1}{2} \cdot C^2$ timeslots are needed.

Now consider the dominators at level j (Steps 12–13). Since at most one dominator can be located in a cell, sending data from the dominators to the connectors at level $j + 1$ takes at most C^2 timeslots. As the Steps 12–13 are repeated $\frac{R - 1}{2}$ times, it takes at most $\frac{R - 1}{2} \cdot C^2$ timeslots.

Thus, the latency of broadcasting is at most $1 + \frac{R - 1}{2} \cdot C^2 + \frac{R - 1}{2} \cdot C^2 = 1 + C^2 \cdot (R - 1)$. □

Lemma 8 (Lower bound). [9] If Δ is the maximum node degree in a network, then every gossip schedule with unbounded-size messages has at least $\Delta + R - 1$ timeslots.

Theorem 9. Algorithm 1 produces gossip schedules whose latency is bounded by $C^2 \cdot \Delta + 7 \cdot C^2 \cdot R + (1 - C^2) = O(\Delta + R)$, and it is a constant-factor approximation with the factor of $14 \cdot C^2$.

Proof: By Lemma 6 and Lemma 7, the latency, denoted by SOL, of schedules produced by Algorithm 1 is bounded by $C^2 \cdot \Delta + 7 \cdot C^2 \cdot R + (1 - C^2)$. Next, without loss of generality, assume that $n \geq 2$, and therefore $\Delta \geq 1$ and $R \geq 1$. Then, denoting the lower bound by OPT, the approximation ratio is

$$\frac{SOL}{OPT} \leq \frac{C^2 \cdot \Delta + 7 \cdot C^2 \cdot R + (1 - C^2)}{\Delta + R - 1} \leq \frac{7 \cdot C^2 \cdot \Delta + 7 \cdot C^2 \cdot R}{\Delta + R - 1} = \frac{14 \cdot C^2}{\Delta + R - 1}$$

Note that this approximation ratio is 224 in the collision-free graph model, an improvement on the approximation ratio of 258 given by [9]. To the best of our knowledge, in the collision-interference-free graph model and the SINR model, our results are the first constant-factor approximation algorithms.

Also note that our broadcast scheduling algorithm yields an approximation ratio of C^2 by Lemma 7. In the collision-interference-free graph model, it is $C^2 = \left[\sqrt{\frac{\rho}{2}} + 2\right]^2$ which improves on the approximation ratio of $6\left[\frac{1}{2} (\rho + 2)^2\right]$ given by [21]. In addition, [20] studies the broadcast algorithm with $\rho = 2$ giving an approximation ratio of 26, whereas our approximation ratio is 25.

C. Simulation

In our simulation, networks are generated randomly in the Euclidean plane where the number of nodes is 500. The nodes are randomly deployed on an area of size $m \times m$, where $m = 300, 400$ and 500. For each m, we generate 100 different networks, and average the latencies produced by the algorithm over the networks. For the simulation, we set the various parameters as follows:

1) **Graph model:**

- **Choice of ρ:** We use $\rho = \{1, 2, \ldots, 10\}$
- **Initial power assignment:** We first use Kruskal’s algorithm [30] to find the minimum spanning tree T_{MST} using edge weights defined as the distance between any two nodes. Then, we set the initial power $P = r$, where r is the length of the longest edge in T_{MST}. Given the initial power assignment, we obtain the initial graph $G = (V, E)$, where $E = \{(u, v) | d(u, v) \leq r\}$.

2) **SINR model:**

- **Choices of SINR parameters:** We use $\alpha = 5$, $N = 1$ and $\beta = 1$.
- **Choice of δ:** We use $\delta = \{0.1, 0.2, \ldots, 0.9\}$.

Initial power assignment: A uniform power assignment, if δ is too small, the graph may not be connected. In order to make the initial graph connected even with the smallest $\delta = 0.1$ in our simulation, we set the initial power $P = \beta N \left(\frac{r}{0.1}\right)^{\frac{\alpha}{\beta}}$, and obtain the initial graph $G = (V, E)$, where $E = \{(u \rightarrow v) | d(u, v) \leq \delta \left(\frac{P}{N^\alpha}\right)^{\frac{\alpha}{\beta}}\}$.

Table II shows the performance of Algorithm 1 in the graph model. For fixed ρ, as the network becomes denser (i.e., the network node degree becomes larger and the network radius smaller) the latency decreases, whereas as the network becomes sparser (i.e., the network node degree becomes smaller and the network radius larger) the latency increases. For fixed network density, as ρ becomes larger (i.e., the interference range becomes wider), the latency increases.

<table>
<thead>
<tr>
<th>ρ</th>
<th>300×300</th>
<th>400×400</th>
<th>500×500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>313.13</td>
<td>321.52</td>
<td>321.59</td>
</tr>
<tr>
<td>2</td>
<td>357.85</td>
<td>368.71</td>
<td>369.98</td>
</tr>
<tr>
<td>3</td>
<td>430.32</td>
<td>440.18</td>
<td>440.23</td>
</tr>
<tr>
<td>4</td>
<td>461.79</td>
<td>469.39</td>
<td>469.41</td>
</tr>
<tr>
<td>5</td>
<td>513.79</td>
<td>522.64</td>
<td>523.09</td>
</tr>
<tr>
<td>6</td>
<td>536.89</td>
<td>542.38</td>
<td>544.81</td>
</tr>
<tr>
<td>7</td>
<td>557.04</td>
<td>562.19</td>
<td>564.57</td>
</tr>
<tr>
<td>8</td>
<td>596.11</td>
<td>599.17</td>
<td>601.54</td>
</tr>
<tr>
<td>9</td>
<td>613.90</td>
<td>617.61</td>
<td>619.30</td>
</tr>
<tr>
<td>10</td>
<td>642.07</td>
<td>645.58</td>
<td>647.34</td>
</tr>
</tbody>
</table>

Table II: Latencies of Algorithm 1 in Graph Model

Table III shows the performance of Algorithm 1 in the SINR model. For fixed δ, as the network becomes denser (i.e., the network node degree becomes larger, but the network
radius becomes smaller the latency decreases, whereas as the network becomes sparser (i.e., the network node degree becomes smaller, but the network radius becomes larger) the latency increases. For fixed density, as δ becomes smaller (i.e., the network node degree becomes smaller, but the network radius becomes larger), the latency increases, whereas as δ becomes larger (i.e., the network node degree becomes larger, but the network radius becomes smaller), the latency decreases.

<table>
<thead>
<tr>
<th>δ</th>
<th>300 x 300</th>
<th>400 x 400</th>
<th>500 x 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>654.91</td>
<td>662.98</td>
<td>663.09</td>
</tr>
<tr>
<td>0.2</td>
<td>651.21</td>
<td>660.08</td>
<td>662.20</td>
</tr>
<tr>
<td>0.3</td>
<td>646.19</td>
<td>648.97</td>
<td>651.39</td>
</tr>
<tr>
<td>0.4</td>
<td>605.93</td>
<td>615.83</td>
<td>615.86</td>
</tr>
<tr>
<td>0.5</td>
<td>512.63</td>
<td>523.91</td>
<td>524.17</td>
</tr>
<tr>
<td>0.6</td>
<td>401.23</td>
<td>414.80</td>
<td>414.91</td>
</tr>
<tr>
<td>0.7</td>
<td>341.18</td>
<td>354.35</td>
<td>355.08</td>
</tr>
<tr>
<td>0.8</td>
<td>295.06</td>
<td>305.52</td>
<td>307.22</td>
</tr>
<tr>
<td>0.9</td>
<td>264.31</td>
<td>274.54</td>
<td>275.66</td>
</tr>
</tbody>
</table>

TABLE III: Latencies of Algorithm 1 in SINR Model

From these tables, we can observe that having smaller network radius rather than having smaller network node degree gives better results. This is because the variation of network node degree affects only the latencies of data aggregation schedules, whereas the variation of the network radius affects the latencies of the schedules for data aggregation as well as broadcast.

V. CONCLUSION

In this paper, we have studied the Minimum Latency Gossiping (MLG) problem with unbounded-sized messages in the graph model and SINR model. We have proved the NP-hardness of the problem in the SINR model, and proposed a constant factor approximation algorithm whose latency is bounded by $O(\Delta + R)$ in both graph and SINR models assuming a uniform power level. We have also studied the performance of the algorithm through simulation. As to future work, we plan to study the gossiping problem with unit-sized and bounded-sized messages.

REFERENCES