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In school the efforts of the teacher, the producer of educational services, are augmented by

those of the student, the consumer of those services.  This special feature of educational production

necessitates that the teacher be given the authority to incentivize the student; the substantial labor

market value afforded to educational credentials, based on the achievements of each institution’s

graduates, suggests this authority should be used to generate more effort than the student would

privately prefer to give (see also Correa and Gruver, 1987).

Post-secondary education invests this authority almost wholly in grades, which determine

whether the student receives credit for the course and signals her level of performance if successful.

Yet despite grades’ importance, prevalence, and interesting economic features, their incentive

properties have received surprisingly little academic attention, as discussed below.  With an extensive

theoretical and empirical analysis of grades as incentives, this paper tries to fill that gap.

In doing so, we rely on a curious but consequential feature of the typical American grading

system: the presence of thresholds, which divide grades into discrete units of A, B, C, D, and F.  In

the neighborhood of these grade thresholds the marginal benefit of improved performance is highly

nonmonotonic, counter to standard economic assumptions.  While thresholds such as these are a

common feature of economic life, however, their positive and normative properties have not been

fully developed.  We introduce a basic model of thresholds that generates a sequence of robust

predictions that can be applied to a wide range of economic activity, including the study effort

induced by grades, and tested elegantly with simple nonparametric methods.

With these methods, we test these predictions and infer the effect of grade incentives on

learning at all four grade thresholds across the full distribution of student motivation for several

college courses at two universities.  The results indicate that grades are weak incentives: on the

margin, either they do not motivate students to study, or the additional study effort is ineffective.
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I.  The Behavioral Effects of Thresholds.

Public and private entities frequently measure performance on a task of interest.  While these

measurements commonly use a continuous scale, sometimes the information released to the market,

or the administratively determined reward, is binary–linked solely to the passing of a threshold.

Economically, this is unusual: the marginal benefit of improved performance is nil until one is about

to cross the threshold, after which it is nil again.  When measurement is imprecise, so passing the

threshold is uncertain (conditional on performance), expected marginal benefits are still non-

monotonic, rising and falling rapidly in the neighborhood of the threshold, and thus atypical.

Yet thresholds are often observed, even when a continuous system of measurement and

reward appears feasible.  Table 1 lists several examples that have been examined in the literature, in

labor economics, law and economics, the economics of education, and elsewhere.  Thus, a unified

discussion of the behavioral and normative properties of thresholds is warranted, along with a

concordant, comprehensive estimation strategy.  This has not yet been accomplished.  We now offer

such a development, which builds on the existing literature in several respects:

• The theory is presented assuming imperfect measurement of the agent’s performance.  Perfect
measurement, emphasized in existing theory, is simply a limiting case.

• Five behavioral predictions are established, only one of which has been previously tested.

• Conditions under which thresholds can have desirable normative properties are identified, in
contrast to previous work that has emphasized the potential perverse effects of thresholds.

• A more general and revealing econometric strategy is introduced.  (Regression discontinuity
methods use thresholds differently, to assign individuals to treatment and control groups, and
so do not apply here.)



1 A technical point: this price supports a symmetric sub-game perfect Nash equilibrium to the
N-person “effort game,” where each person’s effort is optimal given everyone else’s choices.  As each
person provides the same amount of effort, the variance of t ex post equals the variance of < ex ante.
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Behavioral Effects in Theory.  Let there be a behavioral outcome of interest, t, that is additive in

endowed “natural ability,” <, and effort, f, and valued by the market at price p per unit.  When t is

measured precisely, each individual’s effort is chosen to maximize the difference between the rewards

from effort, pf, and its cost, C(f).  The solution, f* = CN-1(p), is efficient as long as the price p is

appropriate (there are no externalities, for example).  Continuous, perfect measurement provides ideal

information to users and appropriate effort incentives: thresholds are not needed (see Costrell, 1994).

It may be impractical to measure t precisely, however, as measurement exhibits diminishing

returns.  This is certainly true in education.  A typical college course might base grades on two

hundred multiple choice questions (over several exams); the standard deviation of the final average

of a C student in this class is three percentage points.  Reducing it to one percentage point would

require increasing assessment time ninefold, utilizing the majority of class time for testing.

Under these circumstances direct performance measurement exhibits the classic signal-

extraction problem: variation in the measured outcome is attributable partly to population variation

in t and partly to error.  Let T = t + ,, where , is error in measuring the true outcome, independently

and normally distributed.  When < is also normally distributed (throughout the population), the market

price of a unit increase in T is pF<²/(F<²+F,²) < p, and each individual underprovides effort.1  The

information provided to the market and the effort elicited by agents can be improved, and under the

right circumstances thresholds can do this.  Thresholds can be justified by imperfect information.

Let the testing agency establish a passing threshold normalized, for simplicity, to 0.  Instead

of releasing T they simply indicate whether or not T$0.  The market value of passing the threshold



2 For completeness, the analytical solutions for effort (when non-zero) are presented here.
Effort under perfect measurement: fPERFECT = (1/()ln(p). Effort under direct but imperfect
measurement: fIMPERFECT = (1/()[ln(p)+ln(F<²/(F<²+F,²))] = fPERFECT - (1/()ln(F,²/F<²).  Effort under a
threshold: fTHRESHOLD = -((F,² + <) + ((²F,

4 + 2(F,²<  + 2F,²ln(0.4P/(F,))^½.  Depending on the
values of the other parameters, fTHRESHOLD > fIMPERFECT for all <, some <, or no <.
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is P = (t$PASSERS - t$NONPASSERS)p; the probability of passing the threshold, conditional on effort, is now

M(<+f), where M is the cumulative distribution function for ,.  The expected marginal returns to effort

are bell-shaped, centered around zero.  Equating these to the marginal costs of effort can yield

multiple solutions for f, which may be minima, local maxima, or global maxima.

Figure 1 illustrates.  The horizontal axis indexes t, while the vertical axis indexes costs and

benefits.  These are expressed in logs, so expected marginal benefits form a parabola, and the

marginal cost line corresponds to C(f) = kCexp((f), with (>0 representing diminishing returns or

fatigue in the provision of effort, and k normalized to one.  This simple model, with performance

linear in ability and effort, normally distributed ability and measurement error, and expected “profit”

maximization using this cost function, is analytically tractable and sufficient to substantiate certain

claims made below.2  But the key behavioral predictions that we now deduce are more general, and

so are supported only with basic geometric arguments.

Five students, A-E, are represented in Figure 1, their upward sloping marginal cost of effort

lines beginning at <A-<E.  For sufficiently low <, as for student A, marginal costs and marginal benefits

do not intersect, so f=0: it is too much work to achieve the higher grade.  This continues until the

extensive margin is reached, where it is optimal to put forth effort (student B).  Here the accumulated

surplus, where expected marginal benefits exceed marginal costs, equals the accumulated deficit

where the reverse is true.  (It does not seem this way in the figure, until one remembers the vertical

axis is in logs.)  This margin may be reached where t < 0, as in the figure; if so effort increases until
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it reaches its maximum, for student C, at the vertex of the parabola, and declines steadily thereafter

(student D) until, at sufficiently high, positive <, it returns to nil (student E).  Those with 0 < < < <E

probably will pass without trying, but assessment is uncertain so they put forth “precautionary” effort

to raise their chances.  If t > 0 at the extensive margin, maximum effort occurs there and declines

thereafter; C, the point of maximum effort, falls to the right of the vertex of the parabola.

The resulting {<,f} and {<,t} loci, in Figure 2, reveal five positive predictions of the theory.

1. Peak Effort Property:  Those individuals far below the threshold (< << 0) put forth little
effort; those near it (< . 0) put forth more; those in between put forth the most.  This is a
consequence of the extensive margin, which is itself a consequence of the non-monotonic
returns to effort.  This property has been noted by several other researchers.

2. Sawtooth Property: Effort rises more quickly than it falls; that is, line BC in Figure 2a
rises faster than line CE falls, so that the {<,f} locus takes a sawtooth shape.  Along with the
extensive margin, at which effort increases discretely, this follows geometrically as the
upward sloping marginal cost of effort intersects with an inverted parabola.

3. Peak Proximity Property: Those individuals who try the hardest (whose ability is argmax
f(<)) have at least a 50% chance of passing the threshold; that is, line OC in Figure 2a has
a slope # -1.  An interior maximum, as in Figure 1, is reached where t=0, so f = -< and line
OC has a slope of -1.  Otherwise maximum effort occurs at the extensive margin, where by
the stair step property below f $ -<, and line OC is more steeply (negatively) sloped.

These three properties hold whether the measurement is perfect or imperfect.  The next two require

imperfect measurement to hold, with perfect measurement acting as a limiting case.

4. Precautionary Effort Property: Effort is positive at <=0.  Error in assessing t motivates
precautionary effort to increase the individual’s chances of passing.  (Under perfect
measurement, effort is zero at <=0.)

5. Stair Step Property: More able individuals always have better outcomes than less able
individuals; that is, )f/)< > -1 and )t/)< > 0.  Beyond point C, better-endowed individuals
work less and still have better outcomes.  The {<,t} locus always slopes upward, but fastest
near the extensive margin, like the sloping stair step in Figure 2. (With perfect measurement
the step is flat; lower effort fully offsets a higher endowment.)



3 The parameter p can be determined from these estimates and the distribution of T.  A
cautionary note, however: structural estimation is both complicated and problematic.  The location
of the extensive margin must be computed numerically, and coefficient estimates may be imprecise,
because simulations show that significantly different sets of parameter values can generate similar
{<,f} profiles.
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Estimating Behavioral Effects.  Figure 2 is also the departure point for estimating thresholds’

behavioral effects, because the available data often permit nonparametric estimation of the {<,f} or

{<,t} loci directly.  Compared to the parametric approach adopted in most previous studies, which

utilize one or more dummy variables to check for unusually strong outcomes in some pre-specified

< interval near the threshold, this nonparametric approach requires neither a pre-specified interval nor

a pre-specified functional form, thus allowing Properties 1-5 all to be examined.  And it completely

describes the threshold’s incentive effects, with graphs in the form of Figure 2.

From these graphs the validity of the properties listed above, or lack thereof, may be

obvious–as it is here.  Inference follows a natural progression: first the basic incentive effect, the Peak

Effort Property, is formally tested against the null that effort is unrelated to proximity to the

threshold–that the demeaned nonparametric estimates of f(<) equal zero.  This can be done with

commercial software.  If this null is rejected, the other properties can be tested by identifying the

empirical equivalents of point C, point D, line BC, and line CE, and comparing their values, slopes,

or relative slopes to those predicted in Properties 2-5.  Finally, estimates of the parameters {(,F,,P}

can be constructed from these values using the generalized method of moments, or via direct

structural estimation, and rigorous specification tests conducted.3

One can also test for the presence of threshold effects using the ex post distribution of T and

pre-test/post-test rates of transition from < to T.  Again no distributional or functional form

assumptions are necessary, using what is called “the caliper method” (explicated in Gerber and
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Malhotra, 2008; implemented in economics by Borghesi, 2008, and others; and extended here to

transition rates): the empirical density of T in a modest interval just above the threshold should exceed

that in an interval of equal size just below the threshold.  Also, <-T transitions should be

asymmetrical, with more individuals going from slightly negative < to slightly positive T than going

the other way.  The null that the two densities, or two transition rates, are equal is easily tested.  Our

empirical analysis will present evidence of all these types, all of which supports the same conclusion.

II.  Normative Properties of Thresholds.

We now examine three reasons a threshold might be actively preferred to a system of direct

measurement.  To show that certain normative outcomes are possible and determine whether they

are probable we use simulations, presented in Table 2 and described in the note to the table, that

compute various social objectives for various combinations of the parameters {(,F,,P}. 

Motivating.  Effort is underprovided under direct, imprecise performance measurement; its

expected returns are attenuated, as some effort is inferred to be noise, instead, in the solution to the

signal extraction problem.  This effort reduction can be large in relative terms, particularly when the

efficient level of effort is small to begin with.  This is so in our model, for example.  (Using the results

and nomenclature in footnote 2, fIMPERFECT/fPERFECT  0 [0,1), and increases in p.)

Under these circumstances, thresholds can improve efficiency by intensifying the effort of

individuals near the threshold.  The rewards for passing, P = (t$PASSERS - t$NONPASSERS)p, are magnified

by the divergence in effort between passers and nonpassers and, more subtly, by a positive feedback

loop in which the increased effort of passers further increases the rewards for passing, and so on.
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Nevertheless, the simulations in Table 2 (and many others not reported here) suggest it is not easy

to improve effort efficiency this way.  Under direct measurement all individuals provide some effort;

under the threshold those far from the extensive margin provide little effort, while others near that

margin may overprovide effort.  As a practical matter, thresholds seem to increase effort efficiency

only when agents are so unmotivated under direct measurement that they hardly try at all.

Signaling.  Spence (1973) showed that passing an educational threshold can provide valuable

information to employers about workers’ underlying aptitudes (< in our model) even when schooling

does not develop human capital.  But there was no claim that establishing a threshold is an optimal

way to do this, because it is not: direct measurement, even if imperfect, is always superior, because

unlike the threshold it does not throw away valuable information on which to condition.  If the

purpose of schooling is signaling, there is no reason to adopt thresholds.

Performance Measurement.  While < is immutable, t is under the agent’s control.

Consequently, thresholds can generate more accurate information about performance.  Unlike direct

measurement, where effort and ability need not be related (as in our model), a threshold system

engenders great effort by those low-< individuals who try to pass, but at most a little precautionary

effort by high-< individuals.  The two resulting groups, passers and nonpassers, have disparate cross-

group outcomes but similar within-group outcomes–especially passers, with whom information users

are probably most interested.  These within-group outcomes can be sufficiently similar that the

conditional variance of t is lower than it is under a system of direct performance measurement.

This is confirmed with the Table 2 simulations, which also show that this system works best

with higher rewards for passing the threshold (higher P), which leads to more effort.  Bond ratings,

which meet this condition, may have been intended to work this way:



9

Credit markets are not continuous; a bond that qualifies, though only by a hair, as
investment grade is worth a lot more than one that just fails....There is a huge
incentive to get over the line.  The challenge to investment banks is to design
securities that just meet the rating agencies’ tests....  But if the [securities] are too
risky, Moody’s will object...  “Every agency has a model available to bankers that
allows them to run the numbers until they get something they like and send it in for
a rating” (Lowenstein, 2008).

While the potential for gaming is clear, so to is the potential for within-grade risk to cluster together,

enhancing the informational value of a discrete rating system.

We now have two potential theoretical explanations for using thresholds in grading, which

both rely on imprecision in performance measurement.  When students are not strongly motivated to

produce human capital, a threshold can augment effort and thus improve efficiency; when they are

strongly motivated, a threshold can improve the accuracy of performance information that is provided

to employers or other educational institutions.

Identification of Normative Effects.  These normative properties of thresholds can be quantitatively

assessed from the joint distribution of {<,f} when the counterfactual effort under direct measurement

is known.  If this counterfactual, depicted in Figure 2, is f0, then the net incentive effects are the

simple integral I(E(f(<)) - f0)g(<)d<, where g(<) is the density of <.  Given an estimate of F,, the

informational properties of thresholds can be assessed as well.

If f0 is not observed, however, it cannot easily be inferred from {<,f} alone.  This would

require identification of the structural model parameters, which is challenging (see footnote 3), and

then (for market-determined rewards) solution of the Nash equilibrium in which each person’s effort

is optimal given others’ effort choices.  (These choices need not all be identical, as they are depicted

in the figure, further complicating matters.)  Still, qualitative judgements may sometimes be possible,
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as they are here, guided when appropriate by the simulation results in Table 2.

III.  Incentives and Thresholds in Education.

Historical Evidence on Grade Threshold Adoption.  We have identified two potential reasons for

adopting a threshold grading system.  We now turn to the historical record to see which, if any, of

these two reasons resulted in today’s widely used letter grade system.

There were no formal educational assessment mechanisms until the end of the 14th century,

when Dutch schoolmaster Joan Cele organized a large school.  Understaffing necessitated grouping

students on the basis of mastery, which required examinations, given twice a year for promotion.

These innovations spread throughout Europe over the next two centuries, and were extended during

the Industrial Revolution, as the state tried to exercise more control over universities’ examination

processes in order to improve the quality of its civil servants, who were increasingly selected on the

basis of merit instead of social class (Wilbrink, 1997).

In America, assessment developed along a similar path.  In colonial times, college students

were given an oral examination near the end of their studies, which chiefly measured students’ ability

at rote memorization.  But these lenient examinations were mostly just “gestures in public relations”

(Rudolph, 1977, p. 145).  The first defined scale for differentiating students appeared at Yale in 1785,

using four tiers, as in English universities.  Coupled with written examinations, more intricate grading

systems began to develop.  In 1813, Yale moved to a four-point numerical scale that included both

whole numbers and decimals, while Harvard contemporaneously adopted a twenty point scale, later

replaced by a one hundred point scale in order to measure achievement more exactly.  Throughout
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the remainder of the nineteenth century American universities experimented with a variety of marking

systems, including written reports, adjectives such as “good” and “exemplary,” and a variety of

numerical scales, often quite detailed (Smallwood, 1935).

Modernization of the curriculum toward the end of the 19th century seems to have brought

with it the first letter grades: a five-tiered, A through E system instituted at Harvard in the 1880s.

This system was explicitly intended to diminish motivation:

The Faculty last year did away with the minute percentage system of marking, and
substituted a classification of the students in each course of study in five groups, the
lowest of which includes those who have failed in the course.  It is hoped that this
grouping system will afford sufficient criteria for the judicious award of scholarships,
honorable mention, and the grade of the Bachelor’s degree, while it diminishes the
competition for marks and the importance attached by students to College rank in
comparison with the remoter objects of faithful work. (Annual Report of the
President of Harvard, 1885, p. 9, quoted in Smallwood, 1935, p. 51)

 As Harvard’s new curriculum and teaching methods spread throughout American higher education,

so did its new grading system.  

A similar shift occurred in American public schools during this period, as enrollment and

professionalism increased dramatically.  Assessment initially evolved away from written narratives

toward percentages on examinations in different subject areas.  Then Wisconsin researchers Daniel

Starch and Edward Charles Eliot (1912, 1913) challenged the reliability of percentages as indicators

of achievement, showing that teachers assigned a wide variety of grades to identical papers, with

percentage scores ranging at least thirty-four points in English and as much as sixty-seven points in

math.  In response, schools moved away from percentage scores to fewer, larger categories, such as

the “Excellent,” “Good,” “Average,” “Poor,” and “Failing” system that presaged today’s A-F scale.

In summary, grading systems evolved with the educational system, partly in response to



4 This discussion relies on two recent assessments of the field, Stipek (1996) and Elliot and
Ista (2008).  In the literature on educational assessment, grade incentives receive even less attention.
In 2008 the journal Studies in Educational Evaluation had thirty-four volumes.  A search of titles,
abstracts, and keywords in all articles for the word “incentive” yielded a single match, which was not
relevant to the topic of this paper.
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demands for better information about student performance, but were not explicitly designed to

motivate students.  This holds in particular for the introduction of thresholds: first, by Cele, to group

students into a discrete, homogenous classes to expedite cost-effective instruction; second, by

Harvard, to weaken “competition for marks”; and third, motivated by Starch and Eliot, to mask the

disparity in instructors’ grading standards.

Current Research on Grade Incentives.  This history suggests that any beneficial properties of

threshold grading systems would be purely incidental.  Evidence from educational psychology further

suggests that academic achievement may not respond positively to grade incentives.4

That literature initially emphasized a model in which behavior responded to “extrinsic”

reinforcements, such as grades, and in which these reinforcements could be adjusted in an almost

Keynesian way to bring about desired outcomes.  Over time, however, this model has been de-

emphasized in favor of a broader model that also allows internal, or “intrinsic,” motivations, and

which mediates the effect of external reinforcements through a large set of cognitions that influence

the way in which students respond to incentives and their objectives in doing so.

This research concludes that extrinsic motivation and intrinsic motivation are substitutes:

students have an intrinsic “achievement motive” that is weakened by the use of incentives.  This

diminishes the potency of extrinsic rewards.  Furthermore, extrinsic incentives’ effects are influenced

by students’ perceptions of competence and self-efficacy.  If these are poor, students adopt a
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“performance-avoidance” goal–essentially a maximin objective that tries to moderate bad outcomes

rather than strive for good ones.  When this happens, incentives’ effects are yet further diminished.

These ideas are just beginning to creep into economics (Vedantam, 2008), and may help explain the

most puzzling question in labor economics today, the weak response of college graduation rates to

the increased college wage premium (Altonji, Bharadwaj, and Lange, 2008).

As it stands, though, there is little in the economics literature that explores the effects of grade

incentives on student achievement.  A few studies (including Grant, 2007, and sources cited therein,

and more detailed work by Bonesrønning, 1999, 2004) find that more difficult instructors have better

learning outcomes, but this might have more to do with teaching methods than incentives, which are

not distinguished empirically.  A complementary set of studies explore how study effort affects

learning (Farkas and Hotchkiss, 1989; Stinebrickner and Stinebrickner, 2008; DeFraja, Oliveira, and

Zanchi, forthcoming; also see Schuman et al., 1985).  Results are mixed, because of difficulties

measuring study effort and, perhaps, because of the variety of populations studied.

Finally, Oettinger (2002) explores how grade thresholds affect final exam performance for

college students, as we do, and concludes that they matter.  Both this study and ours “control” for

all course characteristics and instructional methods, which are identical across students in the same

class.  But they cannot distinguish between the amount of incentivized effort and the effectiveness

of that effort, so if incentives fail, they cannot isolate why.  Oettinger’s study and ours differ in five

main respects: 1) we emphasize economic significance, while he emphasizes statistical significance;

2) his estimates are parametric, and ours mostly nonparametric; 3) our theoretical development,

unlike his, emphasizes the role of uncertainty in passing the threshold, which leads to different

empirical predictions and “regression specifications”; 4) he studies stronger students than we do; and
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5) his incentives are stronger, because the final exam counts more.  Below we compare Oettinger’s

estimates to ours, and argue there is less dissonance between them than appearances suggest.

In summary, the historical record and the academic literature alike are ambivalent on the

effectiveness of grade incentives, and do not indicate that the threshold grading system has valuable

normative properties.  In the empirical work, accordingly, we adopt the standard null hypothesis that

these incentives are ineffectual, and then attempt to marshal enough evidence to reject it.

IV.  Data and Implementation.

The data used in this analysis were generously provided by five university instructors teaching

four different courses, both upper and lower division, at two Texas universities during various subsets

of the years 1998-2007.  The courses, Principles of Accounting, Principles of Microeconomics,

Business Statistics, and a “Business Analysis” course combining elementary calculus and probability

concepts, are all required for a bachelor’s degree in business at their respective universities.  Summary

details about the courses, instructors, and grading policies are found in Table 3.

Typically, university grading systems are either norm-referenced or criterion-referenced.  In

the former students are evaluated relative to one another; thresholds still separate letter grades, but

are not specified in advance, and so cannot motivate students much on the margin.  In contrast,

criterion-referenced grading sets absolute standards, on the philosophy that grades should reflect

mastery of specific course material.  In these systems, thresholds are expected to incentivize effort

as previously outlined.  All instructors in our sample use criterion-referenced grading.

For each student in each course, the data contain all recorded test scores and homework
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grades, along with the formula used to compute each final course average, which is also given to

students in advance on the course syllabus.  We can thus compute the student’s pre-exam and post-

exam course averages, as can the student herself.  All courses evaluated students, primarily or wholly,

on the basis of two to four midterm exams, one of which could sometimes be dropped, and a final

examination that was, except for one instructor, mandatory.  Generally the final exam was worth

about one-quarter of the final average.  Most exams, including the final, consisted of multiple choice

questions, occasionally supplemented with short answer questions or problems. 

There is nothing atypical about these course characteristics; nor is there anything atypical

about the universities at which these courses were taught: Sam Houston State University, a public,

seventeen-thousand student, U.S. News third-tier regional university; and the University of Texas at

Arlington, a public, twenty-five thousand student, U.S. News fourth-tier national university.  Median

incoming SAT scores at both schools modestly exceed the national average of about 1,020; six-year

graduation rates, around 40%, are typical for universities of this type.  We do not claim that students

in all universities behave as these students do, only that these universities are not unrepresentative of

the higher education system in the United States.

The instructors in our data are all terminally qualified, currently possessing almost a century

of combined full-time teaching experience; in their first year in our sample each has at least four years

prior experience teaching that course.  Course evaluations and administrators’ judgements suggest

that these instructors typically are successful in teaching these courses and that they set appropriate

course expectations and grading standards.  Each uses the standard grading scale, in which 90% is

an A, 80% a B, 70% a C, and 60% a D; each occasionally bumps up grades just below the threshold,

usually without informing students in advance that they do this.  In our data, each instructor teaches
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more than 650 students, so that both parametric and nonparametric estimates of effort provision, as

reflected in final exam scores, can be obtained with reasonable precision.

In our theoretical model performance is a function of innate ability or aptitude, but in the data

final exam performance is a function of prior test grades, which reflect a combination of ability and

“baseline” effort.  The model is flexible enough to handle this.  Redefine < as this combination and

f as the “strategic” effort perturbation, positive or negative, in response to threshold incentives (or

lack thereof).  This model solves as before, and the {<,f} and {<,t} graphs take the same shapes.

Only the Precautionary Effort Property does not carry through.

This redefinition does not affect estimation of the {<,t} relation.  This is done directly with

a semiparametric regression of final exam scores on the pre-exam average and a set of time

(semester/year) dummies, added to control for temporal variation in final exam difficulty.  Estimation

is conducted using a loess smoother, with the smoothing parameter set to cleanly resolve

perturbations in mean exam scores as small as two percentage points in width (see footnote 6).  

The {<,f} relation, on the other hand, can only be estimated within an additive constant, as

we cannot be sure that the final exam was just as difficult as the tests that preceded it, or (using the

results in Section II) that average study effort for the final exam equals that for the previous tests.

Therefore, to establish a base from which to identify perturbations in exam performance, we first

parametrically regress the exam score on the time dummies, the pre-exam average, and its square.

The perturbations are then revealed by nonparametrically regressing these “detrended” residuals on

the pre-exam average, again using the loess smoother.  Separate regressions are conducted for each

instructor; the “sample” analyzed includes all students who took the final exam, had complete pre-

exam data, and earned a pre-exam average of at least 50% (sample sizes are in Table 3).
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V.  Results.

Results for four instructors are presented in Figures 3-6: Professors Berg, Grant, Green, and

Hegwood.  Each figure contains a portfolio of results for each instructor, illustrating the distribution

of final averages, the change in these averages after taking the final exam, final exam performance

conditional on the pre-exam average, and the deviation of that performance from trend.  We discuss

these four instructors’ results collectively.

Distribution and Transition.  The first graph in each portfolio is a simple frequency distribution of

individual course averages, in percent, before taking the final exam and after.  These are grouped into

two point intervals: 50.00-51.99, 52.00-53.99, etc.  In each case the distribution is approximately

normal, as would be expected, with a mean between 70 and 80.  Strategic behavior should be

reflected in a bunching of post-exam final averages just above the ten-point grade thresholds, but this

does not generally happen, with a few possibly random exceptions: B’s for Profs. Berg and Grant and

D’s for Prof. Green.  Many students’ averages do change after taking the final exam, up or down, but

these tend to offset, so the pre- and post-exam distributions are similar.

These dynamics, and summary evidence on the bunching of final averages, are presented in

the transition matrix that comes next in each result portfolio.  Each student is classified by the unit

digit of their unrounded pre-exam and post-exam course average: 0 or 1 placing them in the bottom

two points of the standard ten-point range, 2-7 placing them in the middle six points of that range,

and 8-9 placing them at the top.  Pre-exam to post-exam transition probabilities, along with the total

number of students falling in each category, are presented in the interior of the transition matrix, with
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row and column totals, and associated proportions, along the outside.

Each matrix provides three pieces of evidence about strategic final exam study behavior, all

versions of the caliper test mentioned above.  The first simply concerns the proportion of students

falling in each of the three classifications.  Under random placement of students, as for example in the

pre-exam average, roughly 20% should be at the bottom end, 60% in the middle, and 20% at the top.

This does indeed come to pass in all four classes.  Strategic exam-taking behavior, however, implies

this should not be the case post-exam (with the underlined numbers in the matrix).  Instead, the

bottom end of each range should have significantly more than 20% of all students.  It never does.

The other evidence involves transitions across classifications after the final exam is taken.

Strategic behavior should increase the probability of transitioning from the upper two points of one

grade range to the bottom two points of the next highest range, and reduce the probability of going

the other way.  Thus, the transition probabilities in the upper-left italicized cell should exceed those

in the lower-left italicized cell.  In the data, differences in these transition probabilities are insignificant

for two instructors and significant for two others: one, Prof. Green, in the “right” direction and the

other, Prof. Hegwood, in the “wrong” direction: a thoroughly split decision.

Transitions for students in the middle of their grade range, in the second row of the matrix,

should also be asymmetric when there is strategic behavior: movements to the lower two points of

a grade range, in the left bolded cell, should be more frequent than those to the highest two points,

in the right bolded cell.  This happens for one instructor, Prof. Hegwood, but there are no significant

differences for the other three.  In summary, for all four classes, final course averages and their pre-

exam/post-exam change exhibit almost no evidence of strategic exam-taking behavior.



5 The coefficients on the time dummies in the mean regression were used to adjust exam
scores for the quantile regression.  The flexible functional form in the quantile regressions is achieved
by representing the pre-exam average as a combination of a series of knots, calculated using
transformation regression.  The exam score is then regressed on these knots, in a quantile regression,
and the curves in the figure are backed out from these estimates.  Further details and copies of all
programs are available from the first author.
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Exam Scores.  The next figure in each portfolio presents exam scores as a function of students’ pre-

exam averages: the estimated {<,t} relation.  Its successor–the last figure in the portfolio–presents

the mean deviation between the actual scores and those that would be expected if strategic behavior

were absent: the estimated {<,f} relation.

The top, multi-layered figure begins with a scatterplot of individual exam scores against the

pre-exam average.  They exhibit great variation, some of which may be due to differences in effort,

and the rest due to inter-semester or inter-student differences in exam difficulty, luck in the choice

of questions asked, exam-day health, etc.  These are difficult to anticipate, justifying our emphasis

on uncertain measurement.  Added to this scatterplot are three smoothed sets of predicted exam

scores: the mean, in the center line, calculated as described above, along with the 25th and 75th

percentiles, calculated by applying quantile regression to exam scores that were adjusted for inter-

semester differences in exam difficulty.5  More motivated students reside at the higher percentiles.

The pre-exam average is also affected somewhat by random factors, so there is regression to

the mean that brings each line’s slope below one.  This mean-reversion need not be constant,

however, because the contribution of random factors is smaller at high grades and larger at low

grades, as can be seen in the exam scatterplots, so a slight convex shape is expected.  It is indeed

observed for two instructors (Profs. Grant and Hegwood).  The long-arc relation between the

dependent and independent variables, therefore, requires at least a quadratic–a form that is, in fact,
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actively preferred, as the the “polynomial wiggle” that could be introduced by a higher-order

polynomial might obscure strategic variation in exam scores.

Strategic behavior should be apparent in positive deviations of mean exam scores from this

long arc, or trend, located slightly under the ten-point thresholds for each letter grade.  This is

apparent only rarely: below the B threshold for Prof. Berg and the D threshold for Prof. Grant, and

possibly also below the D threshold for Prof. Hegwood.  This is true not just at the mean, but also

at the 75th percentile, and even where it is apparent the effect is neither large nor significant.

This is demonstrated in the last figure of each portfolio, which depicts (again using the loess

smoother) the deviation of the mean exam score from its long-arc quadratic trend, with accompanying

upper and lower 95% confidence intervals.  In every case, the point estimates rarely exceed two

percentage points, are virtually never significant, and are never significant where they should be–just

below the grade threshold.  The Peak Effort Property fails thoroughly.  Its failure obviates the need

to check the others, though there is little evidence that they hold either.  Perturbations in exam scores

do not rise faster than they fall, as the Sawtooth Property predicts; occasionally E(T) slopes down,

contradicting the Stair Step Property.  Again, grade incentives appear to be ineffective.

For completeness, the center panel of Table 4 presents formal tests of all the null hypotheses

just discussed.  Of twenty p-values, one is significant at the 5% level and another at the 10% level,

as predicted by chance.  Even the elusive p > 0.9 (DeLong and Lang, 1992) is well-represented.

Comparison.  Table 4 also presents results from a parametric specification introduced by Oettinger

(2002), which includes a trinomial in the pre-exam average and four interval dummies for the pre-

exam distance from the closest grade threshold, in percentage points, [1..2), [2..3), [3..4), and [4..5),



6 A variety of nonparametric estimators and smoothing values were feasible.  The differences
between them can be summarized as follows.  First, the choice of estimator is inconsequential.
Estimates were also constructed with transformation regression, least absolute difference regression,
and nonparametric spline estimators, all to little effect.  Second, by choosing the smoothing parameter
to resolve perturbations in the nonparametric estimates that are small in width, estimates of strategic
effort are exaggerated.  Using the statistically preferred smoothing value, deviations of effort from
trend rarely exceeded one-half percentage point, and were always insignificant.  This smoothing value
is utilized for the hypothesis tests presented in Table 4.
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with [0..1) being the omitted category.  These dummies capture f in reverse–effort relative to those

on the borderline–and their joint significance implies the existence of strategic effort.  (Our theory

implies those above the threshold behave differently from those below it, suggesting the specification

should be modified accordingly.  We do not do this here, however, to maintain comparability with

Oettinger.)  For each instructor these dummies are jointly insignificant, reinforcing our nonparametric

estimates, as do several other robustness tests.6

Oettinger estimates this model on grades from a micro principles class at the University of

Texas’s flagship Austin campus and finds that strategic effort exists, on the basis of these joint

significance tests and evidence that students’ final averages cluster just above the grade thresholds.

Still, even here, threshold effects on final exam performance are modest: one percentage point on

average and three percentage points at most.  Oettinger’s data, compared to ours, are perhaps less

representative of American higher education, but more favorable to a positive result: the final exam,

40% of the course average, counts more, and the students he studies are more capable.  Such modest

effects do not conflict too much with our findings, and suggest that the effect of grade incentives on

learning is small under more favorable circumstances and nil under less favorable circumstances.

Exam Taking.  The final instructor for which we have data, Prof. Sweeney, allows students to drop
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their lowest test, including the final exam.  This provides additional leverage: we can analyze the

exam-taking decision first, and then the conditional exam score second.  These results are presented

in an abbreviated results portfolio in Figure 7.  The top graph illustrates the probability of taking the

final exam, estimated semiparametrically using transformation regression, as a function of the pre-

exam course average (with time dummies and a dummy for missing a previous test as controls).  This

graph, in contrast to those preceding it, exhibits dramatic variation.  It clearly establishes the

diminishing marginal value of successively higher grades–moving from an F to a D is valued much

more than moving from a B to an A.  It also indicates that students think incrementally about the

exam-taking decision: within each grade range, exam-taking steadily increases as one approaches the

grade threshold.  (These thresholds are shifted left by about three percentage points, because this

instructor rounds up generously.  The thresholds are known by students prior to the final exam.)  This

is implied by the Stair Step Property, which asserts that exam takers’ post-effort passing probabilities

continuously increase as the pre-exam average approaches the threshold.  Furthermore, for two of

the three thresholds in question, the most rapid rise in exam-taking probabilities occurs as one gets

within a reasonable range of the threshold, consistent with the Sawtooth Property.

The other graph in this portfolio relates the mean exam score to the pre-exam average for the

subset of students that take the final exam (over the limited grade range for which we have sufficient

observations).  This graph resembles its compatriots–no threshold effect is observed, except perhaps

for those just shy of the C/D border.  Exam-taking appears to respond to grade incentives, but not

exam performance.  Overall, there is little evidence that students strategically raise their exam scores

via increased study effort when their grades are most likely to benefit, even when it means the

difference between passing and failing.
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VI.  Conclusions.

In our data grades either do not motivate on the margin, or the additional effort is ineffective.

In neither case would grade thresholds have beneficial incentive properties.  Nor, then, do individual

course grades provide good information about students’ performance.  This conclusion is linked to

the previous one.  Highly grade-motivated students would tend to cluster just above their preferred

threshold, making the course grade a good indicator of student achievement in that class.  This will

not happen in the absence of such motivation.  This explains Grant’s (2007) quixotic finding that the

primary component of grades in micro principles classes at a non-Texas university is not teacher

expectations or student ability but unrelated, potentially random factors.

We cannot isolate the root cause of our main finding, but there are only a few possibilities:

extrinsic incentives are inherently ineffective, for the reasons given by educational psychologists; the

incentives provided by grades are weak, because of imprecision in the measurement of performance

or low rewards to passing grade thresholds (but see Grant, 2007, for evidence that college grades

matter to employers); or study effort is ineffective.  It is also unclear whether our findings generalize

to other student populations.  To facilitate study of this question, we will share our estimation

programs with interested parties–or will execute the estimations on data provided to us.

What is clear is that further study is warranted.  Teacher-focused or school-focused

educational reforms will be less successful, and less cost-effective, if students are not appropriately

motivated.  Our study suggests this may not be easy to do.
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Figure 1.   Analysis of the Effort Decision, Conditional on Ability. 



Figure 2.  Top: Ability-Effort Locus.  Bottom: Ability-Performance Locus. 

 
 

  



Figure 3.  Results Portfolio: Berg. 
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Figure 4.  Results Portfolio: Grant. 
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Figure 5.  Results Portfolio: Green. 
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Figure 6.  Results Portfolio: Hegwood. 
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Figure 7.  Abbreviated Results Portfolio: Sweeney. 
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Table 1.  Summary of Academic Studies of Threshold Incentive Effects. 

 

Topic Selected Studies Threshold Theory Evidence 

gaming of bonus 

systems 

Healy (1985), 

Courty and 

Marschke (2004) 

annual cutoff for meeting 

quotas to qualify for 

bonuses 

emphasizes potential 

adverse effects of 

thresholds 

timing of reported output is 

adjusted to maximize bonuses 

criminal behavior, 

drunk driving  

Friedman and 

Sjostrom (1993), 

Grant 

(forthcoming), 

Iyengar (2008) 

zero tolerance thresholds 

of various types 

 

emphasizes potential 

adverse effects of 

thresholds or threshold 

reductions 

reduced BAC thresholds do 

not effect the amount of drunk 

driving by youth; criminals on 

their “third strike” commit 

more severe offenses 

biodiversity loss Perrings and 

Pearce (1994), 

Muradian (2001) 

where species populations 

are sufficiently depleted 

that “the ecosystem loses 

resilience” 

emphasizes risk 

avoidance in a 

dynamic, uncertain 

environment 

“there is abundant evidence 

of…threshold effects as the 

consequence of human 

perturbations on [ecosystems]” 

instructional effort 

by schoolteachers  

McEwan and  

Saltibanez 

(2005), Reback 

(2008) 

“points” required for 

promotion or for passing a 

high-stakes test  

emphasized Property 1 

defined below 

instructional effort appears to 

be stronger for those teachers 

or students near the threshold 

analyst / publication 

bias in political 

economy, labor 

economics, and 

sociology 

Tufte (2006),  

Gerber and 

Malhotra (2008) 

 

the t values required for 

statistical significance of 

regression coefficients 

formally derives the 

“caliper test” 

researchers’ methodological 

choices and/or editors’ 

acceptance decisions favor 

rejections of the standard null 

grade incentives on 

study effort 

Oettinger (2002), 

this study 

letter grade cutoffs see the text of this 

study 

see the text of this study 

 



Table 2.  Simulation Results.  

                 Information.  Each cell contains the standard deviations of t 

Effort Provision. Each cell contains efficient effort, average effort        among passers and nonpassers under a threshold, followed  

under a threshold, and effort under direct measurement.                                    by that conditional on T under direct measurement.                                                                                                                 

 
γ = 0.175 σε = 1 σε = 2 σε = 3 σε = 4 σε = 5 σε = 1 σε = 2 σε = 3 σε = 4 σε = 5 

P = 1 

  1.013 

    0.742* 

  0.406 

  2.083 

  0.131 

  0.000 

  3.017 

  0.000 

  0.000 

  3.960 

  0.000 

  0.000 

  4.844 

  0.000 

  0.000 

1.542 

2.633 

0.948 

2.110 

2.355 

1.662 

2.464 

2.464 

2.116 

2.621 

2.621 

2.392 

2.723 

2.723 

2.563 

P = 2 

  5.101 

  1.617 

  4.494 

  6.622 

  1.570 

  4.503 

  7.343 

  1.008 

  3.355 

  7.951 

  0.258 

  2.077 

  8.805 

  0.000 

  1.168 

1.304 

3.742 

0.948 

1.338 

3.531 

1.662 

1.823 

3.123 

2.116 

2.454 

2.783 

2.392 

2.723 

2.723 

2.563 

P = 4 

12.949 

  2.256 
12.342 

14.008 

  2.832 
11.890 

14.665 

  2.976 
10.676 

14.555 

  2.737 
  8.681 

14.487 

  2.262 
  6.851 

1.148 

3.849 
0.948 

0.994 

3.571 
1.662 

1.153 

3.233 
2.116 

1.492 

3.098 
2.392 

1.876 

3.017 
2.563 

P = 7 

24.932 

  2.517 
24.324 

23.877 

  3.496 
21.758 

22.846 

  4.081 
18.857 

21.940 

  4.307 
16.066 

21.201 

  4.255 
13.565 

1.054 

0.227 

0.948 

0.820 

1.624 

1.662 

0.924 

1.848 

2.116 

1.189 

1.944 

2.392 

1.491 

2.067 

2.563 

P = 10 
27.489 
  2.638 

26.881 

28.862 
  3.821 

26.743 

27.627 
  4.639 

23.638 

26.123 
  5.100 

20.249 

24.963 
  5.272 

17.326 

1.002 

0.211 

0.948 

0.731 

0.504 

1.662 

0.822 

0.829 

2.116 

1.070 

1.167 

2.392 

1.347 

1.493 

2.563 

 

Note: Bolded cells indicate an improvement in the assumed objective (efficiency in effort provision or accuracy in information provision) 

under a threshold system; italicized cells indicate a partial improvement—information is more accurate for passers, or for nonpassers, but not 

both. * means that efficiency falls despite higher average effort, which is achieved by overexertion by those near the extensive margin. 

 

Description of Simulations: Ability is assumed to be distributed normally with mean zero and a standard deviation of three units.  The 

threshold is placed at zero.  (This need not be the optimal location, which would depend on the relative weights placed on effort provision and 

information accuracy.  This question can be deferred for the primary purpose of these simulations--to show that thresholds can have desirable 

normative properties.)  All other parameters are as listed in the table.  Effort, actual performance, and the distributions of true and measured 

performance are calculated for 0.1 unit intervals of ability, for all ability levels between -10 and 10, using the results in footnote 2 and 

numerical computation of the extensive margin under a threshold.  From this the values presented in the table are computed.  While γ is fixed 

in these simulations, many others not reported here demonstrate that its effect on effort across the full ability distribution is quite similar to 

that of an appropriate change in P.  Thus varying both parameters would be somewhat superfluous, and far more complex to present. 



Table 3.  Course Characteristics and Sample Sizes. 
 

 
Instructor 

  Berg Grant Green Hegwood Sweeney 

Course Taught 
Business 
Analysis 

Principles of 
Micro 

Principles of 
Micro 

Business 
Statistics 

Principles of 
Accounting 

University 
Where Taught 

SHSU UTA SHSU SHSU SHSU 

Grade Level of 
Course 

Sophomore Sophomore Sophomore Junior Sophomore 

Sample Size 1132 655 943 704 
856 total 

468 take final 

Grading Scale 90, 80, 70, 60 90, 80, 70, 60 90, 80, 70, 60 90, 80, 70, 60 90, 80, 70, 60 

Grading System 
Criterion-

referenced 
Criterion-

referenced 
Criterion-

referenced 
Criterion-

referenced 
Criterion-

referenced 

Adjust Points on 
Borderline? 

A little A little A little A little 
About three 

points 

Contribution of 
Final Exam to 
Final Grade 

20% to 25% 25% to 40% 25% 15% to 25% 0% to 20% 

Years Full-Time 
Teaching Exp. 
in 2007 

13 12 36 9 16 

Final Exam 
Mandatory? 

Yes Yes Yes Yes No 

Test/Exam 
Format 

MC, Problems 
Problems, 
MC, Short 

Answer 

MC, Short 
Answer 

MC, Problems MC, Problems 

Sample Period 

 
2002-2007 2004-2007 1998-2007 2002-2007 2005-2007 

 
Note: Prof. Green allows students to drop any test except the final exam.  In the empirical work, 
the pre-exam average for Prof. Green’s students accounts for this dropped test.



Table 4.  Summary of Formal Hypothesis Tests (p-values). 

 

 Caliper Test:  

Final Averages 

Caliper Test:  

Transition Rates 

Nonparam. Regression: 

Exam Score,  

Deviation from Trend 

Parametric Regression: Exam 

Score 

null hypotheses 

(distribution of test 

statistic) 

1. the proportion of 

students in the lower 

range does not exceed 

0.2 (z) 

 

2. the proportions of 

students in the lower, 

middle, and upper 

ranges are 0.2, 0.6, 

and 0.2 (χ²) 

1. the proportion of 

students moving from the 

upper range to the lower 

range equals that going 

the other way (z) 

2.  the proportion of 

students in the middle 

range moving to the 

lower range is no larger 

than that moving to the 

upper range (z) 

the full nonparametric 

estimate of the effect of 

the pre-exam average is 

not different from zero 

(using the best fitting 

smoothing value) (χ²) 

coefficients on dummies 

measuring the distance of the 

pre-exam average from the 

threshold are zero 

 

1. Ordinary Least Squares (F) 

 

2.  Least Absolute Distance--

Likelihood Ratio Test (Wald 

Test is similar) (χ²) 

Instructor: 

    Berg 

0.189 

0.778 

0.229 

0.688 

0.739 0.821 

0.509 

    Grant 0.673 

0.939 

0.222 

0.845 

0.751 0.499 

0.263 

    Green 0.435 

0.997 

0.054 

0.784 

0.119 0.723 

0.925 

    Hegwood 0.795 

0.569 

0.983 

0.046 

0.276 0.339 

0.986 

    Royal  

(from Oettinger, 2002) 

parametric test: 

p = 0.01 at most 

---- ---- 0.122 

0.047 
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