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Beer in Good Times and Bad:  A State-Level Analysis of 

Economic Conditions and Alcohol Consumption 
 

I. Introduction 

How economic conditions affect alcohol consumption is still a matter of debate.  The 

convention wisdom in the economics literature is that alcohol is a procyclical normal good, as 

evidenced by Ruhm (1996), Blake and Nied (1997), Ruhm & Black (2002), and Freeman (1999, 

2000).  Income elasticities for alcohol tend to vary around 0.5-0.8 in these studies, with per 

capita consumption of all beverages, including beer, wine, and spirits, falling during recessions.   

Tremblay and Tremblay (2005), in a comprehensive study of the brewing industry, report on 

eight studies of beer demand, including their own, six with positive income elasticity and two 

with negative income elasticity, averaging about 0.2.    

The prevailing view from the investment side, however, is that the beer industry is 

recession-proof or acyclical:  beer companies (and other purveyors of  “vice” products like 

tobacco or gambling) are considered to be “defensive” stocks, relatively immune to the business 

cycle.  For instance, over the five year period from June, 1998 to June, 2003, marked by the 

bursting of the “dot-com” bubble, the recession of 2000-2001, and the tragedy of 11-September-

2001, the stocks of companies in the Alcoholic Beverages, Gambling and Casinos, and Tobacco 

industries rose by 46.02%, 145.18%, and 56.70% respectively, while the S&P 500 lost 14.05% 

(Ahrens, 2004).   Notably, common stocks of brewing companies typically carry “betas” less 

than 1.0, meaning that their systematic risk is less than the market.1 

 Psychological theories suggest on the other hand that alcohol is countercyclical, as 

economic downturns are causes of stress-induced drinking.  In a series of papers Brenner and his 

                                                      
1 Broadly speaking, “beta” is the coefficient of the return of a security regressed on the return of the market.  A beta 
of 1.0 indicates that the security has the same systematic risk as the market.  
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colleagues (e.g., Brenner and Mooney, 1983) produced evidence that a host of self- and other-

destructive activities, including alcohol abuse and drunk driving, increased during periods of 

unemployment.  Brenner’s work was later attacked on methodological grounds, but his work is 

still cited as influential.   

In a recent attempt to measure directly the cyclicality of beer consumption, Freeman 

(2001) used monthly shipments data in the U.S. from 1955 through 1994 in an error-correction 

framework to test for the short-run response to economic factors such as unemployment, 

industrial production, and personal income.  Although there does appear to be a long-run 

relationship between beer consumption levels and the economic variables, Freeman finds no 

evidence of short-run cyclical response of beer to economic variables.  Freeman’s study focuses 

only on beer, only at the national level, and only using monthly data, but does find supporting 

evidence of beer’s acyclicality. 

 In order to shed further light on the cyclicality of beer consumption specifically, the 

current paper uses U.S. state-level shipments data from 1970 to 2007 as provided by The Beer 

Institute (formerly the United States Brewers’ Association) to estimate pooled time-series 

models of annual beer consumption on economic and demographic variables.  The advantages of 

using state-level data include the additional variability of regressors, which helps to mitigate 

problems of multicollinearity common to macro data, the ability to control for state-and time-

specific sources of variation, including the different timing and severity of recessions across 

states, and the greater potential power of tests of stationarity and cointegration.   

 This paper also incorporates controls for changes in the age distribution of the states, 

demonstrated by Kerr, et al. (2004) to be an important source of variation in alcohol 

consumption over time in the U.S.  Kerr, et al., using the U.S. National Alcohol Survey, show 
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that age groups have different consumption habits regarding types and amounts consumed of 

alcoholic beverages.  Tremblay and Tremblay (2005), using market research data, report that the 

prevalence of beer drinking, while declining somewhat for all groups, is highest (at around 50% 

in 2001) in the 25-34 year age group.  As we will demonstrate below, changes in this group’s 

proportion of the population show a close association with trends in per capita consumption of 

beer in the U.S. and in the several states. 

 To estimate these relationships, this paper uses recent developments by Pesaran (2006) 

and his coauthors to control for unobserved common effects in pooled cross-sections.  The 

traditional way of controlling for common temporal effects like nationwide economic shocks has 

been to employ a two-way fixed effects model with “dummy” variables for each time period in a 

pooled estimation.  The limitation of the traditional approach is that all the cross-section units are 

constrained to have the same response to the (single) common time effect.  In the Pesaran 

approach, referred to as common correlated effects (CCE) estimators, the cross-section means of 

the dependent variable and the regressors are used as proxies for the unobserved common effects 

in augmented regressions, allowing for heterogeneous responses to the proxies across the units.  

The CCE estimators are shown to reduce the substantial bias and size distortions that result if 

cross-section dependence is ignored. 

 Using the improved techniques, the empirical analysis finds that beer consumption is in 

fact cyclical, varying negatively with the unemployment level, a result at variance with previous 

research and one that comes out only when unobserved heterogeneity is properly controlled.  

Beer is a normal good, varying positively with income, and previous findings that excise taxes 

have a negative effect on consumption are supported, though not with the same degree of 

responsiveness.  Demographics have a significant and material affect on consumption; as 
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expected, the larger the share of young adults in the population, the greater the consumption of 

beer per capita.   

 The paper proceeds as follows.  The next section describes the data and provides a 

summary of previous research.  Section III describes the empirical approach and the initial CCE 

estimates.  Section IV extends these results and provides some robustness tests, and Section V 

concludes. 

 

 

II. Previous Research and Proposed Methodology 

 The main focus of the paper is the responsiveness of beer demand to the business cycle.  

As measures of economic activity, we use the unemployment rate, the employed/population ratio 

(for the working-age population), and disposable income per capita, in 2007 dollars, all at the 

state level, for the years 1970-2007.  Each of these variables captures a different characteristic of 

the business cycle, and the use of multiple regressors is a reflection of the fact that there is no 

variable that is the one best measure of the cycle.  The unemployment rate and the 

employed/population ratio are taken from the Local area Unemployment Survey of the Bureau of 

Labor Statistics, and state disposable income is taken from the regional accounts database of the 

Bureau of Economic Analysis. 

 Previous research on drinking and the business cycle has produced mixed results, 

depending on the data level and the econometric specification.  As noted, research based on 

psychological theories, such as Brenner and Mooney (1983), or Winton, et al. (1986), often 

assert that the stress of unemployment increases drinking behavior as a coping mechanism.  

Economic research such as Sloan, et al. (1995), or Ruhm (1995) typically regards alcohol as a 
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normal good, with declining incomes in recessions leading to predictions of declines in alcohol 

consumption.  With no clear theoretical prediction, the question of alcohol’s procyclicality 

becomes an empirical one. 

  Ruhm (1995) uses a panel of aggregate data to investigate the role of the macroeconomy 

in relation to alcohol consumption and traffic fatalities, finding that drinking and vehicle 

mortality decline during recessions.  Freeman (1999) looks at an expanded data set corrected for 

non-stationarity and verifies Ruhm’s finding of alcohol’s procyclicality.  Dee (2001), on the 

other hand, using micro data from the Behavioral Risk Factor Surveillance System (BRFSS), 

finds that that binge drinking increases markedly during recessions, and agues that economic 

stress is the primary factor, outweighing the income effects of recessions.  Ruhm and Black 

(2002) counter with an expanded BRFSS sample with a larger set of explanatory variables and a 

weighted regression to find again that alcohol is procyclical even at the micro level.   

 Freeman (2001) takes a somewhat different tack from previous literature to focus solely 

on beer consumption at the national level, at a monthly frequency, over the period 1955-1994.  

Because recessions are relatively short-lived phenomena (the average post-WWII recession has 

lasted only 10 months), the annual frequency used in previous research may not be adequate to 

pick up responses in alcohol demand to changes in cyclical economic variables.   Freeman uses 

error-correction methodology (ECM) to test the presence of a cointegrating vector among beer 

consumption, the unemployment rate, personal income and beer excise taxes.  Freeman finds 

evidence of cointegration among the variables, but tests of Granger causality reveal no evidence 

that beer consumption is responsive to departures from equilibrium, indicating that beer is in fact 

neither pro nor counter-cyclical. 
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 Most of previous research on alcohol demand using aggregate data uses national data for 

relatively long time series, or panels of states using relatively short time series.  Ruhm (1995), 

for example, uses a panel of states for 14 years covering only two national business cycles.  By 

contrast, this paper uses 28 years of data for the 50 states plus the District of Columbia, a time 

period covering four full business cycles and parts of two others.  The additional degrees of 

freedom and the greater variety of economic circumstances allow for a greater precision in 

estimating the coefficients of interest.    

 The data used in this paper is taken from “Beer Shipments by State” as reported in The 

Brewer’s Almanac, an annual publication of the Beer Institute, formerly the United States 

Brewers’ Association (Beer Institute, various years).  The data are reported by millions of 31-

gallon barrels shipped within each state annually from 1970-2007, and then converted to per 

capita equivalents.2  The Brewers’ Almanac is also the source of the state and federal excise tax 

rates on beer, used as a measure of inter-state price variation. 

[Figure 1 about here] 

 Figure 1 displays annual gallons per capita beer consumption for the two largest states, 

California and Texas, along with the percentage of the population in each state 20 to 35 years of 

age.  There is much useful information in the figure.  First is the general pattern of beer 

consumption in the two states (more or less representative of most states), wherein beer 

consumption peaks at about 1980 and declines thereafter.  Though not shown in the figure, the 

1980 peak marked the end of a long period of growth in consumption beginning at least in the 

early 1960s in both states. 

                                                      
2 Other methods of reporting are used, including per capita consumption above a certain age, or beer in terms of 
ethanol equivalents.  We use per capita consumption for all ages because we incorporate the age distribution in our 
regressors.  We acknowledge the variation in alcohol content in beer due to, for example, the introduction of “light” 
beers, but the statistical methods employed in the estimation will likely capture much of this variation. 
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 The second piece of information is the gap in consumption between the states, which is 

constant throughout and even widening in recent years.  This gap is a clear indication of 

heterogeneity in consumption across states, heterogeneity that is unlikely to be fully captured by 

the regressors in the model.  The nature of the observed heterogeneity across states can be seen 

from the descriptive statistics in Table 1. 

[Table 1 about here] 

 
 Beer consumption per capita has been highest over the sample period in Nevada (with a 

young population and a large tourist sector), and lowest in Utah, which has a large Church of 

Latter-Day Saints population, who do not imbibe for religious reasons.  The variation in 

consumption is quite substantial, with the 20 gallon difference between minimum and maximum 

consumption equivalent to about 200 12 oz. cans of beer per person per year.  On average, there 

has a been a slight decline in beer consumption, as noted for California and Texas in Chart 1. 

 There is considerable variation in the regressors as well, with maximum unemployment 

rates  more than double minimum states, both over the sample and in 2007 as well.   Likewise, 

income is not distributed equally, with the District of Columbia about twice as rich as the poorest 

states, in both periods.  The employment/population ratio has less volatility and less variation 

than the other cyclical economic measures, and has trended upward over the sample.  Excise 

taxes, meanwhile, differ by a factor of about three between the highest and lowest-taxed state. 

 Given mobility, similar cultural heritage, and so forth, the range of young people in 

states’ populations is relatively narrow, but there are nonetheless clear differences.  Florida and 

Maine are relatively old, and the District of Columbia is relatively young (as is Utah among 

states proper).  On average, the percentage of young people in the population has risen, then 
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fallen over the sample period as the children of the “Baby Boomers,” the large population surge 

in the U.S. following World War II, have matured.   

 The observed variation in the regressors notwithstanding,  there undoubtedly remains 

much heterogeneity in beer consumption across states that is unobserved.  States have very 

different laws regarding the distribution and sale of alcoholic beverages, for example, and just as 

the religious beliefs of the Latter-Day Saints have an effect on beer sales in Utah, so may the 

religious mix in other states have an effect on consumption there.   

Similarly, there are sources of temporal heterogeneity that affect all cross-section units in 

the sample, such as macroeconomic events like interest rate changes, fiscal policy, etc, or social 

events like changing attitudes toward certain behaviors like the consumption of alcohol.  For 

example, some of the decline in beer consumption per capita from 1980 may be due to changing 

attitudes regarding alcohol consumption, cohort influences as generations who grew of age in 

different eras retire, consolidation of brands, etc.   

For heterogeneous panels of cross sections where the number of time periods, T, exceeds 

the number of cross section units, N, seemingly unrelated regressions (SUR) is a potentially 

efficient estimation strategy.  However, in the present case, T = 28 and N = 51, so SUR is not 

feasible.3     

 We therefore must rely on a method of pooling the data to obtain an estimate of the 

average response of beer consumption to the explanatory variables in the model.  The least 

square dummy variable (LSDV) model relies on fixed effects for the cross sections and time 

periods to capture unobserved heterogeneity in the data, and is the workhorse of estimating 

heterogeneous panels.  However, the LSDV model assumes that all heterogeneity can be 

                                                      
3 The sample extends back only until 1970 because age distribution by state is available annually beginning at that 
year. 
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captured by simple zero-one variables, and that the response of each cross-section unit to the 

time effects is identical.4  Recently, Pesaran and his co-authors (Pesaran, 2006; Pesaran and 

Tosetti,2007) have proposed a more flexible technique, the  common correlated effects (CCE) 

estimator, to control for unobserved heterogeneity in panels of moderate size in T and N.    The 

CCE estimator, which uses cross-section averages of the dependent variable and the regressors to 

augment regressions of the individual units, is quite flexible and easy to use, and has been shown 

in Monte Carlo simulations to control for unobserved heterogeneity and cross-section 

dependence far more completely than the usual two-way fixed effects model.  The CCE 

estimator is described more completely in the following section. 

 The third piece of information in Figure 1 is the relationship between the proportion of 

young adults in the population and the per capita consumption of beer.  As noted, the highest 

consuming age group is the young adult category, so it is not surprising that trends in 

consumption would be related to the size of this group.  As a first step, we incorporate the states’ 

age distributions in our analyses by including age in the regression model. This paper is one of 

the few in the literature on alcohol demand that explicitly accounts for the age distribution of the 

population.  

The relationship between the age distribution and beer consumption may be more subtle 

than the proportion of a single age group may be able to capture, however.  For example, an 

increase in young adults accompanied by an increase in the very young (and a concomitant 

decrease in the older adult population) may have very different effects from the same increase in 

young adults but an opposite increase in the other age groups.   Therefore there may be some 

value in examining the effect of changes in the entire age distribution on beer consumption.  This 

                                                      
4 Another technique is to use state-specific trends.  However, in the present case there is no evidence of linear trends, 
and the use of quadratic trends would likely overdetermine the model.  
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we do using a polynomial distributed lag (PDL) technique introduced by Fair and Dominguez as 

an alternative to the single age group.  

 

III. Empirical Framework and Initial Estimations 

5      The basic model for estim an expressed as:ation c  be 

௜௧ݕ ൌ ௜ࢻ
ᇱࢊ௧ ൅ ࢏ߚ

ᇱ࢚࢏ݔ ൅ ݁௜௧, (1.0)

where yit is consumption of beer in gallons per capita, dt is a vector of observed deterministic 

effects, xit is a k × 1 vector of regressors, and the errors, eit, have the multifactor structure 

݁௜௧ ൌ ௜ߛ
ᇱ

௧݂ ൅ ߳௜௧, (2.0)

with ft a vector of unobserved common factors, and εit an idiosyncratic error term uncorrelated 

with ft or xit.  We note that ࢊ௧ = 1 and ࢌ௧ =1, ߛ௜ ൌ  and βi = β is the traditional two-way fixed ߛ

effects model.  In most cases, it is reasonable to assume that the observed and unobserved factors 

are related, and this rela onship can be expressed as ti

௜௧ݔ ൌ ௜ܣ
ᇱ݀௧ ൅ ௜߁

ᇱ
݂࢚ ൅ ௜௧ߥ (3.0)

where Ai and Γi are factor loading matrices and νit are error terms assumed not to be correlated 

with the common effect   S g a 3.0),  we obtain s. tackin  (1.0) nd (

௜ݖ ൌ ᇱ݀ܤ ൅ ௧ܥ ௜ ௧ ௜
ᇱ

݂࢚ ൅ ௜௧ݑ

where zit = (yit, xit’)’, ܤ௜ ൌ ሺߙ௜  ܣ௜ሻ  ൬ 1 0
௜ߚ ࢑ࡵ

൰ , ܥ௜ ൌ ሺߛ௜   ߁௜ሻ ൬ 1 0
௜ߚ ௞ܫ

൰.  Assuming suitable rank 

conditions on i on 4 ) c l d by (Ci Ci
’)-1Ci and solved for ft to give 

(4.0)

C , equati  ( .0 an be multip ie

௧ࢌ ൌ ሺܥ௜ ܥ௜
ᇱሻିଵܥ௜ ሺݖ௜௧ െ ௜ܤ

ᇱ݀௧ െ .௜௧ሻݑ (5.0)

                                                      
5 This discussion follows closely Pesaran (2006) in which the CCE estimator was first described.  
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Thus the unobserved common factors can be expressed as linear combinations of the dependent 

variable, the regressors, and the deterministic effects.  Peseran (2006) shows that asymptotically, 

any weighted average will be consistent, so simple averages will do. 

 The estimator described above is named the CCE estimator by Pesaran.  It offers two 

advantages over the traditional two-way fixed effects estimator.  First, by admitting the 

possibility of multiple common but unobserved factors, the CCE estimator offers the potential 

for consistent estimation of the coefficients of the individual regressors (i.e., the βi in (1.0) 

above).  Because these coefficients, and not the factor loadings of the unobserved factors, are the 

items of interest in the current exercise, this method is particularly important.  Second, by 

allowing the coefficients of the ࢌ௧ to vary across units, the CCE estimator can better 

accommodate heterogeneous panels where some average of responses is nonetheless required.   

 To operationalize the CCE estimator, we proceed in two steps.  First, we run regressions 

of each cross section on a constant and on simple averages of the dependent variable and the 

regressors.  Then the residuals from the cross section regressions are pooled and regressed 

against the xit.  The effect is very similar to a pooled time series cross section with two-way fixed 

effects, except that the variable averages replace the time effects and the procedure allows a 

separate response for each cross-section unit.  In Monte Carlo tests of the CCE estimator in 

generated samples with unobserved common effects that are correlated with the regressors, 

Pesaran (2004) and Coakley, Fuertes, and Smith (2004) demonstrate that the CCE estimator is 

the preferred choice on efficiency grounds when compared to the usual two-way fixed effects 

and demeaned mean group estimators.  

 Table 2 presents the results of pooled regressions utilizing various forms of controls for 

cross-section and intertemporal heterogeneity. 
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[Table 2 about here] 

Model (1) presents the results of a pooled sample of all 51 units with only the regressors 

as controls and using a common intercept and common slopes.  Beer is seen to be strongly 

countercyclical (each additional percentage point of unemployment results in about a one-quart 

increase in beer consumed per person), on the one hand, but consumption also rises when the 

employment/population ratio rises.  These two results are not necessarily inconsistent – the 

employment/population ratio reflects, in addition to cyclical movements, longer term trends in 

labor participation – but the two variables do tend to move in opposite directions during the 

business cycle.  Beer in Model (1) is an inferior good, and the greater number of young people in 

the population, as expressed as the percentage of people ages 20-35,  tends to increase beer 

consumption.  Taxes have a strong effect on consumption:  each dollar of beer excise tax reduces 

beer consumption by 1.25 gallons per person annually. 

We note, however, that the F-test for common intercepts is soundly rejected in model (1), 

as might be expected from the data presented in Table 1 showing very different levels of beer 

consumption across the states.  In model (2), we introduce fixed state effects into the estimation 

to control for levels differences across states in beer consumption due to climate, religion, 

tourism, etc.  The fixed effects obviously provide a better fit for the model, as R2 jumps from 

about 20 to about 90 per cent.  Some of the coefficient on the regressors change significantly as 

well, with unemployment now having no effect on consumption and the effect of the 

employment ratio much reduced.  The tax effect is almost doubled, however, and the age effect 

is marginally stronger.  There appears to be much remaining cross correlation in the sample, 

however, as the Pesaran “CD” test, specified as ܦܥ ൌ ට ଶ்
ேሺேିଵሻ

൫∑ ∑ ො௜௝ߩ
ே
௝ୀூାଵ

ேିଵ
௜ୀଵ ൯, where ߩపఫෞ  are 

the contemporaneous cross correlations of the disturbances and distributed as a standard normal 
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variant, soundly rejects the null of zero correlation, and the pooled Durbin-Watson indicates the 

presence of within-unit serial correlation as well. 

As noted earlier, the age distribution may affect beer consumption in more complex ways 

than a single age group can capture.  The rationale for including the entire distribution is that the 

proportions of ages older or younger than normal beer-drinking age may modify the drinking of 

the latter.  For example, the drinking habits of the twenty per cent of the population aged 20-35 

may be different if the split in the older and younger population is an even 40-40 instead of say, 

50-30 or 30-50.   

 To proceed, we use Fair and Dominguez’s (1991) polynomial distributed lag (PDL) 

technique as applied to the entire age distribution.  In the Fair-Dominguez framework, the age 

dist bu t  mri tion en ers the odel originally as: 

௜௧ݕ ൌ ௧ࢻ
ᇱ ௧ࢊ ൅ ࢏ߚ

ᇱ࢚࢏ݔ ൅ ࢚࢏૚࢖૚ࢾ ൅ ڮ ൅ ࢚࢏࢔࢖࢔ࢾ ൅ ݁௜௧ (6.0)

with pjit the proportion of age group j in the population, where each j  consists of 5-year age 

groups up to age 65, and then all remaining years.  It is clearly not feasible to estimate 14 age 

group coefficients; besides the degrees of freedom limitations, the age groups are highly 

collinear, leading to imprecise estimates of the true pattern of the coefficients.  Fair and 

Dominguez therefore propose to impose two restrictions on the coefficients: 1) that they all sum 

to zero; and 2) that they lie on a second-degree polynomial ߜ௝ ൌ ܽ଴ ൅ ܽଵ݆ ൅ ܽଶ݆ଶ.  The zero-sum 

constraint implies that for n groups ܽ଴ ൌ െܽଵሺ1 ݊⁄ ሻ ∑ ݆௡
௝ୀଵ െ ܽଶሺ1 ݊⁄ ሻ ∑ ݆ଶ௡

ଵ  , and given the 

standard formulae for the summation of the first n numbers and first n squares, the age variables 

will enter (6.0) as ܽଵܼଵ௜௧ ൅ ܽଶܼଶ௜௧ where ܼଵ௜௧ ൌ ∑ ௝௜௧݌݆ െ 7.5ଵସ
௝ୀଵ  and   ܼଶ௜௧ ൌ ∑ ݆ଶ݌௝௜௧ െଵସ

௝ୀଵ

72.5. 
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 The results of the Fair-Dominguez PDL treatment of age are shown in column (3) of 

Table 2.  Using the entire age distribution alters the results in a material way for several of the 

estimated coefficients: the coefficient on unemployment is about twice times as large and is now 

statistically significant, the coefficient of the employment ratio is less than half the size of model 

(2), and the income coefficient is also twice the size of Model (2).  The summary statistics are 

little changed, however. The implied shape of the responses of the age distribution are described 

and illustrated in connection with the discussion of Model (6), below. 

  

Model (4) introduces time fixed effects to further correct for unobserved variation in the 

sample due to common influences occurring in the time dimension; this is the two-way fixed 

effects model. Unemployment is now insignificant and the coefficients on income and 

employment resemble those of Model (2).  The coefficients on the age distribution increase, as 

does the coefficient on taxes, with each additional dollar of excise taxes now causing a more than 

two and one-half gallon reduction per person reduction in annual beer consumption.  Moreover, 

the CD statistic reduced by a factor of almost four, if still statistically significant.  There is no 

improvement in the Durbin-Watson, however, indicating that fixed time effects are insufficient 

to account for serial correlation in the residuals.   

Model (5) introduces the main innovation in this paper, the use of the CCE estimator.  

We replace the time fixed effects with a two-step procedure first regressing each cross-section 

unit on an intercept and the cross-section averages of the set (yit, xit), then pooling and regressing 

the residuals ݁௜௧
௬ on the ݁௜௧

࢞ .   We find that the CCE estimator produces significant changes in the 

responses of beer consumption to the regressors.  Beer consumption is now definitely 

procyclical, with increases in unemployment producing a small yet significant reduction in beer 
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consumption.  The employment ratio now produces no response in consumption, but the sign of 

the income variable is also reversed and significant, indicating that beer is a normal good.  Of 

special note is that the coefficient of the tax variable is much reduced.  We suspect that the 

construction of the tax variable by deflating a fixed nominal tax rate with the consumer price 

index, a common practice in studies of this type, is capturing some of the downward trend in 

beer consumption in Models 1-3.  The cross-section average of the tax variable in the first stage 

regressions of Model (5) is capturing more or less the same movement, thus the residuals used in 

the second stepped have been in effect de-trended and the tax variable is no longer significant. 

The coefficients of the age variables are much increased in magnitude, indicating a much 

steeper rise and fall in the effects on beer consumption as we move through the age distribution.  

The R2 of Model (5) (calculated using the variance of the original dependent variable) is 

somewhat improved, and the CD statistic is smaller but still large enough to reject the null of no 

cross-correlation.  A notable difference is the size of the  Durbin-Watson statistic, still indicating 

the presence of serial correlation, but much improved from the earlier models.  We can thus be 

reasonably assured that much of the unobserved heterogeneity is being captured by the CCE 

model in a way that the traditional two-way LSDV model could not handle. 

In Model (6) we add the lagged dependent variable to the CCE model.  The coefficients 

of the regressors are little changed, except for the tax coefficient, but the pooled Durbin-Watson 

statistic now indicates that the null of no serial correlation cannot be rejected.  The consequences 

of using a lagged dependent variable (LDV) in the CCE model are not well established (although 

it is certainly known that the use of a LDV in panel data introduces bias, especially in the 

coefficient of the LDV), but the lack of substantial change in the coefficients indicates that they 
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must be relatively benign in the current circumstances.  The CD statistic is also reduced, though 

still significant. 

 The estimated coefficients of the age distribution variables from Model (6) are used to 

generate the δ’s in equation (6.0) so that the effect of the entire age distribution can be displayed, 

as in Figure 2. 

[Figure 2 about here] 

In the figure, the markers on the line indicate implied coefficients for the five-year 

interval ending at that marker.  The pattern shows that consumption peaks at age 40, a little later 

than  expected, but not much at variance with the survey results reported by Tremblay and 

Tremblay (2005).  Greater concentration of the population at very young (especially) and very 

old age groups subtracts from per capita beer consumption, as expected. 

Model (6) yields the strongest results in terms of the economic variables; that is, the 

coefficients of the regressors tell a nice story of beer as a pro-cyclical, normal good that is 

sensitive to excise taxes and therefore price.  The implied price elasticity of beer as derived from 

the tax coefficient is quite small, however; using the means of the variables from Table 1 results 

in price elasticity of only -0.045; the income elasticity is also small at +0.041.  These estimates 

are well below those of recent research, including Selvanathan and Selvanathan (2004), 

Clements and Johnson (1983), and Clements and Selvanathan (1987).   Evidently, the results of 

prior research may have been overstated by the omission of controls for common effects. 

 

IV Extensions and Robustness tests 

 One criticism of the CCE estimator may be that it groups all states together to derive 

cross-section means sued to proxy the unobserved common effects, thereby ignoring regional 
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differences in these common effects.  Regions may differ in industrial composition, obviously in 

weather, religious affiliation, etc.  In this section we modify the two-step CCE by using regional 

averages rather than national averages in the first-stage regression to account for unobserved 

effects.  Table 3 provides the results of this modification, along with results from one other 

extension, to be discussed below. 

[Table 3 about here] 

 Model (7) uses regional rather than national averages, as in Model (6), reproduced from 

Table 2.  Using the regional effects changes the results only slightly, with the net effect that most 

coefficients are reduced in magnitude.  Most likely, the regional averages are more closely 

correlated to the individual state regressors, so the consequent multicollinearity reduces the size 

and significance of the coefficients of the regressors.  The summary statistics suggest that there is 

little to gain from using the regional as opposed to the national averages.   

 In a second extension, we split the sample in half at year 1988 and re-estimate model (5) 

from Table 2 (the lagged dependent variable is omitted to preserve degrees of freedom).  There is 

no statistical reason for choosing 1988 as the break year; the purpose is to compare the stability 

of the models using a break, so the choice of year is arbitrary.  We conduct the break test for the 

2-way fixed effects Model (4) from Table 2, and for the CCE model using variable averages, 

Model (5) in Table 2. 

 The results from breaking the sample are not encouraging for a consistent story using the 

2-way fixed effects model in columns (8) and (9).  In this case, the unemployment coefficient is 

strongly positive in the second period, and the age coefficients are small and insignificant in the 

first period.  The employment ratio and excise taxes are consistent across the two periods, but 
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income only in the first.  It is obvious that the findings of the fixed effects model are sensitive to 

the time periods chosen for estimation. 

 By contrast, the CCE model in (10) and (11) appears to tell a consistent story that beer is 

procyclical in both halves of the sample.  The coefficient of the income variable is significant 

only in the second half.  The employment ratio is never significant, but the age variables are 

consistent in sign and significance, if not in magnitude.  The CCE also models get a slight nod in 

terms of goodness-of-fit and in tests of serial correlation as compared to the 2-way fixed effects 

models.  The results are far from conclusive, but the CCE model is more robust to arbitrarily 

specified sample periods.6   

 

Other beverages 

 A potential confounding factor in the estimations above is the changing tastes of 

consumers for different types of alcoholic beverages.  Over time, whether due to income, status 

concern, cohort effects, or other factors, drinkers may move among beer, wine, or spirits.  For 

example, per capita consumption of spirits in the US had been trending down for many years, 

reaching a low of 1.21 gallons in 1998, before rebounding by 20% to 1.45 gallons in 2007.  By 

contrast, beer consumption has stayed flat at about 21.8 gallons over the past decade. 

 A preferred way to control for other beverages would be to estimate a systems model 

using all three types of beverages in a system of equations similar to Selvanathan and 

Selvanathan (2004) for national consumption in Australia.  Unfortunately, we lack state-level 

pricing data for any alcoholic beverages, and simply including the consumption of other 

beverages on the right-hand side of equation (1.0) will likely lead to issues of endogeneity bias, 

                                                      
6 A Chow test (F = 0.61) fails to reject the null hypothesis of coefficient homogeneity for the CCE model.  Of 
course, a more satisfactory way to test for stability is a search for an endogenous break, but that is beyond the scope 
of this paper.  
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as shocks to beer consumption are likely correlated with shocks to consumption of other 

alcoholic beverages. 

 The two-step CCE estimator provides a way of controlling for changing national tastes in 

alcoholic beverages, however, by incorporating wine and spirits in the initial step regressing state 

beer consumption per capita on the cross-section means of all variables.  Thus the initial step will 

take the form: 

ݕ ࢏ܿ
ᇱݖҧ௧ ൅ ഥ࢝࢝࢏ࢾ ࢚ ൅ ࢚ത࢙࢙࢏ࢾ ൅ ௜௧ߤ (7.0)௜௧ ൌ

where ݖҧ௧ ൌ ሺݕത௧ ,  ҧ௧ theݏ ഥ௧ is the cross-section mean of wine consumption per capita, andݓ ,ഥ௧ሻ࢞

cross-section mean of spirits consumption per capita. The second step will be as above, the 

regression of the residuals from (7.0) on the residuals of the regressors from similar first-step 

regressions. 

[Table 4 about here] 

 

The results of the test using wine and spirits consumption are shown in Table 4.  The 

inclusion of the wine cross-section mean alone has very little effects on the results; see model (6) 

in Table 3.  The inclusion of the spirit cross-section mean, however, alone or in combination 

with wine, has a more pronounced effect on the results, especially regarding the lagged 

dependent variable, which greatly reduced in magnitude in all cases where spirits are present and 

statistically insignificant when entering the regression separately.  The coefficients on the age 

distribution variables are also reduced, and in two cases the tax coefficient is rendered 

insignificant.   

In summary, the CCE estimator provides consistent results in a variety of specifications.  

Cross-section correlation is never completely eliminated, but is reduced substantially from 
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models controlling only for heterogeneous intercepts.  Interestingly, the two-way fixed effects 

model performs just about as well  in tests of cross-correlation, but the economic implications of 

the coefficients are not consistent with prior research, and in any case do not do well under 

conditions of an arbitrary break in the sample.  The presence of other alcoholic beverages or the 

use of regional averages do not seem to materially affect the results.  

 

V Conclusion 

 This paper uses recent developments in the econometrics of pooled time series with 

unobserved common effects to  re-estimate the effects of economic and demographic variables 

on beer consumption using U.S. state-level data over the period 1970-2007.  The principal 

findings of the paper are that beer is a pro-cyclical, normal good that has been quite responsive to 

changes in the age distribution of the states during the sample period.  These results are in 

contrast to those from a standard two-way fixed effects model using the same data.  The latter 

model estimates beer consumption as being a non-cyclical, inferior good with much smaller 

response to the age distribution variables. 

 Another area where the models differ is in the estimated effects of excise taxes on beer 

consumption within states across time.  The two-way fixed effects models  estimate the 

coefficient on taxes to be about four times as large as the estimate for the CCE estimator, 

indicating that the effect of taxes may have been overstated in previous research, a finding also 

reported by Dee (1999) and Young and Likens (2000) in a different context.  While we have no 

evidence on the effect of taxes on, say, heavy versus light drinkers, we can say that taxes have 

only small effects on aggregate consumption. 
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 The results of the Fair-Dominguez PDL technique of measuring the effects of the age 

distribution on beer consumptions confirm that increases in the proportion of the very young or 

very old in the age distribution will result in less beer consumed.  The peak of the age 

distribution occurs in the 35-40 year age category, a bit later than the survey reports of beer 

drinking by age would indicate.  It is difficult to interpret the peak of the distribution as being the 

peak of consumption, however, given that the entire distribution is being modeled instead of the 

age group that happens to provide singly the largest coefficient.  It is interesting that here, too, 

the two-way fixed effects model differs, placing the peak even later, at the 40-45 year age 

category. 

 Further evidence of the superiority of the CCE estimator over the two-way fixed effects 

estimator is found in the in the reduction of both cross-section dependence and especially serial 

correlation of the residuals using the CCE estimator.  Though neither is reduced to zero, the use 

of cross-section means shows great promise in modeling unobserved common effects. 

  

  

22 
 



 

References 
 

Ahrens, D (2004). Investing in Vice: The Recession-Proof Portfolio of Booze, Bets, Bombs, and 

Butts.  New York, NY: St Martin’s Press. 

The Beer Institute (formerly the United States Brewers Association).  The Brewers Almanac 

(various issues).  Washington, DC:  The Beer Institute. 

Blake, D and A. Nied. (1997). “The Demand for Alcohol in the United Kingdom,” Applied 

Economics 29, pp. 1655-1672. 

Brenner, MH and A Mooney (1983). “Unemployment and Health in the Context of Economic 

Change,” Social Science & Medicine 17, pp 1125-1138. 

Clements, KW and LW Johnson (1983) The Demand for Beer, Wine and Spirits: a System-wide 

Analysis,” Journal of Business 56 (3), pp 273-304. 

Clements, KW and EA Selvanathan (1987) “Alcohol Consumption,” in Applied Demand 

Analysis: Results from System-Wide Approaches, H. Theil and KW Clements, eds.  

Cambridge, MA: Ballinger Publishing Co. 

Coakley, J, A Fuertes and R Smith (2004).  “Unobserved Heterogeneity in Panel Time Series 

Models,” Working Paper BWPEF 0403, University of London Birbeck. 

Dee, TS (1999). “State Alcohol Policies, Teen Drinking, and Traffic Fatalities,” Journal of 

Public Economics 72, pp 289-315. 

Dee, TS (2001). “Alcohol Abuse and Economics Conditions: Evidence from Repeated Cross-

Sections of Individual-Level Data,” Health Economics 10, pp 257-270. 

Fair, RC and KM Dominguez (1991). “Effects of the Changing US Age Distribution on 

Macroeconomic Equations,” American Economic Review 81 (5) pp 1276-1294. 

23 
 



Freeman, DG. (1999). “A Note on Economics Conditions and Alcohol Problems,” Journal of 

Health Economics 18 (5), pp. 661-670. 

Freeman, DG. (2000). “Alternative Panel Estimates of Alcohol Demand, Taxation, and the 

Business Cycle,” Southern Economic Journal 67 (2), pp. 325-344. 

Freeman, DG. (2001). “Beer and the Business Cycle,” Applied Economics Letters 2001 (8), pp. 

51-54. 

Kerr, WC., TK Greenfield, J Bond, Y Ye, and J Rehm (2004). “Age, Period, and Cohort 

Influences on Beer, Wine, and Spirits Consumption Trends in the US National Alcohol 

Surveys,” Addiction 99, pp. 1111-1120. 

Pesaran, MH (2004). “General Diagnostic Tests for Cross Section Dependence in Panels,” 

CESifo Working Paper series n. 1229. 

Pesaran, M. H. (2006), ‘Estimation and inference in large heterogeneous panels with a 

multifactor error structure'. Econometrica 74, 967-1012. 

Pesaran, MH and E Tosetti (2207). “Large Panels with Common Factors and Spatial 

Correlations,”  CESifo Working Paper series n. 2103 

Ruhm, CJ. (1996). “Economic Conditions and Alcohol Problems,” Journal of Health Economics 

14, pp. 583-603. 

Ruhm, CJ, and WE Black (2002).  “Does Drinking Really Decrease in Bad Times?” Journal of 

Health Economics 21, pp. 659-678. 

Selvanathan, EA, and S Selvanathan (2004). “Economic and Demographic Factors in Australian 

Alcohol Demand,” Applied Economics 36, pp. 2405-2417. 

Sloan, FA, BA Reilly and C Schenzler (1995). “Effects of Tort Liability and Insurance on Heavy 

Drinking and Drinking and Driving,” Journal of Law and Economics 38, pp 49-78. 

24 
 



Tremblay, VJ and CH Tremblay (2005). The US Brewing Industry: Data and Economic 

Analysis.  Cambridge, MA: The MIT Press. 

Winton, M, N Heather, and I Robertson (1986) “Effects of Unemployment on Drinking 

Behavior: a Review of the Relevant Evidence,” The International Journal of Addictions 

21, pp 1261-1283. 

Young, DJ and TW Likens (2000) “Alcohol Regulation and Auto Fatalities,” International 

Review of Law and Economics 20, pp 107-126. 

  

25 
 



Table 1:  Descriptive Statistics, Beer Consumption and Explanatory Variables, annual data, 
1970-2007, fifty states and the District of Columbia 

Variable  Minimum Maximum Average Std. 
Deviation 

Beer, Gallons per 
capita 
   

1970-2007 
 
2007 only 

13.1 
(Utah) 
12.0 

(Utah) 

33.5 
(Nevada) 

32.4 
(North Dakota) 

22.9 
 

22.8 

3.7 
 

3.9 

Unemployment 
Rate 

1970-2007 
 
2007 only 

3.4 
(Nebraska) 

2.6 
(Hawaii) 

8.3 
(West Virginia) 

7.2 
(Michigan 

5.8 
 

4.4 

1.1 
 

1.0 

Employment/Population 1970-2007 
 
2007 only 

48.7 
(W. Virginia) 

53.4 
(West Virginia) 

67.5 
(Minnesota) 

71.2 
(N. Dakota) 

61.5 
 

64.1 

3.7 
 

3.9 

Disposable Income, 
2007 $ (‘000) 

1970-2007 
 
2007 only 

12.6 
(Mississippi) 

18.3 
(Utah) 

23.1 
(D.C.) 
38.6 

(D.C.) 

16.7 
 

23.6 

2.3 
 

4.0 

Excise Taxes.  2007 
$/gallon 

1970-2007 
 
2007 only 

1.23 
(Wyoming) 

0.97 
(Wyoming) 

3.65 
(S. Carolina) 

2.90 
(Alaska) 

1.85 
 

1.38 

0.60 
 

0.40 

% Population ages 20-
35 

1970-2007 
 
2007 only 

14.1 
(Florida) 

11.7 
(Maine) 

19.6 
(D.C.) 
18.2 

(D.C.) 

15.7 
 

13.9 

0.95 
 

1.28 
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Table 2:  Pooled Estimations of Per Capita Beer Consumption, Annual U.S. States, 
1970-2007 (p-values in parentheses) 
 Model 
 
                       Variable (1) (2) (3) (4) (5) (6) 

Lagged Dependent 
Variable - - - - - 0.245 

(.000) 

Unemployment 0.275 
(.000) 

0.029 
(.267) 

0.050 
(.092) 

0.016 
(.680) 

-0.141 
(.000) 

-0.139 
(.000) 

Employment/Population 0.284 
(.000) 

0.134 
(.000) 

0.047 
(.079) 

0.110 
(.000) 

0.002 
(.955) 

-0.003 
(.806) 

Real Disposable Income -0.057 
(.046) 

-0.104 
(.000) 

-0.262 
(.000) 

-0.100 
(.002) 

0.083 
(.067) 

0.075 
(.094) 

Excise Taxes -1.252 
(.000) 

-2.391 
(.000) 

-2.544 
(.000) 

-2.649 
(.000) 

-0.731 
(.003) 

-0.467 
(.052) 

Age 20-35 0.261 
(.000) 

0.331 
(.000) - - - - 

Z1 Age PDL - - 12.28 
(.000) 

15.60 
(.000) 

42.28 
(.000) 

34.94 
(.000) 

Z2 Age PDL - - -0.772 
(.000) 

-0.851 
(.000) 

-2.661 
(.000) 

--2.181 
(.000) 

Fixed State Effects No Yes Yes Yes Yes Yes 

Fixed Time Effects No No No Yes No No 

Variable Cross Section 
Means (CCE) No No No No Yes Yes 

R-Square 0.198 0.879 0.865 0.883 0.982 0.983 

Pesaran “CD” 
Heterogeneity Test 

13.26 
(.000) 

23.60 
(.000) 

22.71 
(.000) 

5.90 
(.000) 

5.02 
(.000) 

4.46 
(.000) 

Durbin-Watson 0.042 
(.000) 

0.289 
(.000) 

0.265 
(.000) 

0.245 
(.000) 

1.490 
(.000) 

1.955 
(.212) 

F-test for αi = α 211.5 
(.000) -  - - - 
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Table 3:  Extensions of the CCE Estimators of Per Capita Beer Consumption, 
Annual U.S. States, 1970-2007 (p-values in parentheses) 

 Model 

 National Regional 2-way fixed effects CCE estimator 

 (6) (7) (8) (9) (10) (11) 

 
                     Variable   1970-88 1989-2007 1970-88 1989-2007 

Lagged Dependent 
Variable 

0.279 
(.000) 

0.223 
(.000) - - -  

Unemployment -0.086 
(.001) 

-0.093 
(.001) 

-0.013 
(.734) 

0.269 
(.000) 

-0.152 
(.001) 

-0.099 
(.018) 

Employment/Population -0.013 
(.579) 

0.002 
(.965) 

0.101 
(.009) 

0.154 
(.001) 

0.023 
(.594) 

-0.018 
(.619) 

Real Disposable Income 0.200 
(.000) 

0.107 
(.020) 

0.148 
(.063) 

-0.032 
(.500) 

-0.096 
(.202) 

0.234 
(.000) 

Excise Taxes -0.455 
(.054) 

-0.242 
(.262) 

-1.445 
(.000) 

-1.872 
(.000) 

-0.582 
(.142) 

-0.874 
(.004) 

Z1 Age PDL 32.51 
(.000) 

10.53 
(.007) 

2.468 
(.569) 

29.95 
(.000) 

50.27 
(.000) 

36.41 
(.000) 

Z2 Age PDL --2.021 
(.000) 

-.424 
(.110) 

0.068 
(.813) 

-1.592 
(.000) 

-3.239 
(.000) 

-2.240 
(.000) 

Fixed State Effects Yes Yes Yes Yes Yes Yes 

Fixed Time Effects No No Yes Yes No No 

Variable Cross Section 
Means (CCE) Yes Yes No No Yes Yes 

R-Square 0.982 0.986 0.928 0.929 0.978 0.979 

Pesaran “CD” 
Heterogeneity Test 

4.39 
(.000) 

4.74 
(.000) 

5.37 
(.000) 

4.42 
(.000) 

3.89 
(.000) 

5.74 
(.000) 

Durbin-Watson 1.945 
(.151) 

1.959 
(.245) 

0.554 
(.000) 

0.317 
(.000) 

1.693 
(.000) 

1.187 
(.000) 
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Table 4.  CCE Estimators with cross-section means of Wine and Spirits Consumption, annual 
data, 1970-2007 (p-values in parentheses) 
 Other Beverage Included 

 Wine Only 
(12) 

Spirits Only 
(13) 

Wine + Spirits 
(14) 

Wine, Spirits 
(15) 

Lagged Dependent 
Variable 

0.235 
(.000) 

0.036 
(.111) 

0.048 
(.000) 

-0.001 
(.957) 

Unemployment -0.131 
(.000) 

-0.116 
(.000) 

-0.129 
(.000) 

-0.090 
(.003) 

Employment/Population -0.006 
(.807) 

0.0123 
(.637) 

0.015 
(.577) 

0.002 
(.941) 

Real Disposable Income 0.069 
(.123) 

0.100 
(0.032) 

0.081 
(.087) 

0.105 
(0.026) 

Excise Taxes -0.632 
(.008) 

-0.398 
(.156) 

-0.359 
(.176) 

-0.737 
(.011) 

Z1 Age PDL 35.54 
(.000) 

18.54 
(.001) 

27.81 
(.000) 

14.81 
(.001) 

Z2 Age PDL -2.241 
(.000) 

-1.028 
(.000) 

-1.719 
(.000) 

-0.863 
(.003) 

Fixed State Effects Yes Yes Yes Yes 
Fixed Time Effects No No No No 

Variable Cross Section 
Means (CCE) Yes Yes Yes Yes 

R-Square 0.984 0.987 0.986 0.987 
Pesaran “CD” 

Heterogeneity Test 
4.48 

(.000) 
4.05 

(.000) 
4.15 

(.000) 
4.12 

(.000) 

Durbin-Watson 1.993 
(.508) 

1.982 
(.681) 

1.971 
(.318) 

2.014 
(.681) 
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Note to Figure 1:  The line with long dashes is annual gallons per-capita beer consumption in Texas and the line 

with short dashes is the same for California; the line with short and long dashes is the percent of the population ages 

20 to 35 years in Texas and the solid line the same for California.   
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Figure 2 
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Note to Figure 2:  Taken from Model (6), Table 2.  Implied Coefficients for five-year age intervals from a 

polynomial distributed lag (PDL) estimation with summation constraint zero.  See Fair and Dominguez (1991).  
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