Table of Contents

Part 1 - General ... 1
 1.1 Purpose ... 1
 1.2 Coordination .. 1
 1.3 Design Guidelines .. 1
 1.4 Scope and Deliverables .. 2
 1.5 Regulatory Requirements, Codes and Standards ... 2
 1.5.1 Telecommunications ... 3
 1.6 Certification Requirements and Documentation ... 5
 1.7 Warranty ... 5
 1.8 Performance Requirements ... 5
 1.9 Grounding and Bonding ... 6
 1.10 Administration (Labeling) .. 6

Part 2 – Telecommunications and Equipment Room Guidelines ... 7
 2.1 Definitions ... 7
 2.2 Room Planning and Spacing ... 7
 2.3 Construction .. 8
 2.4 Fire Protection ... 9

Part 3 – Inside Plant Guidelines .. 9
 3.1 Pathways and Room Penetrations ... 9
 3.2 Station Wiring and Jacks ... 10
 3.3 Inside Plant Wireless ... 11
 3.4 Inside Plant Telephone ... 11
 3.5 Inside Plant Public Safety and Cellular Communications .. 11
 3.5.1 Bidirectional Amplification for Public Safety Two-Way Radio and Cellular/Smart Phone 11
 3.5.2 Roof Top Antenna Mounting Hard Points .. 12

Part 4 – Outside Plant Guidelines .. 12
 4.1 Pathways ... 12
 4.2 Maintenance Holes ... 13
 4.2a Hand Holes .. 13
 4.3 Splicing ... 14
 4.4 KatSafe Emergency Telephones & Towers ... 14

Part 5 – Software, Licenses and Connectivity .. 14

Part 6 – Minimum Technology Enhanced Classroom Design Standards 15
 6.1 Classroom Design Standards, Basic Technology Enhanced Classroom 15
 6.2 Certification Requirements and Documentation .. 16
 6.3 Warranty and Maintenance ... 16
 6.4 Projection Screens, Basic Technology Enhanced Classroom 16
6.5 Ceiling Mounted Data Projector Mounting, Basic Technology Enhanced Classroom 17
6.6 Audio, Basic Technology Enhanced Classroom ... 17
6.7 Multimedia and Video, Basic Technology Enhanced Classroom .. 18
6.8 AV Control System, Conduit and Networking, Basic Technology Enhanced Classroom 19
6.9 Floor Boxes, Conduit and Networking, Basic Technology Enhanced Classroom 19
6.10 Lighting, Conduit and Networking, Basic Technology Enhanced Classroom 20
6.11 Storage and IDF, Conduit and Networking, Basic Technology Enhanced Classroom 20
6.12 Specific AV Equipment ... 20

Part 7 – Basic ITV Technology Enhanced Classroom Design Standards 21
7.0 Basic ITV Technology Enhanced Classroom, ITV additions ... 21
7.1 Projection Screens, ITV Technology Enhanced Classroom, ITV additions ... 22
7.2 Data Projector Mounting, ITV Additions .. 22
7.3 Audio, ITV Additions ... 23
7.4 Multimedia and Video, ITV Additions .. 23
7.5 AV Control System, Conduit and Networking, ITV Additions .. 24
7.6 Floor Boxes, ITV Additions ... 25
7.7 Lighting, Conduit and Networking, ITV Additions ... 25

Part 8 – Minimum Technology Classroom Design Standards for Auditoriums or Large Lecture Halls ... 25
8.0 Integrated Audio-Video Systems and Equipment for Auditoriums ... 25
8.1 Projection Screens, Auditorium or Large Lecture Halls Addition ... 26
8.2 Audio, Auditorium or Large Lecture Halls Addition ... 26

Part 9 – Minimum Technology Conference Room Design Standards 26
9.0 Integrated Audio-Video Systems and Equipment for Conference Rooms ... 26

Part 10 – Typical Drawings ... 27
10.0 Typical Drawings ... 27
Part 1 - General

1.1 Purpose
These guidelines identify and define Sam Houston State University requirements and policies for designing and installing telecommunications infrastructure and substructure at all Sam Houston State University facilities. Use of, and compliance with these guidelines is mandatory for Sam Houston State University personnel, and for architects, engineers, and installation contractors working on Sam Houston State University projects.

This General Information outlines the major codes, standards, and guidelines to be followed when planning and installing facilities telecommunications infrastructure (including, but not limited to, telecom/equipment rooms, cabling and pathways).

1.2 Coordination
A. By default, work with IT@Sam must be scheduled at least 30 business days in advance. Deviation from normal business hours (8:00 a.m. – 5:00 p.m., Monday through Friday) may be possible by coordinating in advance with IT@Sam.
B. General: Installation of voice/data/video system components shall be coordinated with IT@Sam. Provisions requiring minor modifications shall be made at no cost.
C. Building Service: Provisions for voice/data/video cable entry to the building shall be coordinated with IT@Sam, prior to installation.

1.3 Design Guidelines
A. The Sam Houston State University Communication Standards are based upon the code requirements and telecommunications industry standards contained in the following guidelines. These guidelines will not duplicate the information contained in those references, except where necessary to provide guidance, clarification or direction. It is imperative that Sam Houston State University personnel, architects, engineers, and installation contractors working on Sam Houston State University projects become familiar with these guidelines and the industry telecommunications standards referenced.
B. In instances where several technical alternatives may be available to provide a design solution, these guidelines will identify the preferred solution to meet Sam Houston State University needs. However, each facility and project is unique. Design for new construction will differ from design for retrofit of existing facilities. These guidelines will differentiate certain design approaches and solutions to be applied to new construction versus existing facilities, and different types of Sam Houston State University facilities. However, designers and installers shall always use sound engineering judgment in order to comply with the requirements of the codes and standards identified in this section. Design or installation questions shall be referred to the Sam Houston State University IT@Sam staff for resolution.
1.4 Scope and Deliverables

A. The Division of Information Technology Services (IT@Sam) utilizes applicable codes, standards, and industry guidelines for the planning and design of telecommunications infrastructure. In the initial design phase of a building as well as with renovations or redesign, consideration shall be made to provide the space requirements for present telecommunications design needs and more importantly for maximum growth. Some of the guidelines herein may exceed industry standards and take precedence over those standards.

B. IT@Sam requires that a complete set of blueprints and specification manuals be submitted for IT@Sam review. Once the blueprints are finalized, a complete set of 15x22 size blueprints is required, plus the architectural sheets and e-sheets in electronic format (PDF and DWG).

1.5 Regulatory Requirements, Codes and Standards

A. All designs shall be in compliance with the following codes, industry standards, and practices, as well as, IT@Sam specific requirements described in this document. It is the responsibility of the designer to know and comply with the most current version of each document, or its most recent successor document, referenced below:
 - ANSI/EIA/TIA-568-B, Commercial Building Telecommunications Cabling Standard or its most recent successor document
 - ANSI/EIA/TIA-570, Residential and Light Commercial Building Telecommunications Wiring Standard or its most recent successor document
 - ANSI/EIA/TIA-569, Commercial Building Telecommunications Pathways and Spaces or its most recent successor document
 - ANSI/EIA/TIA-606, Administration Standard for the Telecommunications Infrastructure of Commercial Buildings or its most recent successor document
 - ANSI/TIA/EIA-607, Commercial Building Grounding and Bonding Requirements for Telecommunications or its most recent successor document
 - ANSI/NFPA-70, The National Electrical Code or its most recent successor document
 - BICSI (Building Industry Consulting Service International) Telecommunications Distribution Methods Manual or its most recent successor document
 - BICSI Outside Wireless Design Reference Manual or its most recent successor document

B. Additional major codes and standards are specified by the current version of:
 - OSHA (Occupational Safety and Health Administration)
 - NEC (National Electrical Code)
 - NESC (National Electrical Safety Code)
 - IEEE (Institute of Electrical and Electronics Engineers)

C. Testing Standards should follow:
 - Each Category 6 (CAT6) cable system shall be tested for compliance with requirements:
 - Termination Standards: ANSI/TIA/EIA-568-B.1-2000 T568A
 - Compliance Testing Standards: TIA/EIA-568-A
 - Each Fiber Optic cable shall be tested for compliance with requirements:
 - ANSI\TIA\EIA-455 ii. OFSTP-7
 - OFSTP-14
1.5 Specific Equipment

In an effort to reduce maintenance inventory and to provide consistency across the campus, IT@Sam has standardized on specific brands and warranties for telecommunications systems. All designs and specifications shall be based on the following approved manufacturers without substitution:

1.5.1 Telecommunications

- Chatsworth 19” Universal Rack 7’ with 2 post Black Freestanding Aluminum Rack
 - 46353-703
- Chatsworth Combination Cable Section (CCS) with 10” vertical wire managers for 7’
 - CCS-30163-703
- Siemon 24 or 48 Port Patch Panel
 - 48 Ports: HD6-48
- Siemon Horizontal Switch Wire Management
 - 2U WM-145-5
- Telecommunications Cable
 - CommScope Ultra Media 6
 - CAT 6 Teal Plenum CommScope Ultramedia 7504
 - 466250014/10
 - CAT 6 Yellow Plenum CommScope Ultramedia 7504
 - 4763504/10
- Arlington Industries The Loop Cable Hanger in 5” diameter
 - AI-TL50
- Siemon Assembly
 - Siemon Jumpers
 - 7ft Teal
 - MC6-07-07
 - 10ft Teal
 - MC6-10-07
 - Siemon Wall Phone Faceplate
 - MW-WP-K6-SS
 - Single Gang Faceplate
 - MX-FP-S-04-02
 - Double Gang Faceplate
 - MX-FP-D-06-02
 - MX-FP-D-12-02
 - Siemon Flat Module
 - MX6-F02-D
 - Siemon Surface Mount Box
 - CT4-BOX-02
- CT8-BOX-02
- MX-SM1
- MX-SM2
- FSR Series 600 Floor Box with the FL-GRD Series Floor Pan
- Corning Ribbon OSP Fiber
 - 048EC5-141-01D53
 - 144EC5-141-01D53
 - 216EC5-141-01D53
- Corning Ribbon Plenum Fiber
 - 024EC8-14101-20
- Corning Housing with Pre-terminated Heads
 - PR4E4P24-A9-3RJ3L0
 - PR148P24-A9-3RJ1D0
 - PR124P24-A9-3RJ1D0
- Chief CMS 440 Suspended Ceiling Tile Bridge
- Circa 100 PAIR INDOOR BET 710/110
 - 1880ECS1-100
- Circa Semi-Conductor Unit
 - 3B1EW
- 3M Cross Connect Box 600 I/O
 - 4220D-SSHT0/600-600-GBM-A.
- Ant Poison
 - Rainbow 4480 Fire Ant Control
- Emergency Talk-A-Phone
 - Phone: ETP-400V
 Description: The ETP-400 is an outdoor-rated, ADA-compliant hands-free emergency phone.
 - Phone: ETP-400KV
 Description: The ETP-400KV is an outdoor-rated, ADA-compliant hands-free emergency/information phone with keypad.
 - Housing: ETP-SMH
 Description: weather-protective stainless steel hooded mount for any 400-Series flush mounting emergency phone.
 - Housing: MS-400
 Description: The MS-400 is a mounting sleeve box for flush mounting 400 Series Talk-A-Phone emergency phones.
 - Pedestal: WEBS-MT/R
 Description: Vandal-resistant emergency/information tower system with emergency broadcast speaker. WEBS-MT/R 120V AC is to be painted International Orange (color code 05SF) with White (color code A7801R) Reflective lettering on each side. Lettering to say: EMERGENCY
• Pedestal: ETP-WM
 Description: Wall-mount emergency/information station provides an integrated security solution.
• This link, http://www.talkaphone.com/category.cfm?sct=1&sbs=2, contains information on these products as well as E&G specs for each model.

1.6 Certification Requirements and Documentation
A. Work will be performed by a telecommunications contractor who has a Registered Communications Distribution Designer (RCDD) on staff full-time and is participating in the Corning Extended Warranty Program (EWP). Hereinafter the telecommunications Contractor will be referred to as the Contractor. IT@Sam may waive the requirements for a contractor at its discretion.
B. The Contractor, utilizing his Registered Communications Distribution Designer (RCDD), shall be responsible for designing the communications distribution within the scope of the project, including any underground conduit necessary to provide telecommunications service from existing point of service availability, distributing throughout the project area, and within the structures. Considerations for any adverse conditions shall also be accommodated per instance, advising IT@Sam of the necessary variances from the outlined specifications.
C. The Contractor shall perform all work per the BICSI Cabling Installation Manual including NEC and ANSI Standards referenced therein, unless otherwise directed herein, meeting Category 6 wiring standards.
D. All punch down of Category 6 cabling shall conform to T568A punch down method. A service loop of 10’ is required in all data closets. The service loop shall be bundled neatly and ran over the cable ladder or along wall to keep it out of the work space. A service loop of 10’ is required in all rooms. The service loop shall be secured and bundled neatly in the ceiling.
E. The Contractor’s proposal shall provide submittals to IT@Sam for all materials and equipment to be provided and installed by the Contractor on this project, to include but not to be limited by the following list: Telephone cable, Fiber Optic cable, Category 6 cable, telecommunications outlets and components, patch panels, telephone entrance terminals, protectors, hanger devices, conduit, and equipment cabinets or racks and all rack component parts.

1.7 Warranty
A. The contractor shall provide IT@Sam a warranty for performance of the Structured Cabling System and against defects in materials and workmanship for a period of no less than seven years after close of the project. All material, labor, and expenses to correct the problem(s) are to be included in the warranty.
B. The Contractor shall enroll the installed Structured Cabling System into the cabling component manufactures’ warranty program. They shall provide IT@Sam with a certificate of warranty from the manufacturer. All materials, labor, and expenses to correct the problem(s) shall be included in the warranty.
C. The Contractor shall correct any problems reported within 5 business days.

1.8 Performance Requirements
A. The Contractor, by submitting their RCDD number, certifies that he has a Registered Communications Distribution Designer on staff who will design the layout for this project, and that his cabling staff has the technical training and ability to install the cabling in a professional manner consistent with the best standards of the trade within BICSI guidelines. He further certifies that each cable system shall be tested fully to verify compliance with Category 6 standards and will be labeled consistently end to end meeting specifications given by IT@Sam. IT@Sam shall be notified prior to testing, and shall have the option to have a representative present during any or all testing. The Contractor shall complete the job within the expectations of Sam Houston State University’s defined timeframe.

B. The Contractor shall provide all the labor and scheduling coordination, as well as all materials and equipment, per IT@Sam specification as stated herein, which are required to render a BICSI Standard Category 6 compliant cabling system from each telecommunications port designated on the schematic floor plans to the patch panel termination point in the telecommunications closet. When complete, each telecommunications port location will have a minimum of two Category 6 plenum rated lines, unless specified otherwise. Each line will consist only of a continuous home run back to the telecommunications closet and will be terminated in a patch panel.

C. Upon completion of the work and before final payment, the Contractor shall provide the following "as-built" in both electronic format and hard copy:

- Wire/cable routing diagram showing locations of any new or pertinent man holes, conduits, pull boxes, chases, and the cable pathways between them;
- Complete floor plan diagrams depicting telecommunications closet and port locations listed by label identification; and
- Test results demonstrating full compliance with Category 6 wiring standards for each cable system.
- Each Category 6 cable shall be tested for compliance using a Fluke DSP-4 or more current model, with Category 6 rated modules for test conditions, and the ability to fully test compliance with Category 6 standards and comply with federal standards. Test sets should have a current NIST traceable calibration sticker on it. The Contractor shall provide to SHSU a statement of the type of equipment to be used for testing of both Category 6 cabling and fiber prior to the beginning of testing. The test results shall be provided in paper and electronic format, verifying the compliance of every cable system.
- End-to-end bidirectional loss analysis shall be provided for each fiber strand using Optical Loss Test Set (OLTS) and Optical Time Domain Reflectometer (OTDR) test sets. The test results shall be provided in paper and electronic format, verifying the compliance of every cable system.

1.9 Grounding and Bonding

A. All telecommunications facilities shall be grounded per BICSI specification for large telecommunication systems.

1.10 Administration (Labeling)
A. The Contractor shall place identical labels at the telecommunications faceplate and the patch panel in numerical order, as well as on each end of every cable for each Category 6 cable system. The labeling scheme shall be consistent with: the room number where it originates, a period, a letter indicating which faceplate within the room, and a number indicating the port within that faceplate, i.e., “203.a2”, or “110.b1”. If there are multiple faceplates within the room, the alphabetical sequence shall begin at the door and will increment sequentially in a clockwise direction around the room.

- Special circumstance connections, such as for wireless, camera, courtesy phone, or door access connections, should be placed together in a common area on the patch panel. These should be labeled with WAP-closet-room, or CAM-closet-room.1 (if multi in same room, .1 to left of door then clockwise), CPH-closet-room and DOOR-closet-room, on both ends, as CPH-A-215, WAP-C-400.1.
- Cable TV wiring will also be labeled identically on each end with cable-wrap labels.

B. Refer to typical drawings in section 10 for examples.

Part 2 – Telecommunications and Equipment Room Guidelines

2.1 Definitions

A. Main Distribution Facility (MDF), or Equipment Room (ER): Any space where telecommunications equipment common to the occupants of a building resides.

B. Intermediate Distribution Facility (IDF), or Telecommunications Room (TR): The space that acts as the common access point between backbone and horizontal distribution pathways. TR’s contain telecommunications equipment, control equipment, cable terminations and cross-connect wiring.

C. Optical Loss Test Set (OLTS): Used to measure optical power and power loss, and reflectance and reflected power loss on fiber medium.

D. Optical Time Domain Reflectometer (OTDR): Used to measure optical link loss if its markers are set at the terminus points for which the fiber loss is desired.

2.2 Room Planning and Spacing

<table>
<thead>
<tr>
<th>Serving Area (Sq. Ft.)</th>
<th>Room Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>40,000</td>
<td>12’ X 14’ min.</td>
</tr>
<tr>
<td>19,000</td>
<td>9’ X 7’ min.</td>
</tr>
<tr>
<td>8,000</td>
<td>6’ X 7’ min.</td>
</tr>
</tbody>
</table>

NOTE: Special purpose rooms, such as laboratories, computer rooms and certain instructional spaces, may have a higher than average density of communications outlets. The size of the MDF/IDF serving these rooms shall be increased/decreased accordingly, as determined by IT@Sam.

Refer to Typical drawings in Sec 10 for example

A. The MDF and IDF shall be dedicated to the telecommunications function and related support facilities. For security purposes, non-IT@Sam systems shall not be co-located in the MDFs and IDF. The MDF and IDF shall not be shared with electrical installations other than those
supporting telecommunications. Equipment not related to support of the MDF or IDF (e.g., piping, HVAC systems, pneumatic tubing) shall not be installed in, pass through, enter, nor be stored in the MDF or IDF.

B. If there are fewer than 48 telecommunications ports to be terminated in a closet, a wall-mounted rack or cabinet may be acceptable with prior agreement by IT@Sam.

C. Telephone cable entering the building shall be terminated on entrance terminals and grounded in accordance with NEC and BICSI standards. Cross-connect panels and telephone tie cables shall be installed where necessary within and between distribution facilities, and shall be terminated into patch panels in the equipment racks. These panels shall be placed in a group separated from the Category 6 patch panels distributing horizontal cable. Final placement of panels in equipment racks shall be pre-approved by IT@Sam.

D. Telephone tie cable run between distribution facilities within the building shall be Superior Essex Plenum rated cable of a size determined by IT@Sam commensurate with the size of the cable providing service to the building.

E. Telco-style ladders shall be bolted together for stabilization and used to run cable horizontally and vertically in the distribution facilities.

F. The patch panels shall be mounted in an open rack meeting this guideline’s specifications, secured both to the wall by ladder rack, and to the floor by bolts. The patch panel shall be sized to provide not less than 20% spare terminal ports available to accommodate future expansion of the system.

G. Rack size shall be determined in a way so as to provide not less than 40% free space.

H. MDF and IDF design, including location, should be developed in accordance with security and disaster avoidance plans of the building. The IDF shall be located directly above the MDF closet, where applicable.

I. The Contractor shall assure the space allocated for the distribution facilities or other designated spaces are appropriate to comply with BICSI standards, and are in agreement with specifications provided in this document. Any concerns should be discussed with the IT@Sam prior to installation.

J. The MDF/IDF HVAC system(s) shall be able to operate on a 24-hour basis independent of building HVAC scheduling or temperature settings, to include independent thermostats in each MDF/IDF. If emergency power is available, the HVAC system should remain operational.

K. Receptacles shall be provided on the horizontal ladder at the top of each data rack. These receptacles shall be fed from a whip at the UPS rack. UPS rack and plug type shall be designated by IT@Sam.

L. Free-standing racks shall be provided according to space requirements. Vertical cable management shall be provided in minimum quantity of at least one with each separately placed rack, otherwise one between each rack when placed in a single row.

M. Each copper patch panel shall have a horizontal wire management system installed above it.

2.3 Construction

A. False ceiling shall not be provided.

B. For MDF or IDF, the minimum clear height in the room shall be 8 ft. without obstructions.

C. Walls shall be layered with 3/4” plywood and finished to BICSI specifications.
D. Floors shall be sealed to minimize dust and static; finishes shall be light in color to enhance room lighting.

E. Lighting shall be a minimum of 400 lux. IT@Sam requires that at least two lighting fixtures be installed per MDF/IDF. These lights shall be installed in front and behind the telecommunication equipment rack(s). The location of the lighting fixtures is to be coordinated with IT@Sam. Lighting shall be controlled by one or more switches located near the entrance door(s) to the room. Dimmer switches shall not be used. All lights will be covered by wire cages. If energy efficient timed lighting is utilized they must allow the lights to be engaged for at least 30 minutes before powering off.

F. Floor loading capacity of MDF/IDFs shall be at least 500 lb/sf or located on a load bearing wall. The architect/engineer shall verify that concentrations of proposed equipment do not exceed the floor loading limit, which may require increasing the floor loading capacity in some cases.

G. The door shall be a minimum of 36” wide and 80” high, without door sill, hinged to open outward (codes permitting) and fitted with a lock. The doors shall have a lever handle, pick guard. The locks for the MDF and IDFs shall not be on the building master keys. These locks shall be incapable of remaining in an unlocked state when the key is removed. The door shall be equipped with an auto closing device. The fire rating of the door shall be consistent with the fire rating of the walls of the room. On outward opening doors, the hinges shall be of the anti-tampering type. These hinges shall be consistent with and match similar mechanisms throughout the building.

2.4 Fire Protection

A. The Contractor shall provide fire protection for the room as required by code.

B. Sprinkler heads if required shall be provided with wire cages to prevent accidental operation.

C. Penetrations through or into firewalls or floors shall use an appropriate EZ Path product per the referenced codes and standards.

Part 3 – Inside Plant Guidelines

3.1 Pathways and Room Penetrations

A. References to specific equipment in this area can be found in Section 1.5.

B. The Contractor shall be responsible for construction of the cable pathways and to overcome obstacles, install conduit as specified and as further need is determined by the RCDD, and to correct any building alterations made necessary by their installations. Pathways shall follow along hallways and vertical chases designated for telecommunications. The pathway location of all cable runs shall be from the telecommunications port to the hallway, along adjoining hallways to the telecommunications closet or location designated. Cable shall not be run over groups of offices or work areas when a pathway recommended herein is available.

C. When crossing through a mechanical room or other areas requiring additional protection, rigid metal conduit, EMT (with nylon bushings) or metal cable tray shall be supplied to protect telecommunications cables and reduce the potential of EMI/RFI interference. Cable separation shall be maintained from possible sources of EMI/RFI. All EMT conduit, metal cable trays, equipment racks or cabinets shall be grounded per BICSI standards.
D. Telecommunications cable concealed within a wall shall be run from the outlet box within a minimum of \(\frac{3}{4} \)" metal conduit with nylon bushings and stubbed out into the ceiling space a minimum of 2" above drop ceilings. If the finished ceiling will not provide ready access, metal conduit must provide a continuous pathway to the accessible cable path allowing no more than two 90-degree sweeping turns.

E. Outside of main cable corridors, all cable pathways shall be supported per BICSI standards by loop cable hangers. The support distance shall not exceed 5’. Each hanger shall be suspended from systems provided by the Contractor and not from any other structures which are not intended to support cabling.

F. There shall be no splice other than within the termination trays for the fiber install. All runs shall be home runs and complete from end to end. If OSP cable is used, it should be brought into the MDF in a plenum rated conduit per BICSI standard. IT@Sam will have to be notified and approve any special cases that require a splice. If a splice is required, the splice must be a fusion splice and maintain no more than a 0.2 dB of loss.

G. All cable shall be run with basket trays in main corridors within ceilings and maintain a 6” clearance on the top of the tray.

H. Telephone entrance terminals shall be filled with protectors.

I. There shall be a service loop of 50’ routed appropriately in the telecommunications closets at each end of a fiber run.

J. Provide a polypropylene spare pull cord in all voice/data service entrance and tie conduits. Provide pull cords in all interior cable trays.

K. All conduits shall have a nylon bushing installed on exposed ends.

L. All firewall penetrations shall use the appropriate sized EZ-Path product.

M. All data lines terminating in the MDF or an IDF shall be teal Category 6.

N. All data lines that are point-to-point, or terminate in an auxiliary support room (ie. video control) shall be yellow Category 6.

*Note on Misuse: Do not use voice/data sleeves for temporary construction power wiring.

3.2 Station Wiring and Jacks

A. Unused spaces in a face plate shall have a blank filler module.

B. In areas designed for vending or laundry service machines, there shall be one Category 6 data line per machine.

C. Fire alarm panels shall have two Category 6 data cables installed to the nearest data closet. Elevators shall have three Category 6 data cables installed to the cab, and two Category 6 data cables installed to the control panel.

D. Station Wiring Minimum
 - All rooms at minimum shall have one faceplate consisting of two lines per every 25 linear feet of wall.
 - All rooms designated as offices shall at minimum have two faceplates consisting of lines each, placed on opposing walls
 - Four data ports shall be installed in any floor boxes that are required, and dust covers shall be used on modules.
E. Where telecommunications cables cannot be concealed within the walls at a telecommunications port location, surface mounted wire mold shall be installed. The wire mold shall extend into and above the ceiling a minimum of 2”, and continue down to a surface mounted box. The surface mounted full-sized, single gang box will house the faceplate and modular jacks as well as provide mechanical protection for the terminals. The wire mold and surface mounted box colors shall match, and shall complement the existing wall color. Wire mold may be of either metal or plastic which shall be mechanically affixed to the surface. Mounting brackets will be concealed or pre-approved by IT@Sam.

3.3 Inside Plant Wireless
A. Wireless access point locations shall be located above ceiling when practical and shall consist of 2 (Two) data lines terminated into a small surface mount box at the end of a 15’ service loop. The loop shall be suspended above the ceiling and labeled for easy identification as well as being labeled on face plate and cable.
B. A building shall have at least 2 wireless access point lines for every 1800 sf of floor space with staggered locations so that they don’t overlap on the adjacent floor.
C. Wireless access point line locations above the ceiling shall be marked with a removable sticker that is visible from the floor.

3.4 Inside Plant Telephone
A. All telephone station lines shall be data station lines and shall follow the appropriate standards.
B. There shall be at least one courtesy phone location per floor in a structure.
C. The location shall be 40” AFF and be terminated with a wall phone keystone jack to a single gang telephone face plate, as specified.
D. The location should be generally in the area of the elevator but final placement shall be decided after consulting with SHSU.

3.5 Inside Plant Public Safety and Cellular Communications
3.5.1 Bidirectional Amplification for Public Safety Two-Way Radio and Cellular/Smart Phone
A. Provide RF amplified communications within the public areas including stairwells and mechanical areas of a building to ensure that public safety two-way radios and cellular telephones/3G/4G services do not encounter dead spots or zones.
B. System should be made up of a distributed antenna system for the interior of the building.
C. An external Roof Donor Antenna(s) will be mounted to provide communications to local RF access points for the service being amplified.
D. A radio mounting point on the roof shall be provided for the mounting of up to three antennas with appropriate grounding to building. A roof penetration shall be provided for multiple antenna feed line down to a radio mounting room. Power to support the radio mounting point shall be located in close proximity.
E. Two-way Radio coverage will be in the 700 and 800 MHz range to serve public safety radios. The system shall be designed and programmed to enhance specified/channelized locally-used
public safety channels including interoperability channels and will require input and signoff from SHSU University Police Department.

F. Cellular communications that are amplified shall be coordinated with the carriers so that the system meets their requirements for acceptable operations. The Contractor shall be liable and responsible for correction of any omissions or system operation due to design and construction that does not meet carrier requirements and/or FCC Regulations.

G. The Contractor shall submit plan to IT@Sam for the bidirectional systems that includes a description of operation, coverage plots and evidence of collaboration with cellular companies and public safety agencies. Upon commissioning and signoff by the customer, as built drawings, cut sheets, equipment manuals and documentation shall be provided in hard copy and digital form. The contractor shall provide training to IT@Sam on system operation and configuration. Drawings shall be in DWG or DXF file type as well as PDF. If the units are programmable, IT@Sam shall be provided all un-complied code, programming software and any required passwords.

H. Unit(s) shall be warrantied for a period of three years for on-site parts and labor. Warranty shall begin upon customer acceptance of installation of the unit.

3.5.2 Roof Top Antenna Mounting Hard Points

A. An antenna mounting point on the roof shall be provided for the mounting of multiple antennas with appropriate grounding to building lightning protection system.

B. Mounting points shall be made up of 3” galvanized pipe extending 8’ above the roof surface on four points 10’ by 10’ square with a 3” pipe connecting the four pipes horizontally 4’ above the roof surface. The top of the vertical pipes shall be sealed.

C. A walk door or roof hatch shall provide access to the antenna mounting point.

D. A roof penetration and access path shall be provided for antenna feed line down to a radio mounting room.

E. Power to support the radio mounting point shall be located in close proximity. Two 120-volt 20-amp circuits shall be provided.

F. Distance between roof penetration and radio room must be minimized.

G. The roof penetration shall be comprised of two 3” conduits into an individual weather proof box for each located on the roof top within the antenna mounting.

H. A 120-volt 20-amp outlet shall be provided in a weatherproof enclosure and shall be located next to the antenna feed line enclosure.

I. Conduits are preferred to have 1’ physical separation to avoid possible interference.

Part 4 – Outside Plant Guidelines

4.1 Pathways

A. All duct banks shall be constructed of non-metallic schedule 40 conduit. All bends shall have a minimum radius of 36”. Manufactured bends shall be utilized.

B. All ducts shall be a minimum of 30’ below grade.

C. All ducts in pertinent maintenance holes or those connecting to exterior locations, whether in use or empty, shall be sealed with duct plugs at each end.
D. All ducts shall be able to hold 100 psi for 45 minutes.
E. All ducts shall have locatable tracer-tape installed and properly secured in them.
F. All buildings shall have divergent pathways enter the building from separate maintenance holes.
G. All ducts shall be inspected by IT@Sam prior to being back filled.
H. Provide galvanized rigid metal conduit at the entrance to each building starting at 6’ minimum outside the foundation wall to termination in the Equipment Room. Bond the conduits to the TMGB with a #6 AWG copper ground wire and bonding bushings.

4.2 Maintenance Holes
A. Feeder ducts shall enter on the narrow walls of the maintenance holes. Ducts providing service laterals to buildings may enter on the long walls.
B. Ducts shall not enter the maintenance hole in the cover chimney.
C. Ducts shall enter maintenance holes perpendicular to the wall.
D. Utilize installed TERMADUCTS for all conduits entering the maintenance hole wherever possible. Populate the lowest knock-outs available to allow for future expansion. Ducts shall be installed flush with the interior wall of the maintenance hole and shall not protrude into the interior space.
E. Splay all ducts entering the narrow wall of telecommunication maintenance holes. Equally separate duct banks so that half the ducts will enter near the left corner of the narrow wall and the other half will enter near the right corner of the same narrow wall. The splaying of the ducts should start at least 20’ from the maintenance hole. Service lateral ducts are not required to be splayed.
F. Where possible, organize ducts in such a manner as to provide “in-line” or “pull-through” cable installations.
G. At all road and driveway crossings the duct bank shall be reinforced with engineer designed reinforcement.
H. Maintenance holes that are positioned in roadways shall have at minimum a 1ft wide 6 inch deep concrete lip surrounding the lid.
I. Each maintenance hole lid shall be permanently marked with “SH Communications”, CH Number, and “936-294-1950”. *see example in typical drawings section

4.2a Hand Holes
A. Hand holes shall have minimum dimensions of 30”x48”x36”.
B. Feeder ducts shall enter on the narrow walls of the hand hole. Ducts providing service laterals to buildings shall enter on the long side of the walls.
C. Hand holes shall have 4” of large gravel covering the bottom.
D. All hand holes shall have two bags of rainbow 4480 granular fire ant killer placed in hand hole.
E. All ducts entering hand hole shall extend 6” into the hand hole and be plugged with an expanding duct plug.
F. Any penetrations made to hand hole shall be sealed appropriately.
G. All hand holes shall have a two piece lid.
4.3 Splicing
A. All splices of copper cable up to 300 pair shall be set up as a butt splice and housed in an appropriately-sized stainless case. All stainless cases shall be pressure encapsulated. The splice itself shall be made utilizing a fold back technique. Splices up to 300 pair shall be made using 3m UY-2 filled connectors.
B. All splices of copper cable over 300 pair shall be made using 710-sc1 connectors.
C. There shall be no three-way splicing, half-tapping, back tapping, or bridging of any type.
D. The field side of any un-spliced copper cable shall be cleared using 3m UCC clearing caps.
E. For all splices there shall be a minimum of 15’ of slack left in the maintenance hole. All slack shall be neatly coiled and affixed to the side of the hand hole in a manner which places the splice at the top of the maintenance hole.
F. All splices shall have sufficient clearance between splice and maintenance hole lid.
G. All splices shall have a metallic tag indicating cable count permanently attached to the cable near the splice case.
H. Splice procedure and setup for copper cables larger than 300 pair shall be on a per project basis and will be determined by IT@Sam.
I. All fiber splices will be set up as a butt splice and housed in an appropriate coyote splice enclosure.
J. All fiber splices shall be fusion splices, and shall have a loss of less than .2 db. L. There shall be no mechanical connections of any kind in a fiber splice.
K. Fiber splices shall be set up in such a way that there is sufficient slack stored appropriately in case to facilitate any future repairs or cable throws with minimal interruption of service.
L. All splice cases shall be pressure tested to the manufacturer’s specifications.
M. All splices (copper and fiber) must be approved and inspected by IT@Sam prior to sealing.

4.4 KatSafe Emergency Telephones & Towers
A. When required as part of the project, entrance phones must be approved by SHSU. A list of acceptable Talk-A-Phone models and housings depending on the installation are listed in the Specific Equipment area of this document, Section 1.5.
B. When required as part of the project, emergency telephones shall be pedestal-mounted (Talk-A-Phone Tower, single emergency phone or equivalent approved by IT@Sam).
C. When required as part of the project, emergency pedestal-mounted telephones shall have a quad GFCI outlet installed in their base.

Part 5 – Software, Licenses and Connectivity
A. All software or systems must provide a minimum of LDAP authentication. Preferred authentication mechanisms include RADIUS and CAS.
B. All technologies should support high availability and online backups. Virtualization is preferred.
C. Software should not require operating system-level administrative privileges to operate. D. Where applicable, software should have the capability to integrate with the central campus SIS/ERP to synchronize data in real-time. Additionally, IT@Sam should have the ability to extract data housed in the software to load into the campus data warehouse.
D. All software licenses should include licenses for a minimum of a production and a development system.
E. Software should support a mainstream, current database such as Oracle or Microsoft SQL Server. Software should provide high-availability using active-active technologies for failover and redundancy as well as supporting load balancing.
F. Hosted Mass-email service:
 - SMTP service to be RFC5321 compliant.
 - Must support multiple recipients (SHSU defined value) per single message as blind carbon copies.
G. Hosted Web Services:
 - Authentication and session (example = cookies) information must be encrypted.

Part 6 – Minimum Technology Enhanced Classroom Design Standards

A. This classroom standard is for use in the design of facilities for Sam Houston State University. Consultants shall ensure compliance with all applicable regulating codes. Any deviations from these guidelines require IT@Sam staff approval.

B. These installations and purchases do not preclude, but compliment, existing construction standards. None of these installation will take the place of standard requirements and locations. For example, if standard wiring practices require three power outlets in a wall, and this document requires one outlet, then there will be four outlets in that wall. The end user may have additional requirements that must be coordinated with IT@Sam.

6.1 Classroom Design Standards, Basic Technology Enhanced Classroom

A. ALL classrooms will be designed and engineered from the classroom needs standpoint, not by forcing any classroom into a specific shape formed by the building. Precedence is given to enhance human interaction in the audio and visual aspects of the learning environments.

B. ALL students and audience members shall be able to easily see and hear all presenters and program materials, and ALL Faculty and presenters shall be able to easily see and hear all students and audience members.

C. ALL entrances/exists must be at the opposite end of the room from the staging/teaching area, thereby eliminating unnecessary interruption of student inflow. If more than one door is required, it is preferred to be in back of the room, if configuration allows. If not, the second door shall be set back greater than 8' from the instructional wall.

D. ALL student seats to be within 90-degree side-to-side cone established from center of screen. No greater than 45-degree horizontal angle to centerlines on screen, and no greater than a 35-degree vertical angle defined from the eyes of the closest student viewer to the top of any screen; horizontal line parallel to the floor that extends through the eyes.

E. Closest seats to projected image are 1.5x the width of projection screen.

F. Farthest seats to projected image are 5x the height of projection screen.

G. Room layout should be relatively rectangular, ratio not exceeding 1.5 to 1. Staging shall be on the narrow wall.
6.2 Certification Requirements and Documentation

A. The lead AV designer shall be a full time staff member employed with the contracting vendor and shall hold a CTS-D InfoComm Certification as well as a Crestron DM Engineer Certification.
B. The lead installer shall hold a CTS InfoComm Certification or other industry standard certification deemed acceptable by IT@Sam.
C. Submittals shall be provided with cut sheets and design drawings during the design phase and approved by IT@Sam.
D. Progress reports shall be provided to IT@Sam at least once per month and once per week once principle installation of AV equipment has begun.
E. As built drawings shall be provided in PDF and DWG or DXF digital format upon completion of the project. Digital copies of all manuals shall be part of the final submissions.
F. All AV Cable Testing documentation shall be provided to IT@Sam for review before the final inspection of the system.
G. All AV equipment and cables shall be labeled on both ends according to industry standard labeling conventions including cabling inside the lectern.
H. Contractor shall deliver the un-compiled code for any systems configured as part of the AV design after final testing has been completed.
I. Contractor shall schedule one training sessions with the owner for each system type installed in the building.
J. Upon completion of project, AV contractor shall provide to IT@Sam a commissioning plan for approval. The InfoComm “Audiovisual Systems Performance Verification Checklist” shall sever as a format and content guide for this list. Upon approval contractor will schedule the commissioning with IT@Sam personnel who will participate in the process.

6.3 Warranty and Maintenance

A. All AV systems shall be covered by a next business day on-site parts and labor warranty against defects in parts, workmanship, equipment failure and cabling infrastructure. This warranty shall be for a term of one year.
B. Maintenance on the AV System should be covered by the contractor at no additional charge to Sam Houston State University for a term of one year beginning on the date of sign off.
C. Contractor shall provide information regarding any annual maintenance costs associated with the products designed to create the AV system.

6.4 Projection Screens, Basic Technology Enhanced Classroom

A. Contractor will specify screen size and will install ceiling recessed screens.
B. Optimal distance between the first row of seating and the projector screen is 1.5x the width of the specified screen. Optimal distance to farthest is 5x screen height.
C. Provide space for whiteboard on side(s) of screen.
D. The bottom of the screen should be a minimum of 4’ above the audience floor, allowing those seated toward the rear of the audience to see the screen.
E. Projection screens for ceilings 10’ or lower, shall be a Dalite model, ceiling recessed manual. The screen shall be a HD, with a 16:9 aspect ratio.
F. Projection screens for ceilings higher than 10’, shall be ceiling recessed electric and have a low voltage interface for contact closure control using Crestron control systems. The screen shall be HD, with a 16:9 aspect ratio. The cable used to connect the low voltage controller to the low voltage switch located in the ceiling shall conform to manufacturer’s published guidelines. Wall-mounted raise/lower switches would be required adjacent to the lighting controls, centralized at a location near the instructor’s station. These switches would need to be clearly marked with text “Screen Control”, “Raise”, and “Lower” Coordinate with the MEP and IT@Sam early in the project to avoid possible problems with teaching position placement.

6.5 Ceiling Mounted Data Projector Mounting, Basic Technology Enhanced Classroom

A. In general, the projector is ceiling mounted approximately 12’ – 16’ from screen in front of projector lens in a room with standard height ceiling. Distance from screen to front of projector lens varies with size of screen, which is determined by height of ceiling and depth of room, and projector model/type. IT@Sam and distance calculators should be consulted to determine the correct projector make and model.

B. The projector ceiling mounting kit is aligned to be centered on the projector screen – center row of ceiling grid should be clear between 0’ – 20’ (from projection screen) of all A/C vents, smoke detectors, lighting, etc. to allow for future repositioning of projector infrastructure.

C. Mounting hardware for non-suspended ceiling mount projector locations shall be recommended by AV consultant and approved by contractor. IT@Sam and distance calculators should be consulted to determine the correct projector make and model.

D. Projector power shall have a duplex 120-volt power outlet and two data outlets with a 15’ tail to allow for repositioning of projector if needed. The projector should be mounted in a plenum enclosure or be flush mounted in the tile with the projector’s support column. See specific equipment for ceiling Projection Mounting System required by IT@Sam.

E. HVAC intake/exhaust ducts should not be located any closer than 6’ to the projector location; this will eliminate circulation competition with the projector’s own fan and cooling unit.

6.6 Audio, Basic Technology Enhanced Classroom

A. Sound system in the classroom shall be a 70-volt distributed system with speakers placement determined based on an analysis of the height of the ceiling, the dispersion of the speakers crossing at 50” above the floor, and a constant sound footprint over the seating area of the room with a sound pressure level of 50-60 dB above background noise level that shall be attainable at 50% of total system gain. Speaker count and placement should be approved by IT@Sam.

B. Crestron DMPS integrated amp should be used in typical classrooms where four speakers are designed.

C. Amplifiers shall be sized for the number of channels of sound reinforcement required for the application or if sound zones are required.

D. Noise level is to be no higher than NC = 30 in general and NC = 20 at grills or registers. ANSI/ASA S12.60-2002 sets 35 decibels for maximum background noise for unoccupied school classrooms. Separate classrooms should not share same plenum area, as sound will carry over
into adjacent rooms. Walls or sound attenuation barriers must be used to insure each classroom's audio environment is isolated from each other.

6.7 Multimedia and Video, Basic Technology Enhanced Classroom

A. The teaching position is defined by the positioning of the floor box, the screen(s) and the projector(s). Coordination with MEP and others will be necessary to ensure that the teaching podium can be placed over the floor box without creating obstructions to the projected image.

B. Projector used in SHSU classrooms shall have an RJ-45 Ethernet capability with a web interface for setting the projector configuration remotely. The projector shall also be Crestron RoomView compatible.

C. Projectors used in SHSU classrooms shall have at least 2 HDMI inputs.

D. Projectors used in SHSU classrooms shall be capable of fitting the Chief RPMAU mount and the mount will have a locking mechanism listed under specific equipment in section 6.12.

E. All projector locations shall have two data lines located above ceiling in close proximity to the projector when practical and shall consist of a data line terminated into a small surface mount box at the end of a 15’ service loop. The loop shall be suspended above the ceiling and labeled for easy identification as well as being labeled on face plate and cable.

F. Classroom lecterns will be designed by IT@Sam along with the contractor and purchased under the construction budget with furniture and fixtures.

G. All network cables connecting Lectern devices to floor box or other network entry point shall be labeled by the AV Installer on the cable at the entry point stating the equipment that it connects – such as the control system – and on the device end the cable shall be labeled with the port label information.

H. Classroom lecterns must be plugged directly into a floor box underneath the teaching location. No extension cords can be used.

I. Lectern shall be supplied with power strips and located inside the lectern and shall have thirty-five percent expansion capacity after all equipment, including owners supplied equipment is planned for. Power strips must not be daisy-chained within the lectern.

J. Lectern Logo: the owner may want a logo on the front of the lectern. For Spectrum lecterns approved artwork is on file, but the owner shall sign off on any artwork prior to production.

K. Classroom lecterns or media cabinets typically contain the following items:

L. A desktop computer (provided by Owner) with an output of Display port plus. Computer shall be located on a shelf that can be accessed through a window of the locked podium doors. DVD drive, USB drive, and computer power button must be accessible through this window. Contractor shall remove Plexiglas window at the time of the shelf installation.

- A touchscreen with stylus for desktop computer annotation that integrates with the owner provided computer. Touch Screen shall be at least 20” diagonal and be on a spectrum industries hydraulic loaded arm that mounts to the podium. Arm should be sized based on the expected weight of the monitor specified.
- A cable cubby with 120-volt AC power to support the laptop cables.
- Cables for use with a laptop that retracts back into the podium to support a laptop computer. There shall be one cable for HDMI and a custom adapter ring. Laptop cables shall be capable of extending at least 36” from cable cubby.
• A video and audio switching system that supports both analog and digital video sources interfaced into the SHSU local area network.
• If design requires, an external amplifier for 70-volt distributed sound with power output providing 40% headroom when used in normal operating parameters.
• The ability to transmit Audio/Video information via Category 6 to display sources such as projectors and LED Displays, maintaining HDCP.
• HDMI clips shall be used on all HDMI connections to provide strain relief and secure connection.

6.8 AV Control System, Conduit and Networking, Basic Technology Enhanced Classroom
A. Audio Visual control systems of choice shall be manufactured by Crestron and be part of the Digital Media family of products. All control systems subject to IT@Sam approval prior to installation.
B. Crestron Wired Touch Panel shall be used in all classrooms and conference rooms.
C. Crestron Digital Media network connections of control systems and DM receivers and other devices shall use the private network feature of the DM line of equipment. When designing and interfacing AV equipment for/to the SHSU network, only one MAC address is allowed on a single network port.
D. Contractor shall be responsible for obtaining IP address information from IT@Sam two weeks prior to the installation and networking all projector and control system devices in consultation with SHSU to integrate all Crestron network devices into the SHSU local area network and program existing Crestron Fusion RoomView server including XPanel functionality of individual devices. Contractor shall provide demonstration of all new RoomView functionality and provide training.
E. All Crestron Control System interconnect cabling shall comply with the Crestron specifications for cabling and fiber infrastructure.

6.9 Floor Boxes, Conduit and Networking, Basic Technology Enhanced Classroom
A. IT@Sam specified floor box shall be used in all classroom, the position of the box, which defines the teaching position, shall be coordinated so that when the teaching podium is placed over the box, it does not obstruct the function of the projection screen(s) and is not an obstruction to the projected image from the projector(s) and does not allow for any cables to become a tripping hazard.
B. The floor box shall have one 20-amp, 120-volt duplex outlet mounted in the box.
C. A floor box should have as a minimum two 1-1/2” conduits that terminate at the pull box for the classroom with one conduit going to the hallway cable tray, two conduits going to the projector position. Dust plugs will be utilized in vacant ports in floor box.
D. Four data outlets shall be installed into the floor box directly underneath the lectern.
6.10 Lighting, Conduit and Networking, Basic Technology Enhanced Classroom
A. Do not place any ceiling light fixtures within 7’ of any projection screens, unless reflectors restrict lights directly downward to not spill or reflect onto screens. The front panel of lights reflecting onto the screen will be independently controlled.
B. Plan for the instructor to adjust all the lighting levels for his needs from near the teaching position. All lights will be controlled from a minimum of two points; near entry/exit to room, and near location of instructor/media cabinet. Besides being able to completely shut off the front panel of lights near the projection screen, the other lights in the room should be able to be dimed by switching off either half the bulbs in each fixture, or either one or two bulbs in each fixture.
C. AV consultant and MEP shall coordinate to ensure that the location of pendant lighting shall not obstruct the throw of the projector image.

6.11 Storage and IDF, Conduit and Networking, Basic Technology Enhanced Classroom
A. Provide at least one lockable closet per building, minimum 25 sf (5’ W x 5’ D x 10’ H). Support and storage closets will be accessible from hallways and will NOT be inside the classrooms, with a 36” wide entrance, electrical power and lighting for IT@Sam storage of emergency support ladder and replacement equipment to prevent loss of class time.
B. When an AV IDF is specified for a project, the IDF shall have two 4” EMT conduits running between the AV IDF and a telecommunications closet. In addition, one 4” EMT conduit shall provide a pathway between the AV IDF and the hallway cable tray. The IDF shall have at least one free standing rack. The IDF shall have data, electrical power, and lighting installed. Consult owner for final design details.

6.12 Specific AV Equipment
- Floor box
 - FSR Series 600 with the FL-GRD Floor Pan to provide required fire rating
- Control System
 - Crestron DMPS Series 100/200/300 or Crestron DM matrix Switcher
 - Crestron TSW-750-B-S Touch Screen Control System
 - Crestron DM RMC Scaler C
- Document Camera
 - Specified per install depending on client needs
- Projection Mounting System
 - Chief CMS440 Tile Bridge,
 - Chief CMA472 Plenum Box
 - Fixed Extension Column Chief CMS006 or CMS012
 - Projector Mount Chief RPMAU Locking Mount, Key A
 - Chief Power Filter Kit PACPC1
- Projector
 - NEC specified based on design with approval from IT@Sam
• Projection screen
 • DaLite HD Progressive 16:9 aspect ratio Advantage Electrol
• Television
 • TV to include RS232, RJ45, Tuner, 3-year manufacturer warranty
• Lecture Capture Rooms
 • Panasonic AW-HE2
 • AcousticMagicVoice Tracker 2
• Lectern
 • Spectrum Media Manager V2
 • Spectrum Media Director (large venue)
 • Extron Cable Cubby 300S with AC power and HDMI
 • Liberty DL-AR396 adapter ring
 • Crestron TSW700-B-S
 • HP smart monitor
• ITV Video Conferencing Equipment (limited installs)
 • Polycom Group Series 700 CODEC
 • Polycom HD EagleEye III cameras
 • Software Option for 1080p Video + Content
 • Instructor’s monitor mounted to the back wall or ceiling. LED display shall be 60” to 90” based on the viewing distance from the podium. An RS232 port is also required. IT@Sam shall approve final selection of display
• Audio
 • Crown CTS series amp
 • JBL control series ceiling mounted speakers
 • BSS Audio SoundWeb London BLU Series with COBRANET
 • BIAMP Audia with COBRANET

Part 7 – Basic ITV Technology Enhanced Classroom Design Standards

7.0 Basic ITV Technology Enhanced Classroom, ITV additions

The standards for Minimum Technology Enhanced Classroom Design will apply to ITV classrooms with the following additions.

A. ITV Video Conferencing is a simulation of face-to-face delivery of education using video conferencing technology. The environment is highly customized with technology and environmental features which maximize this simulation.
B. Each student seat will be supplied with power for laptop connectivity to receive digital instruction materials and virtualized content.
C. Ceiling height must be no less than 10’, and no greater than 11’ for acoustical and video requirements.

D. Array microphones will be used to capture both the instructor and the student audio interaction.

E. Video Conferencing System shall be capable of sending and receiving shared content.

F. Shall be capable of hosting multi-point calls using the software option.

G. Shall be capable of 1080p camera and video + content resolution. If required, the appropriate software key shall be installed.

7.1 Projection Screens, ITV Technology Enhanced Classroom, ITV additions

A. Contractor will specify screen size and will install ceiling recessed screens.

B. Optimal distance between the first row of seating and the projector screen is 1.5 x the width of the specified screen. Optimal distance to farthest is 4x screen height.

C. Provide space for whiteboard on side(s) of screen.

D. The bottom of the screen should be a minimum of 4’ above the audience floor, allowing those seated toward the rear of the audience to see the screen.

E. Projection screens for ceilings 10’ or lower, shall be a Dalite model, ceiling recessed manual. The screen shall be a HD, with a 16:9 aspect ratio.

F. Projection screens for ceilings higher than 10’, shall be ceiling recessed electric and have a low voltage interface for contact closure control using Crestron control systems. The screen shall be HD, with a 16:9 aspect ratio. The cable used to connect the low voltage controller to the low voltage switch located in the ceiling shall conform to manufacturer’s published guidelines. A ceiling mounted switch to cut power to the screen in the event the device needs to be serviced. Wall-mounted raise/lower switches would be required adjacent to the lighting controls, centralized at a location near the instructor’s station. These switches would need to be clearly marked with text “Screen Control”, “Raise”, and “Lower” Coordinate with the MEP and IT@Sam early in the project to avoid possible problems with teaching position placement.

G. For ITV simulation: all student seats to be within 70-degree side-side cone established from center of screen. No greater than 30-degree vertical angle defined from the eyes of the closest student viewer to the top of any screen; horizontal line parallel to the floor that extending through the eyes.

7.2 Data Projector Mounting, ITV Additions

A. In general, the projector is ceiling mounted approximately 12’ – 16’ from screen in front of projector lens in a room with standard height ceiling. Distance from screen to front of projector lens varies with size of screen, which is determined by height of ceiling and depth of room, and projector model/type. IT@Sam and distance calculators should be consulted to determine the correct projector make and model.

B. The projector ceiling mounting kit is aligned to be centered on the projector screen – center row of ceiling grid should be clear between 0’ – 20’ (from projection screen) of all A/C vents, smoke detectors, lighting, etc. to allow for future repositioning of projector infrastructure.
C. Mounting hardware for non-suspended ceiling mount projector locations shall be recommended by AV consultant and approved by contractor. IT@Sam and distance calculators should be consulted to determine the correct projector make and model.

D. Projector power shall have a duplex 120-volt power outlet and two data outlets with a 15' tail to allow for repositioning of projector if needed. The projector should be mounted in a plenum enclosure or be flush mounted in the tile with the projector's support column. See specific equipment for ceiling Projection Mounting System required by IT@Sam.

E. HVAC intake/exhaust ducts should not be located any closer than 6’ to the projector location; this will eliminate circulation competition with the projector’s own fan and cooling unit.

7.3 Audio, ITV Additions

A. Sound system in the classroom shall be a 70-volt distributed system with speakers placement determined based on an analysis of the height of the ceiling, the dispersion of the speakers crossing at 50” above the floor and a constant sound footprint over the seating area of the room with a sound pressure level of 50-60 dB above background noise level that shall be attainable at 50% of total system gain. Speaker count and placement should be approved by IT@Sam.

B. Amplifiers shall be sized for the number of channels of sound reinforcement required for the application or if sound zones are required.

C. Noise level is to be no higher than NC = 30 in general and NC = 20 at grills or registers. ANSI/ASA S12.60-2002 sets 35 decibels for maximum background noise for unoccupied school classrooms. Separate classrooms should not share same plenum area, as sound will carry over into adjacent rooms. Walls or sound attenuation barriers must be used to insure each classroom’s audio environment is isolated from each other.

D. Ceiling pendant mounted microphone system. Voice tracking camera positioning may be required. In room systems with two or more cameras the camera position presets available shall be greater than ten with the final number available coordinated with IT@Sam.

E. All microphones shall be connected to a DSP sound mixer and be programmed to minimize feedback and provide the sound reinforcement of the student speaking while turning off the closest overhead speaker. Mix minus unit shall be configured with expansion cards as needed and have at least two spare inputs and outputs.

7.4 Multimedia and Video, ITV Additions

A. The teaching position is defined by the positioning of the floor box, the screen(s) and the projector(s). Coordination with MEP and others will be necessary to ensure that the teaching podium can be placed over the floor box without creating obstructions to the projected image.

B. Projector used in SHSU classrooms shall have an RJ-45 Ethernet capability with a web interface for setting the projector configuration remotely. The projector shall also be Crestron RoomView compatible.

C. Projectors used in SHSU classrooms shall have at least 2 HDMI inputs.

D. Projectors used in SHSU classrooms shall be capable of fitting the Chief RPMAU mount and the mount will have a locking mechanism listed under specific equipment.

E. All projector locations shall have two data lines located above ceiling in close proximity to the projector when practical and shall consist of a data line terminated into a small surface mount.
box at the end of a 15’ service loop. The loop shall be suspended above the ceiling and labeled for easy identification as well as being labeled on face plate and cable.

F. Classroom lecterns will be designed by IT@Sam along with the contractor and purchased under the construction budget with furniture and fixtures.

G. All network cables connecting Lectern devices to floor box or other network entry point shall be labeled by the AV Installer on the cable at the entry point stating the equipment that it connects – such as the control system – and on the device end the cable shall be labeled with the port label information.

H. Classroom lecterns must be plugged directly into a floor box underneath the teaching location. No extension cords can be used.

I. Lectern shall be supplied with power strips and located inside the lectern and shall have 35% expansion capacity after all equipment, including owners supplied equipment is planned for. Power strips must not be daisy-chained within the lectern.

J. Lectern Logo: the owner may want a logo on the front of the lectern. For Spectrum lecterns approved artwork is on file, but the owner shall sign off on any artwork prior to production.

K. Two cameras, one facing instructor and one facing students, with ceiling view mount shall be provided in each classroom. Additional functionality shall include pan tilt zoom, powered by Category 6, RS232 Controller shall be provided by contractor.

L. Cameras shall be mounted so that the camera view of the instructor and students is not obstructed. IT@Sam shall approve position of all cameras.

M. Two display TVs (55” – 65”), one each mounted on the back and front walls or the ceiling so that the TVs are viewable without any obstructions. IT@Sam shall approve position of all TVs.

N. Provide a USB Video and Audio Capture device for use with the lectern desktop computer.

O. Classroom lecterns or media cabinets typically contain the following items:
 - A second confidence monitor (provided by Owner) at lectern.
 - A video and audio switching system that supports both analog and digital video sources interfaced into the SHSU local area network.
 - An external amplifier for 70-volt distributed sound with power output providing 40% headroom when used in normal operating parameters.
 - The ability to transmit Audio/Video information via Category 6 to display sources such as projectors and LED Displays.

7.4 AV Control System, Conduit and Networking, ITV Additions

A. Audio Visual control systems of choice shall be manufactured by Crestron and be part of the Digital Media family of products. All control systems subject to IT@Sam approval prior to installation.

B. Crestron Wired Touch Panel shall be used in all classrooms.

C. Crestron Digital Media network connections of control systems and DM receivers and other devices shall use the private network feature of the DM line of equipment. When designing and interfacing AV equipment for/to the SHSU network, only one MAC address is allowed on a single network port.
D. Contractor shall be responsible for networking all projector and control system devices in consultation with SHSU to integrate all Crestron network devices into the SHSU local area network and program existing Crestron Fusion RoomView server including XPanel functionality of individual devices. Contractor shall provide demonstration of all new RoomView functionality and provide training.

E. All Crestron Control System interconnect cabling shall comply with the Crestron specifications for cabling and fiber infrastructure.

7.6 Floor Boxes, ITV Additions
A. IT@Sam specified floor box shall be used in all classroom, the position of the box, which defines the teaching position, shall be coordinated so that when the teaching podium is placed over the box, it does not obstruct the function of the projection screen(s) and is not an obstruction to the projected image from the projector(s) and does not allow for any cables to become a tripping hazard.
B. The floor box shall have one 20-amp, 120-volt duplex outlet mounted in the box.
C. A floor box should have as a minimum two 1-1/2” conduits that terminate at the pull box for the classroom with one conduit going to the hallway cable tray, two conduits going to the projector position. Dust plugs will be utilized in vacant ports in floor box.
D. Four data outlets shall be installed into the floor box directly underneath the lectern.
E. Two Yellow Category 6 data cables shall be pulled from lectern to each camera location. Consult IT@Sam for final camera placement.

7.7 Lighting, Conduit and Networking, ITV Additions
A. Do not place any ceiling light fixtures within 7' of any projection screens, unless reflectors restrict lights directly downward to not spill or reflect onto screens. The front panel of lights reflecting onto the screen will be independently controlled.
B. Plan for the instructor to adjust all the lighting levels for his needs from near the teaching position. All lights will be controlled from a minimum of two points; near entry/exit to room, and near location of instructor/media cabinet. Besides being able to completely shut off the front panel of lights near the projection screen, the other lights in the room should be able to be dimmed by switching off either half the bulbs in each fixture, or either one or two bulbs in each fixture.
C. AV consultant and MEP shall coordinate to ensure that the location of pendant lighting shall not obstruct the throw of the projector or camera images.

Part 8 – Minimum Technology Classroom Design Standards for Auditoriums or Large Lecture Halls

8.0 Integrated Audio-Video Systems and Equipment for Auditoriums
The standards for Minimum Technology Enhanced Classroom Design will apply to lecture hall classrooms with the following additions.
8.1 Projection Screens, Auditorium or Large Lecture Halls Addition
A. There may be a requirement for two projection screens or a larger single screen in large classrooms. Contractor will determine and coordinate such needs with IT@Sam staff.
B. The distance from the screen to the projector will be determined by the size of the screen and the model of projector and will be determined by the contractor and approved by IT@Sam staff.
C. The goal is to make the screen large enough so those in the back row can read the subject matter easily, but no so large as to overwhelm the closest viewer. Evaluate any barriers, and try to make sure that the lower part of the screen will be visible from all seats. Extra drop may be required to position the screen at a comfortable viewing level in a room with a high ceiling.
D. Width of viewing area: maximum 30 degrees each side of screen vertical center (60 degree max). No seats more than 45 degrees off axis from center(s) of screen(s).
E. Screen height should equal or exceed 1/3 the distance from the screen to the optimum seat for watching video with a 16:9 aspect ratio.
F. For charts and data, use 1/4 the distance.
G. For complex graphics, use 1/2 the distance.

8.2 Audio, Auditorium or Large Lecture Halls Addition
A. Combination of point-source cabinet speakers on stereo amplifier and distributed ceiling speakers on amplifier.
B. Distributed speakers: JBL control 24CT where each speaker should be spaced based on a minimum 130 degree conical coverage at a 10’ ceiling, JBL Model Control 26C where each speaker should be spaced based on a minimum 110 degree conical coverage for ceiling heights greater than 10’. Speaker placement and count should be approved by IT@Sam staff.
C. Separate amplification, control and EQ for voice support audio and program audio.
D. Point source cabinet speakers might be needed in large lecture halls. The contractor and architect should work with IT@Sam for location approvals.

Part 9 – Minimum Technology Conference Room Design Standards
9.0 Integrated Audio-Video Systems and Equipment for Conference Rooms
A. Conference rooms shall be equipped with a display that will allow for the appropriate viewing size for the room and the type of content being viewed. LED displays of 60” to 80” or projector screens with projectors could be scoped depending on the size of the room.
B. The display chosen shall have support for HDMI input.
C. Specified adapter ring should be installed.
D. The display wall mount shall be from Chief Manufacturing and have tilt capability.
E. Power and AV cabling should be installed in a floor box and brought to the conference table. Coordination with purchasing needs to be done to ensure the table has the correct power and AV components when ordered.
F. Owner along with IT@Sam can determine if an AV faceplate can be used instead of bringing power and AV components to the conference table.
G. Owner along with IT@Sam should determine if audio will be needed, speakers should be installed should determine if audio will be needed.

H. Owner along with IT@Sam staff should determine if video will be needed, see ITV Additions for specifications.

Part 10 – Typical Drawings

10.0 Typical Drawings

- Typical small distribution facility
• Typical Labeling
Labeling Example

Room 100

Begin the faceplate labeling sequence to the left of the door in a clockwise direction.

Room 100A

Begin the faceplate labeling sequence to the left of the door in a clockwise direction.
Manhole ID Plate Example