PART I – Course Information

Course Type
☒ Existing/Restructured
☐ New Course Proposed Fall 2013
If new, have you submitted a Form B to the SHSU Curriculum Committee? ☐ Yes ☐ No

Course Prefix & Number: MATH 1384

Texas Common Course Number (TCCN Matrix): MATH 1350

Course Title: Introduction to the Foundation of Mathematics I

Course Catalog Description (Copy and paste from online catalog for existing courses):
Topics include a study of sets, systems of numeration, natural numbers, integers, number theory and rational numbers. Credit in this course is applicable only toward elementary/middle school certification. Credit 3.

Course Prerequisites: THEA Score of 270 or its equivalent

Available Online?
☐ Yes, currently developed in online delivery mode
☒ Anticipated development in online delivery mode (Semester, Year: 3rd semester)
☐ No

Number of Sections to be Offered per Academic Year: 14

Estimated Enrollment per Section: 36

Course Level (freshman, sophomore): freshman

Designated Contact Person (for follow-up communication purposes): Beth Cory

E-Mail Address: bcory@shsu.edu

Phone: 936-294-1573

Approvals

Department Chair: [Signature] 10/19/12

Academic Dean: [Signature] 10/22/12
PART II – THECB Foundational Component Areas

See Appendix for full description of each component area.

Select Component Area: II. Mathematics

In one paragraph, describe how the proposed course will fulfill the core and skill objectives of the component area: This course is the first in a series of courses designed to develop the necessary foundations in mathematics for prospective elementary teachers. In particular, students will participate in an in-depth study of the mathematics necessary for teaching material related to numeration systems; number theory; and properties, operations, and algorithms involving whole numbers, natural numbers, integers, rational numbers, and real numbers. Implicitly, students successfully completing this course will (1) gain increased quantitative literacy in logic, patterns and relationships, (2) refine their understanding of key mathematical concepts, and (3) learn to apply basic mathematical concepts in appropriate settings.

PART III – Course Objectives & Student Learning Outcomes (SLO)

Insert the applicable course objectives stated as student learning outcomes (e.g., Students completing the course will be able to...) that support the core component area objectives. Please reference the component rubric for additional information on core component area objectives.

Objective/SLO 1: Students successfully completing this course will gain increased quantitative literacy in logic, patterns, and relationships through a study of numbers systems, number theory, number sets, as well as concepts, models, properties, and algorithms for the four basic operations of addition, subtraction, multiplication, and division as related to each number set.

How will the objective be addressed (including strategies and techniques)?
Quantitative literacy in logic, patterns, and relationships is addressed throughout this course in virtually every topic covered. Two illustrations follow:

Illustration 1: Students will use logic to analyze and investigate patterns in and relationships among various number systems in order to understand place value ideas. In particular, students will deepen their quantitative understanding of place value by comparing our base 10 number system to number systems involving a proportional representational model or number systems in other bases. For example, students might use manipulatives, such as blocks or popsicle sticks, to investigate the sizes of groups in various bases (e.g., base 4, base 5, base 6), use these ideas to create numbers in various bases, and then compare their findings to numbers written in base 10. As they investigate patterns and relationships, they might might be asked to use their discoveries to develop their own procedures for converting from one base to another.

Illustration 2: Students will use logic to investigate and justify the procedures used in quantitative algorithms with basic number sets. In particular, for each operation (addition,
subtraction, multiplication, and division) and for each number set (whole numbers, integers, rational numbers, and real numbers), students will study the associated algorithms and analyze error patterns that may occur in their application. For example, for whole numbers, students will investigate the relationships among various algorithms for adding and subtracting two-digit numbers. They will use their developing quantitative understanding of place value to logically evaluate the invented methods of elementary school children for adding and subtracting two-digit numbers and to identify the misconceptions that surface.

Describe how the objective will be assessed: This objective will be assessed through embedded problems in quizzes, exams, and/or in-class worksheets. Instructors will incorporate a common subset of problem types in the final exam in each section. As an example, instructors will be asked to include a question that requires the student to convert from base 4 to base 10 or vice versa.

Objective/SLO 2: Students completing this course will gain an understanding of the key mathematical concepts involved in the teaching of the four basic operations of addition, subtraction, multiplication, and division as applied to whole numbers, integers, decimals, and fractions.

How will the objective be addressed (including strategies and techniques)?
This course provides an in-depth study of the key mathematical concepts students need for teaching the fundamental operations of addition, subtraction, multiplication, and division to elementary school children. In particular, for each of the four basic operations, students will investigate the properties, models, and algorithms involved for whole numbers, integers, decimals, and fractions. An example is subtraction of whole numbers. As students study subtraction of whole numbers, they will explore whether or not the commutative, associative, identity, and closure properties hold true so that they can help children perform computations involving subtraction and can introduce children to basic ideas necessary for reasoning algebraically. They will investigate the take-away, the comparison, and the missing addend models for subtraction of whole numbers so that they will be aware of various ways to conceive of the concept of subtraction. They will also investigate key algorithms for computing answers to subtraction problems.

Describe how the objective will be assessed: This objective will be assessed through embedded problems in quizzes, exams, and/or in-class worksheets. Instructors will incorporate a common subset of problem types in the final exam in each section. As an example, instructors will be asked to include questions that requires the student to identify if a certain property holds true for a particular operation and number set, or to identify which model should be in a particular word problem, or to compute an answer using a particular algorithm.

Objective/SLO 3: Students completing this course will gain the quantitative tools necessary for appropriately applying the four basic operations of addition, subtraction, multiplication, and division in their everyday experiences.

How will the objective be addressed (including strategies and techniques)?
The course provides students with the opportunity to develop a deep understanding of the four basic operations, their properties, models, and algorithms so that they can teach elementary-school children how and when to add, subtract, multiply, and divide the various types of numbers they will come across in their everyday experiences. In particular, students will be presented with numerous word problems throughout the course for which they will need to determine the appropriate operation to be used and an appropriate model to represent the
situation. For example, for a list of word problems involving addition and subtraction, students will be asked to determine which operation should be used and if each problem can be best represented and solved using the set model of addition, the measurement model of addition, the comparison model of subtraction, the missing addend model of subtraction, or the take away model. As a summative activity, a list of word problems may include various types of numbers (whole numbers, integers, fractions, decimals). For each problem, students will need to determine the appropriate operation, the appropriate model, and the correct solution.

Describe how the objective will be assessed: This objective will be assessed through embedded problems in quizzes, exams, and/or in-class worksheets. Instructors will incorporate a common subset of problem types in the final exam in each section. As an example, instructors will be asked to include a question that requires the student to identify which of the four basic operations and which model should be used to solve a word problem involving whole numbers, integers, decimals, or fractions.

Objective/SLO 4:

How will the objective be addressed (including strategies and techniques)?

Describe how the objective will be assessed:
Objective/SLO 5:

How will the objective be addressed (including strategies and techniques)?

Describe how the objective will be assessed:

PART IV – THECB Skill Objectives

Address each of the THECB skill objectives required within the component area. Explain how the skill is addressed, including specific strategies to address the skill(s). Address ALL skill objectives associated with the selected Component Area. (See Appendix)

1. Critical Thinking Skills: to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information

How will the skill be addressed (including specific strategies, activities, and techniques)?

Students will develop their critical thinking skills as a natural part of this course. Students’ conceptual understanding of key ideas about number and operation is improved by actively working on assigned problems that require them to think creatively and to evaluate, analyze, and synthesize the given information. Numerous examples are present throughout the course. Three illustrations follow:

Illustration 1: As an introduction to place value concepts, students may be asked to count a large amount of popsicle sticks and then to provide their classmates with an understanding of this amount by showing some but not all of their sticks on the document camera. In this activity, student are developing their critical thinking skills and they think creatively and innovatively to come up with effective ways to communicate their amount of sticks.

Illustration 2: As a conclusion to the unit on fractions, students may be asked to analyze various problems involving the addition, subtraction, multiplication, and division of fractions and thus, to synthesize the material they have learned. They may be asked to critically analyze each problem to determine the most appropriate operation to be used and to carefully evaluate their solution process to determine the best way to present their solution with a diagram.

Illustration 3: Throughout the course, students are presented with the mathematical work of elementary school children. As students analyze the children's work, they must inquire into thought processes of the child in order to evaluate the child's solution. Thus, they can uncover misconceptions and also indications of correct reasoning.

2. Communication Skills: to include effective development, interpretation and expression of ideas through written, oral and visual communication

How will the skill be addressed (including specific strategies, activities, and techniques)?

Obtaining an in-depth understanding of the content necessary to teach mathematics to elementary-school children requires that students learn to communicate their ideas clearly through written, oral, and visual communication. Thus, for each topic in the course, students are
asked to explain mathematical concepts both verbally and in writing and to provide visuals to accompany their explanations in order to prove that they can indeed explain the content to a child. For example, during in-class activities, students may be asked to "teach" the others in their group how to use base 10 blocks to solve a subtraction problem involving three-digit numbers. During class discussions, they may also be asked explain and/or defend their solutions. On homework and tests, students may be required to explain in writing how to subtract two specific three-digit numbers and to provide accompanying diagrams of the appropriate base 10 blocks to illustrate the exchanges that are made, e.g., exchanging 10 longs for 1 flat.

3. **Empirical and Quantitative Skills**: to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions

How will the skill be addressed (including specific strategies, activities, and techniques)?
Students will improve their empirical and quantitative skills throughout this course as they study numeration systems, number theory, fraction concepts, and algorithms for the four basic operations of addition, subtraction, multiplication, and division using various number sets. During their study of numeration systems, students may, for example, manipulate numbers to study place value ideas, to convert them to different bases, and to write numbers in expanded form so that they can provide appropriate advice as part of a place value project. During the number theory unit, students may analyze, for example, properties of prime/composite numbers to determine which numbers between 1 and 100 are prime using Eratosthenes Sieve. During their study of fractions, they may be asked, for example, to manipulate and analyze various fraction pairs to make conclusions about which fraction in each pair represents the larger amount. During their study of the four basic operations, students will continue to develop their understanding of place value as they manipulate various types of numbers in various ways to perform both standard and nonstandard algorithms in order to make informed conclusions about the correctness and/or effectivness of various methods.

4. **Teamwork**: to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal

How will the skill be addressed (including specific strategies, activities, and techniques)?
Not Applicable
5. **Personal Responsibility**: to include the ability to connect choices, actions and consequences to ethical decision-making

How will the skill be addressed (including specific strategies, activities, and techniques)?
Not Applicable

6. **Social Responsibility**: to include intercultural competence, knowledge of civic responsibility, and the ability to engage effectively in regional, national, and global communities

How will the skill be addressed (including specific strategies, activities, and techniques)?
Not Applicable

PART V – SHSU Core Curriculum Committee Requirements

1. Using a 15-week class schedule, identify the topics to be covered during each week of the semester. Provide sufficient detail to allow readers to understand the scope and sequence of topics covered.

Week 1	Introduction to Systems of Numeration
Week 2	Introduction to Systems of Numeration
Week 3	Models for Addition and Subtraction of Whole Numbers
Week 4	Models for Multiplication and Division of Whole Numbers
Week 5	Integers: Concepts, Models, and Computations
Week 6	Properties of Addition, Subtraction, Multiplication, and Division
Week 7	Algorithms: Addition and Subtraction of Whole Numbers
Week 8	Algorithms: Multiplication and Division of Whole Numbers
Week 9	Number Theory: Prime and Composite Numbers, Divisibility Tests
Week 10	Number Theory: Greatest Common Factor and Least Common Multiple
Week 11	Fractions: Basic Concepts, Equivalency, Comparisons
Week 12	Algorithms: Addition and Subtraction of Fractions
Week 13	Algorithms: Multiplication and Division of Fractions
Week 14	Decimals: Concepts, Models, and Computation
Week 15	Problem-Solving

2. **Attachments (Syllabus Required)**

Syllabus Attached?
☑ Yes ☐ No

Other Attached?
☐ Yes ☐ No If yes, specify:
Appendix: THECB Component Area Descriptions and Skill Requirements

I. Communication (Courses in this category focus on developing ideas and expressing them clearly, considering the effect of the message, fostering understanding, and building the skills needed to communicate persuasively. Courses involve the command of oral, aural, written, and visual literacy skills that enable people to exchange messages appropriate to the subject, occasion, and audience.)

II. Mathematics (Courses in this category focus on quantitative literacy in logic, patterns, and relationships. Courses involve the understanding of key mathematical concepts and the application of appropriate quantitative tools to everyday experience.)

III. Life and Physical Sciences (Courses in this category focus on describing, explaining, and predicting natural phenomena using the scientific method. Courses involve the understanding of interactions among natural phenomena and the implications of scientific principles on the physical world and on human experiences.)

IV. Language, Philosophy, and Culture (Courses in this category focus on how ideas, values, beliefs, and other aspects of culture express and affect human experience. Courses involve the exploration of ideas that foster aesthetic and intellectual creation in order to understand the human condition across cultures.)

V. Creative Arts (Courses in this category focus on the appreciation and analysis of creative artifacts and works of the human imagination. Courses involve the synthesis and interpretation of artistic expression and enable critical, creative, and innovative communication about works of art.)

VI. American History (Courses in this category focus on the consideration of past events and ideas relative to the United States, with the option of including Texas History for a portion of this component area. Courses involve the interaction among individuals, communities, states, the nation, and the world, considering how these interactions have contributed to the development of the United States and its global role.)

VII. Government/Political Science (Courses in this category focus on consideration of the Constitution of the United States and the constitutions of the states, with special emphasis on that of Texas. Courses involve the analysis of governmental institutions, political behavior, civic engagement, and their political and philosophical foundations.)

VIII. Social and Behavioral Sciences (Courses in this category focus on the application of empirical and scientific methods that contribute to the understanding of what makes us human. Courses involve the exploration of behavior and interactions among individuals, groups, institutions, and events, examining their impact on the individual, society, and culture.)

<table>
<thead>
<tr>
<th>Foundational Component Areas</th>
<th>Critical Thinking</th>
<th>Communication</th>
<th>Empirical & Quantitative</th>
<th>Team Work</th>
<th>Social Responsibility</th>
<th>Personal Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life and Physical Sciences</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language, Philosophy & Culture</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creative Arts</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American History</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government/Political Science</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social and Behavioral Sciences</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COURSE SYLLABUS: Math 1384, 3 credit hours
FOUNDATIONS OF MATHEMATICS FOR ELEMENTARY TEACHERS (I)

CLASSROOM AND SCHEDULE:
INSTRUCTOR:

COURSE DESCRIPTION:
This course is the first in a series of courses designed to develop the necessary foundations in mathematics for prospective elementary teachers. Students are expected to practice communications skills and participate in hands-on activities, including the use of math manipulatives and technology. Topics will include National and Texas standards for teaching mathematics, sets, numeration systems, natural numbers, integers, number theory and rational numbers. Throughout the course, the five main themes recommended by the NCTM Principles and Standards (problem solving, reasoning, communication, connections, and representation) will be emphasized. Students will also participate in class discussions and group work during this course. Prerequisite: THEA score of 270 or Math 032D with a C or better.
3 semester hours.

OVERALL COURSE OBJECTIVES:
Upon completion of this course, students will:

- Gain increased quantitative literacy in logic, patterns, and relationships through a study of numbers systems, number theory, number sets, as well as concepts, models, properties, and algorithms for the four basic operations of addition, subtraction, multiplication, and division as related to each number set.
- Gain an understanding of the key mathematical concepts involved in the teaching of the four basic operations of addition, subtraction, multiplication, and division as applied to whole numbers, integers, decimals, and fractions.
- Gain the quantitative tools necessary for appropriately applying the four basic operations of addition, subtraction, multiplication, and division in their everyday experiences.

SPECIFIC COURSE OBJECTIVES:
Upon completion of this course, students will be able to:

- Analyze the structure of numerations systems and the roles of place value and zero in the base ten system.
- Understand the relative magnitude of whole numbers, integers, rational numbers, and real numbers.
- Demonstrate an understanding of a variety of models for representing numbers.
- Demonstrate an understanding of equivalency among different representations of rational numbers.
- Select appropriate representations of real numbers for particular situations.
- Understand the characteristics and properties of the set of whole number, integers, rational numbers, and real numbers.
- Demonstrate an understanding of how some situations that have no solution in one number system (e.g., whole numbers) have solutions in other number systems (e.g., real numbers).
- Work proficiently with real numbers and their operations.
- Analyze and describe relationships between number properties, operations, and algorithms for the four basic operations involving integers, rational numbers, and real numbers.
- Use a variety of concrete and visual representations to demonstrate the connections between operations and algorithms.
- Justify procedures used in algorithms for the four basic operations with integers, rational numbers, and real numbers, and analyze error patterns that may occur in their application.
- Work proficiently with decimals and their operations.
- Use a variety of concrete and visual representations to demonstrate connections between decimal operations and algorithms.
- Relate operations and algorithms involving numbers to algebraic procedures.
- Extend and generalize the operations on rational numbers and integers to include exponents, their properties, and their applications to real numbers.
• Demonstrate an understanding of ideas from number theory (such as prime factorization, greatest common divisor) as they apply to whole numbers, integers, and rational numbers, and use these ideas in problem situations.
• Apply properties of real numbers to solve a variety of theoretical and applied problems.

REQUIRED TEXT AND MATERIALS:

This text is intended to be a consumable resource for students. You are encouraged to write in your text (space is provided in the margins of the text) and to keep your notes and work for use in future methods courses, as well as classroom teaching. The pages of the text are perforated and may be easily removed. You may wish to create your own resource notebook by combining pertinent pages from the text, class notes, and completed assignments. Supplemental materials will be provided by the instructor.

SUPPLIES: Bring the following supplies to each class meeting:
• Colored pencils, crayons, or markers
• A scientific or graphing calculator

COURSE EVALUATION: Each student’s grade will be based on:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Unit Tests (each 100 points)</td>
<td>300</td>
</tr>
<tr>
<td>Folder Checks (each 10 points – best 10 of 12)</td>
<td>100</td>
</tr>
<tr>
<td>Final Exam (Comprehensive)</td>
<td>150</td>
</tr>
<tr>
<td>Total Points</td>
<td>550</td>
</tr>
</tbody>
</table>

GRADING SCALE:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Points Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>495 - 550</td>
</tr>
<tr>
<td>B</td>
<td>440 - 494</td>
</tr>
<tr>
<td>C</td>
<td>385 - 439</td>
</tr>
<tr>
<td>D</td>
<td>330 - 384</td>
</tr>
<tr>
<td>F</td>
<td>below 330</td>
</tr>
</tbody>
</table>

FOLDER CHECKS: One of the indicators of the understanding of a concept is the ability "to state it in your own words". Communicating your understanding will be shown through your complete solutions to assigned homework problems and through written responses/reflections to readings, questions, situations, or other topics related to your study of mathematics. These responses will be collected at least 12 times over the course of the semester and be worth 5 points each. Your **best 10 of 12** will be counted toward your final point total. Folder checks will include in-class work as well as out-of-class assignments. Because you will drop your lowest 2 scores, **NO LATE WORK WILL BE ACCEPTED.**

ATTENDANCE: Regular and punctual attendance is expected of every student. As a prospective teacher, you must demonstrate your reliability and conscientious attitude by your faithful attendance. Attendance will be taken every class. Any student who is more than 30 minutes late to class will be counted absent. Tardies will count against your attendance record (3 tardies - 1 absence). Unless approved by the instructor, leaving class early will count as an absence. **If absent or tardy, you are still responsible for all material covered in class,** and you will need to check with a classmate about what was discussed. **If you have 3 or fewer absences, your final exam grade can be substituted for your lowest unit test grade in figuring your final course grade. Note:** Some daily check grades will come from in-class work - if you are absent, you lose that opportunity.
TESTS: Tests will include problems that are similar to problems assigned and worked in class. A portion of each test will include multiple choice or short answer problems. A second portion of each test will include problems where students must show all of their work correctly, as well as arrive at the correct solution to the problem, or provide complete explanations for the problem or situation posed.

Test Dates:

NO MAKE-UP TESTS WILL BE GIVEN unless the student has an Official University excused absence. Arrangements must be made in advance of a missed exam. If you miss a test without an official excuse, your final exam grade will be used as a replacement. Please contact me as soon as possible if you will miss a test.

Final Exam Date:

CLASSROOM RULES OF CONDUCT
Students will refrain from behavior in the classroom that intentionally or unintentionally disrupts the learning process and, thus, impedes the mission of the university. Cellular telephones and pagers must be turned off before class begins. Students are prohibited from eating in class, using tobacco products, making offensive remarks, reading newspapers, sleeping, talking at inappropriate times, wearing inappropriate clothing, or engaging in any other form of distraction. Inappropriate behavior in the classroom shall result in a directive to leave class. Students who are especially disruptive also may be reported to the Dean of Students for disciplinary action in accordance with university policy.

Use of Telephones and Text Messengers in Academic Classrooms and Facilities: The use by students of electronic devices that perform the function of a telephone or text messenger during class-time may be prohibited if deemed disruptive by the instructor to the conduct of the class. Arrangements for handling potential emergency situations may be granted at the discretion of the instructor. Failure to comply with the instructor’s policy could result in expulsion from the classroom or with multiple offenses, failure of the course. Any use of a telephone or text messenger or any device that performs these functions during a test period is prohibited. These devices should not be present during a test or should be stored securely in such a way that they cannot be seen or used by the student. Even the visible presence of such a device during the test period will result in a zero for that test. Use of these devices during a test is considered de facto evidence of cheating and could result in a charge of academic dishonesty (see student code of conduct http://www.shsu.edu/students/guide/StudentGuidelines2010-2012.pdf#page=29).

AMERICANS WITH DISABILITIES ACT
It is the policy of Sam Houston State University that no otherwise qualified disabled individual shall, solely by reason of his/her handicap, be excluded from the participation in, be denied the benefits of, or be subjected to discrimination under any academic or Student Life program or activity. SHSU adheres to all applicable federal, state, and local laws, regulations, and guidelines with respect to providing reasonable accommodations for students with disabilities. If you have a disability that may affect adversely your work in this class, then I encourage you to register with the SHSU Counseling Center (936) 294-1720 and to talk with me about how I can best help you. All disclosures of disabilities will be kept strictly confidential.

NOTE: No accommodation can be made until you register with the Counseling Center.

VISITORS IN THE CLASSROOM
Unannounced visitors to class must present a current, official SHSU identification card to be permitted in the classroom. They must not present a disruption to the class by their attendance. If the visitor is not a registered student, it is at the instructor’s discretion whether or not the visitor will be allowed to remain in the classroom.

STUDENT ABSENCES ON RELIGIOUS HOLY DAYS POLICY
Section 51.911(b) of the Texas Education Code requires that an institution of higher education excuse a student from attending classes or other required activities, including examinations, for the observance of a religious holy day, including travel for that purpose. A student whose absence is excused under this subsection may not be penalized for that absence and shall be allowed to take an examination or complete an assignment from which the student is excused within a reasonable time after the absence. University policy 861001 provides the procedures to be followed by the student and instructor. A student desiring to absent himself/herself from a scheduled class in order to observe (a) religious holy day(s) shall present to each instructor involved a written statement concerning the religious holy day(s). The instructor will provide the student with a written description of the deadline for the completion of missed assignments and/or tests.
Academic Dishonesty Policy

1. GENERAL
The subject of academic honesty is addressed in paragraph 5.3, Chapter VI, of the Rules and Regulations, Board of Regents, The Texas State University System, and Sam Houston State University Student Guidelines published by the Office of Student Life.

5.3 Academic Honesty. The University expects all students to engage in all academic pursuits in a manner that is above reproach. Students are expected to maintain complete honesty and integrity in the academic experiences both in and out of the classroom. Any student found guilty of dishonesty in any phase of academic work will be subject to disciplinary action.

5.31 The University and its official representatives, acting in accordance with Subsection 5.32 may initiate disciplinary proceedings against a student accused of any form of academic dishonesty including, but not limited to, cheating, plagiarism, collusion, and the abuse of resource materials.

"Cheating" includes the following and similar actions:
(1) Copying from another student's test paper, laboratory report, other report, or computer files, data listings, and/or programs.
(2) Using, during a test, materials not authorized by the person giving the test.
(3) Collaborating, without authorization, with another student during an examination or in preparing academic work.
(4) Knowingly, and without authorization, using, buying, selling, stealing, transporting, soliciting, copying, or possessing, in whole or in part, the contents of an unadministered test.
(5) Substituting for another student, permitting any other person, or otherwise assisting any other person to substitute for oneself or for another student in the taking of an examination or test or the preparation of academic work to be submitted for academic credit.
(6) Bribing another person to obtain an unadministered test or information about an unadministered test.
(7) Purchasing, or otherwise acquiring and submitting as one's own work any research paper or other writing assignment prepared by an individual or firm. This section does not apply to the typing of the rough and/or final versions of an assignment by a professional typist.

5.32 "Plagiarism" means the appropriation and the unacknowledged incorporation of another's work or idea into one's own work offered for credit.

5.33 "Collusion" means the unauthorized collaboration with another person in preparing work offered for credit.

5.34 "Abuse of resource materials" means the mutilation, destruction, concealment, theft or alteration of materials provided to assist students in the mastery of course materials.

5.35 "Academic work" means the preparation of an essay, dissertation, thesis, report, problem, assignment, or other project that the student submits as a course requirement or for a grade.

2. PROCEDURES IN CASES OF ALLEGED ACADEMIC DISHONESTY

2.01 Procedures for discipline due to academic dishonesty shall be the same as in disciplinary actions specified in The Texas State University System Rules and Regulations and Sam Houston State University Student Guidelines except that all academic dishonesty actions shall be first considered and reviewed by the faculty member teaching the class. The faculty member may impose failure or reduction of a grade in a test or the course, and/or performing additional academic work not required of other students in the course. If the faculty member believes that additional disciplinary action is necessary, as in the case of flagrant or repeated violations, the case may be referred to the Dean of Student Life or a designated appointee for further action. If the student involved does not accept the decision of the faculty member, the student may appeal to the chair of the appropriate academic department/school, seeking reversal of the faculty member's decision.

2.02 If the student does not accept the decision of the chair of the academic department/school, he/she may appeal to the appropriate academic dean. The chair of the academic department/school may also refer the case directly to the academic dean if the case so warrant.