PART I - Course Information

Course Type
☐ Existing/Restructured
☒ New Course Proposed Fall 2013

If new, have you submitted a Form B to the SHSU Curriculum Committee? ☒ Yes ☐ No

Course Prefix & Number: BIOL 2404

Texas Common Course Number (TCCN Matrix): 2306, 2106, 2406

Course Title: Human Anatomy and Physiology II

Course Catalog Description (Copy and paste from online catalog for existing courses):
This course is the second course in a two-semester sequence that examines the systems of the human body using an integrated approach. Emphasis is placed on the study of the following systems: endocrine, cardiovascular, lymphatic and immune, respiratory, digestive, urinary, and reproductive. In addition this course requires in-depth application of topics related to cellular function and metabolism and of organ systems studied during Human Anatomy and Physiology I. Laboratory exercises will enhance the student's appreciation and comprehension of the biological concepts of structure and function of the human body. Prerequisite: Minimum grade of C in BIOL 2403. Credit 4.

Course Prerequisites: Completion of all developmental courses.

Available Online?
☐ Yes, currently developed in online delivery mode
☐ Anticipated development in online delivery mode (Semester, Year:)
☒ No

Number of Sections to be Offered per Academic Year: 2

Estimated Enrollment per Section: 130

Course Level (freshman, sophomore): sophomore

Designated Contact Person (for follow-up communication purposes): Dr. Jordan Clark

E-Mail Address: jmc124@shsu.edu

Phone: 936-294-2656

Approvals

Department Chair: [Signature] 06 Feb 2017

Academic Dean: [Signature] 06 Feb 2017

Submit completed, signed form to Core Curriculum Committee - Box 2478 or Fax 4-1271
<table>
<thead>
<tr>
<th>Academic Dean:</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART II – THECB Foundational Component Areas

See Appendix for full description of each component area.

Select Component Area: III. Life and Physical Sciences

In one paragraph, describe how the proposed course will fulfill the core and skill objectives of the component area:

Students in BIOL 2404 will learn the morphology and function of the human body at the gross and microscopic level. Functioning at the tissue, organ, and organ system level is understood by explaining the interactions between anatomical and physiological components. This course, the second a two-course sequence, will specifically examine the endocrine, cardiovascular, lymphatic and immune, respiratory, digestive, urinary, and reproductive systems. Several approaches will be used to meet these core goals. First, students will gain factual knowledge such as definitions and explanations of the anatomical and physiological concepts in a traditional lecture format and from assigned readings. Second, students will use scientific methods to predict, analyze, and interpret data demonstrating physiological events and structural morphology. These activities will take place during lecture using a small team format and in a laboratory setting. Third, students will combine their knowledge of principles and theories with the quantitative techniques learned in lecture and lab to critically evaluate medical pathologies and current biomedical research topics. They will complete these critical thinking activities in small groups and will communicate their analysis of the problem in written format or orally to the class. They will be expected to defend their work against questions from the class.

PART III – Course Objectives & Student Learning Outcomes (SLO)

Insert the applicable course objectives stated as student learning outcomes (e.g., Students completing the course will be able to…) that support the core component area objectives. Please reference the component rubric for additional information on core component area objectives.

Objective/SLO 1: Describe, explain, and predict natural phenomena of the human body using the scientific method.

How will the objective be addressed (including strategies and techniques)?
Students will use these learned concepts to predict, analyze, and interpret changes in the endocrine, cardiovascular, lymphatic and immune, respiratory, digestive, urinary, and reproductive systems by comparing healthy and pathological models. Students will apply learned concepts to explain the consequences of abnormal structure and function of individual and integrated systems.

Describe how the objective will be assessed:
This objective will be assessed in both lecture and laboratory. Outside of lecture, students will be assessed through the use of the online learning platform McGraw Hill Connect. Students
will complete online post-lecture questions at the end of each week or subject block (For example: completion of the nervous system chapter). These questions are prioritized to emphasize three levels of learning as defined by Bloom. Students answer questions that will emphasize basic knowledge and understanding of anatomical and physiological concepts. Students will then answer a series of questions that will require application of basic concepts to predict changes in anatomical structures and physiological events within selected systems of the organism. Additional questions will ask students to interpret how a structure or system has changed compared to knowledge of a healthy model. These online assignments will allow for one revision before submission. ~85% and a normal grade distribution will indicate that the class is progressing at an acceptable and expected rate.

In-lecture assessment will consist of four 50-question multiple choice exams. These questions, similar to the online assignment, will prioritize and emphasize three levels of learning as defined by Bloom. A class average of ~75% and a normal grade distribution will indicate that the class is progressing at an acceptable and expected rate.

This objective will be assessed in lab by analytical measurement of function and identification of structures. Lab practicals consisting of 25-30 identification stations will assess students' ability to identify anatomical structures and distinguish between healthy and diseased models. A class average of ~75% and a normal grade distribution will indicate that the class is progressing at an acceptable and expected rate. Following physiology lab exercises, students will submit lab reports that will require prediction of experimental outcomes and analysis of experimental data to explain the function of a human system. A class average of ~80% and a normal grade distribution will indicate that the class is progressing at an acceptable and expected rate.

Objective/SLO 2: Students will compare the interaction between physiological systems and anatomical function in the human model and how this relates to homeostasis.

How will the objective be addressed (including strategies and techniques)?
Students will use knowledge of individual systems, both form and function, to compare interdependency and interrelationships. Students will examine system relationships at the level of molecular, cellular, tissue, and organ functions in the human model. Students will identify and explain contributions of systems to the maintenance of homeostasis.

Describe how the objective will be assessed:
Students will be assessed outside of class through the online learning platform McGraw Hill Connect. Questions will be selected that examine how the anatomy of human models is related to specific physiological systems. These questions assess students' ability to identify and predict changes in both structure and function following changes in homeostasis. A class average of ~85% and a normal grade distribution will indicate that the class is progressing at an acceptable and expected rate.

In-lecture assessment will consist of four 50-question multiple choice exams. These questions, similar to the online assignment, will prioritize and emphasize three levels of learning as defined by Bloom. A class average of ~75% and a normal grade distribution will indicate that the class is progressing at an acceptable and expected rate.

This objective will be assessed in the lab by analytical measurement of function and identification of structures. The identification lab practicals will address some areas of this objective. However, the physiology lab component and post lab reports will be more thorough.
and efficient at addressing this learning objective. Following anatomy and physiology lab exercises students will answer post lab questions that require identification and understanding of functional changes in a system and the relationship with anatomical structures. The questions will be graded using assigned point values. Physiology experiments, such as measurement of muscle force and tension under different weighted loads, will require students to observe and collect data following experimental manipulation of homeostasis. Students will then answer questions assessing their understanding of how homeostasis disruption affects both form and function within human systems. These post lab questions may be presented in the lab manual and included in the physiology post lab report. A class average of ~80% and a normal grade distribution will indicate that the class is progressing at an acceptable and expected rate.

Objective/SLO 3: Students will understand how knowledge of human form and function applies to the experience of human health and disease in both a modern and historical context.

How will the objective be addressed (including strategies and techniques)?

Students will apply learned concepts of anatomy and physiology to compare and assess various pathological conditions. Students will examine how historical medical discoveries developed current understandings of anatomy and physiology. Students will examine how disruption of system interdependence and interrelationships may result in human pathologies.

Describe how the objective will be assessed:

In lecture assessment will consist of four 50-question multiple choice exams. These questions, similar to the online assignment, will prioritize and emphasize three levels of learning as defined by Bloom. A class average of ~75% and a normal grade distribution will indicate that the class is progressing at an acceptable and expected rate.

This objective will be assessed in the lab through post lab questions. Select questions will assess students' knowledge on learned concepts and current or historical topics in clinical, biological, and medical practices. These post lab questions may be presented in the lab manual and included in the physiology post lab report. A class average of ~80% and a normal grade distribution will indicate that the class is progressing at an acceptable and expected rate.

Objective/SLO 4:

How will the objective be addressed (including strategies and techniques)?

Describe how the objective will be assessed:
Objective/SLO 5:

How will the objective be addressed (including strategies and techniques)?

Describe how the objective will be assessed:

PART IV – THECB Skill Objectives

Address each of the THECB skill objectives required within the component area. Explain how the skill is addressed, including specific strategies to address the skill(s). Address ALL skill objectives associated with the selected Component Area. (See Appendix)

1. Critical Thinking Skills: to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information

How will the skill be addressed (including specific strategies, activities, and techniques)?

Students will develop critical thinking skills in lecture and laboratory. In the lecture, students will engage in interruptive and outside activities. Interruptive activities will consist of in-class practice exercises. These practice exercises will be conducted using Squarecap, an online realtime assessment tool that will give students and the instructor immediate feedback on performance during class. Questions in Squarecap will be presented in multiple choice and short answer formats that emphasize Bloom’s learning objective of application. The in-class activity may be used at any time during the lecture. Following this interrupted session there will be a discussion of the questions and review of performance. These in-class practice sessions are to prepare students, particularly in a large class setting, for exam questions that will require similar application of knowledge.

For graded assessment of critical thinking, 50-question exams will be administered throughout the semester. These exams will primarily cover Bloom’s learning objectives of remembering and understanding. However, each chapter covered in the exam will feature 3-5 multiple choice and short answer questions that emphasize application of knowledge. These questions may include, but not limited to: pathology, experimental design, and concept relationships.

Outside of lecture, students will complete assignments using McGraw Hill Connect, an online learning platform. Following each lecture, students must complete a series of questions that will be automatically graded. In addition to some basic concept questions, the assignment will focus on the following skills:

- Concept mapping, which requires students to recognize relationships between concepts;
- Ranking of physiological events in proper sequence; and
- Review of a pathology or clinical case examples, which are preceded by multiple choice questions.

The online assignment will be customized by the instructor. During the post lecture assignment, students will be allowed one revision of any missed question. After the assignment is complete, the grade is automatically submitted. Once the due date for the assignment has passed, students may access the assignment and receive feedback on any missed questions.
For selected lectures, students will be assigned a brief article that relates human anatomy and physiology to other vertebrate models. These articles will emphasize the importance of vertebrate models in clinical and biomedical research. At the beginning of those selected lectures, there will be a brief discussion of the article. Questions about the article will be presented through the Squarecap session. These session questions will not be graded, but may be presented during the regular graded lecture exam.

Students will develop critical thinking skills in the anatomy and physiology laboratory through analysis and interpretation of collected data, and completion of post lab questions. Following completion of specific physiology labs, students will complete a post laboratory report for a grade. These post laboratory reports will consist of the following:

- Statement of hypothesis;
- Graphing of data (when applicable);
- Reporting of results to include statistics;
- Discussion of results and acceptance or rejection of null hypothesis; and
- Additional questions that require the student to predict outcomes of proposed experiments and suggest alternative experimental designs from collected data.

For the anatomy labs students, will complete post lab questions that will include clinical application of learned systems. These questions will require students to apply basic knowledge to assess, interpret, or propose an outcome based on pathology or clinical scenarios. An example would be to describe regions damaged and loss of function expected following a trauma to the caudal region of the head. These questions will be assigned a point value from 5 to 10 points as determined by depth and complexity of the question.

2. Communication Skills: to include effective development, interpretation and expression of ideas through written, oral and visual communication

How will the skill be addressed (including specific strategies, activities, and techniques)? Students will have the opportunity to communicate in written and oral format. As part of the lab requirements students will be assigned a topic relative to anatomy and physiology. Each group will be given a presentation date on which they will present a ten-minute talk. Selected topics will allow students to address basic content knowledge, clinical and biological relevance of the topic, and propose future direction of research and investigation. Students will receive a presentation guide and the 20-point grading rubric during the second lab meeting. This will familiarize the students with the expectations of the presentation. The rubric will assess such areas as accuracy of interpretation, thoroughness of responses, and preparation and participation of all group members. In addition to oral presentations, students will be required to interpret experimental data and record it in a lab report.

3. Empirical and Quantitative Skills: to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions

How will the skill be addressed (including specific strategies, activities, and techniques)? Students will be expected to understand, analyze and interpret empirically-derived material to evaluate science issues, experimental results and possible solutions to them. These exercises will be used primarily in the laboratory. Students will use traditional bench experiments or computer-simulated experiments to collect data. In addition, students may be given an

Submit completed, signed form to Core Curriculum Committee - Box 2478 or Fax 4-1271
experimental design beginning with specific questions and a dataset designed to address those questions. Using either collected or provided data, they will then be taught basic statistical analysis of the data and how to graph the data in a manner meaningful to the question. Upon completion of the experiment, students will answer post-lab questions that will be recorded in a lab report. In this report, students will revisit the graphs and the questions, but now from a quantitative statistical perspective, and draw conclusions based on this empirical foundation. Questions from the post-lab assignment will help direct this narrative. These reports will be graded on an assigned point value.

4. Teamwork: to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal

How will the skill be addressed (including specific strategies, activities, and techniques)? Students will work together to solve specific questions, discuss related topics, and present information. In lectures, students will work in groups to map relationships of concepts, discuss and complete case studies, compose short answer essays and debate issues provided by the instructor.

In the laboratory, a majority of the anatomical and physiological experiments will be completed in groups. Each member will be responsible for specific duties, such as scheduling group meetings and keeping records of all graded team work. For dissections, students must work in teams and assign duties to individual members. Each member will rotate through responsibilities of dissecting, providing procedural guidance, and comparing dissection models with a virtual cadaver.

Students will participate in team challenges in which each team will set up identification challenges to other teams. Students will work as teams when conducting physiological experiments. Many of the quantitative analyses will be used for this goal-oriented group work. These students will work together to graph data, analyze data, draw conclusions and ultimately answer a specific question. The group will work together for a common goal and will prepare a written or oral presentation of their conclusions.

All team work will be assessed throughout the semester by the instructor. Each member of a team will also assess their group performance and that of other team members throughout the semester using a performance rubric. These performance rubrics will be reviewed by the instructor to identify any conflict within the group.
5. **Personal Responsibility**: to include the ability to connect choices, actions and consequences to ethical decision-making

How will the skill be addressed (including specific strategies, activities, and techniques)?
Not Applicable

6. **Social Responsibility**: to include intercultural competence, knowledge of civic responsibility, and the ability to engage effectively in regional, national, and global communities

How will the skill be addressed (including specific strategies, activities, and techniques)?
Not Applicable

PART V – SHSU Core Curriculum Committee Requirements

1. Using a 15-week class schedule, identify the topics to be covered during each week of the semester. Provide sufficient detail to allow readers to understand the scope and sequence of topics covered.

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Endocrine System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td>Blood</td>
</tr>
<tr>
<td>Week 3</td>
<td>Cardiovascular system: Heart</td>
</tr>
<tr>
<td>Week 4</td>
<td>Cardiovascular system: Blood vessels</td>
</tr>
<tr>
<td>Week 5</td>
<td>Lymphatic system</td>
</tr>
<tr>
<td>Week 6</td>
<td>Immune system</td>
</tr>
<tr>
<td>Week 7</td>
<td>Respiratory system</td>
</tr>
<tr>
<td>Week 8</td>
<td>Digestive system</td>
</tr>
<tr>
<td>Week 9</td>
<td>Nutrition and metabolism</td>
</tr>
<tr>
<td>Week 10</td>
<td>Urinary system</td>
</tr>
<tr>
<td>Week 11</td>
<td>Fluids, electrolytes, and acid-base balance</td>
</tr>
<tr>
<td>Week 12</td>
<td>Male reproductive system</td>
</tr>
<tr>
<td>Week 13</td>
<td>Female reproductive system</td>
</tr>
<tr>
<td>Week 14</td>
<td>Human development</td>
</tr>
<tr>
<td>Week 15</td>
<td>Heredity</td>
</tr>
</tbody>
</table>

2. **Attachments (Syllabus Required)**

Syllabus Attached? [X] Yes [] No

Other Attached? [] Yes [X] No If yes, specify:
Appendix: THECB Component Area Descriptions and Skill Requirements

I. Communication (Courses in this category focus on developing ideas and expressing them clearly, considering the effect of the message, fostering understanding, and building the skills needed to communicate persuasively. Courses involve the command of oral, aural, written, and visual literacy skills that enable people to exchange messages appropriate to the subject, occasion, and audience.)

II. Mathematics (Courses in this category focus on quantitative literacy in logic, patterns, and relationships. Courses involve the understanding of key mathematical concepts and the application of appropriate quantitative tools to everyday experience.)

III. Life and Physical Sciences (Courses in this category focus on describing, explaining, and predicting natural phenomena using the scientific method. Courses involve the understanding of interactions among natural phenomena and the implications of scientific principles on the physical world and on human experiences.)

IV. Language, Philosophy, and Culture (Courses in this category focus on how ideas, values, beliefs, and other aspects of culture express and affect human experience. Courses involve the exploration of ideas that foster aesthetic and intellectual creation in order to understand the human condition across cultures.)

V. Creative Arts (Courses in this category focus on the appreciation and analysis of creative artifacts and works of the human imagination. Courses involve the synthesis and interpretation of artistic expression and enable critical, creative, and innovative communication about works of art.)

VI. American History (Courses in this category focus on the consideration of past events and ideas relative to the United States, with the option of including Texas History for a portion of this component area. Courses involve the interaction among individuals, communities, states, the nation, and the world, considering how these interactions have contributed to the development of the United States and its global role.)

VII. Government/Political Science (Courses in this category focus on consideration of the Constitution of the United States and the constitutions of the states, with special emphasis on that of Texas. Courses involve the analysis of governmental institutions, political behavior, civic engagement, and their political and philosophical foundations.)

VIII. Social and Behavioral Sciences (Courses in this category focus on the application of empirical and scientific methods that contribute to the understanding of what makes us human. Courses involve the exploration of behavior and interactions among individuals, groups, institutions, and events, examining their impact on the individual, society, and culture.)

Required Skill Objectives

<table>
<thead>
<tr>
<th>Foundational Component Areas</th>
<th>Skill Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Critical</td>
</tr>
<tr>
<td>Communication</td>
<td>✔️</td>
</tr>
<tr>
<td>Mathematics</td>
<td>✔️</td>
</tr>
<tr>
<td>Life and Physical Sciences</td>
<td>✔️</td>
</tr>
<tr>
<td>Language, Philosophy & Culture</td>
<td>✔️</td>
</tr>
<tr>
<td>Creative Arts</td>
<td>✔️</td>
</tr>
<tr>
<td>American History</td>
<td>✔️</td>
</tr>
<tr>
<td>Government/Political Science</td>
<td>✔️</td>
</tr>
<tr>
<td>Social and Behavioral Sciences</td>
<td>✔️</td>
</tr>
</tbody>
</table>
BIOLOGY 2404
HUMAN ANATOMY AND PHYSIOLOGY II
4 CREDIT HOURS
FALL 2017

Section: 01 Lecture
Bldg: LDB
Time:
Room: 214

Course Coordinator and Instructor:
Dr. Jordan Clark, Coordinator and Instructor
Office in LDB 300B, phone (936) 294-2656
Email jmc124@shsu.edu
Office hours: TBA

Course Description: This course is the first of a two-semester sequence of courses addressing
the structure and function of the human body and mechanisms for maintaining homeostasis.
Emphasis will be given to aspects relevant to medical science. The first semester will focus on
the anatomy and physiology of human cells, tissues and systems including the integumentary,
skeletal, muscular and nervous systems. In the laboratory, students will examine human anatomy
through histological and skeletal preparations, as well as through dissection of mammals.
Physiological lab experiments and/or computer simulation exercises will also be conducted.

Prerequisites: Demonstrated college-level readiness in reading, writing, and math.

NOTE: A minimum GPA of 3.0 (B average) in science courses is required to even apply to Nursing School. Students admitted to Nursing School have an average GPA of 3.4. So, if you want to get into Nursing School, obtain no less than a B in all of your pre-nursing courses. In addition, nursing schools tend to look more favorably on applicants who do not retake any single course more than once, or have more than two different courses retaken.

Lecture: This lecture course will help students identify and understand the function and form of several important human organ systems. Students will learn anatomical vocabulary and understand how organs and organ systems function and interact with an appreciation for the complexity and integration of the human organism.

My approach to science education is concept based learning. Anatomy and physiology requires continual exposure to master learning of the large volume of structures. This course is not solely based on memorization of shape and location. You will be required to learn the function and scientific relevance of the studied anatomy. I encourage a strict self-disciplined style of learning where the student takes the initiative for preparation. To better help you make lasting connections, class time will be spent both with lecture and active learning exercises.
Laboratory: Laboratory sessions are an important part of your educational experience and will therefore account for a fourth of your grade in this course. Laboratory sessions will help you gain a hands-on application and examination of the material taught in lecture. Laboratory sessions may require critical aspects of experimentation and how to collect, analyze, and evaluate data. Laboratory regulations, procedures, and requirements will be outlined in detail by your laboratory instructor during your first laboratory meeting.

Required Course Texts:

Lecture Text Book:
- Connect Plus Anatomy and Physiology with LearnSmart; McKinley, O'Loughlin, Bidle. Publisher: McGraw-Hill Sciences
- Optional Hard Text: McKinley, Michael: *Anatomy and Physiology: An Integrative Approach*
 Publisher: McGraw-Hill Sciences

Scantron forms: Scantron 882-E

Lab Manual:
- Martin, Terry: Laboratory Manual for Human Anatomy and Physiology
 Publisher: McGraw-Hill Sciences
- Connect online access for lab manual for Human A&P
 Publisher: McGraw-Hill Sciences

COURSE POLICIES

Attendance and Expectations: As University students, I expect you to behave professionally (cell phones off in class, prompt attendance, respect to other students, etc). Exam material is primarily from lectures and in-class discussions. Lecture attendance is required for this semester.

You may not leave during the lecture without advance notice. Leaving during the lecture will result in a zero for all work due that week in lecture.

You will be allowed make-up exams pending review of absence. You must notify me before the exam or **no later than 8hrs** after the missed exam. You must also provide verification by means of official University activity or medical excuse. Failure to abide by any one of these attendance policies will result in a zero for the missed exam without the opportunity to take a make-up. The date, time and form of the make-up exam will be decided by the instructor.

All assignments must be turned in on time or points will be deducted. Assignments that are more than one day late will not be accepted.

Registration to Squarehat and McGraw Hill Connect is mandatory. Connect offers a two-week free trial to account for any financial issues that need to be settled early in the semester. Once this two-week free trial end you must subscribe to the Connect account. Failure to registered for
these products by the determined due date will result in a zero for all missed assignments with no possibility of a make-up assignment.

Course evaluation: This course has two components, lecture and lab, combined into one overall four-hour course grade.

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Points</th>
<th>Weighted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 lecture exams</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>LS Pre Lecture HW ~10</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Connect Post Lecture HW ~10</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Laboratory</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Should an error be made in scoring exams, I must be informed within a week of the time exam grades are posted. Corrections will not be considered after that period.

Exams will be scantron and consist of multiple choice, matching, and true/false questions. Exams will be taken during the first part of lecture. Students will be allowed the entire class time to complete the exam. The Final Exam must be taken on the scheduled date. There will be no early or late final exams allowed.

Assignments will be completed on-line at the McGraw Hill Connect website created for the class, thus registration for the site is required. If you do not take the quiz during the assigned time, there will be no make-up quiz, nor will I provide an alternate assignment. Connect assignments are time sensitive. You can start and stop the assignment at your leisure. However, you must complete the assignment **before the due date** in order to receive full credit. Pre lecture assignments are short activities requiring a preview of the upcoming lecture material with 10-15 questions to assess your comprehension. Pre lecture assignments will use the LearnSmart(LS) interactive annotated text that is included in your McGraw Hill account. Post lecture home work will consist of 20 items that assess greater detail and understanding of material. These questions will be available on the Connect website.

I **do not** offer any exam study guide, however, there will be a review on study techniques and strategies. These strategies will be discussed periodically leading up to each exam.

The grade for this portion (Quizzes and Assignments) will be calculated by averaging all the grades in this category, along with the on-line quizzes.

Course grade is the typical breakdown of the following:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100-90%</td>
</tr>
<tr>
<td>B</td>
<td>89-80%</td>
</tr>
</tbody>
</table>
Laboratory

Your Teaching Assistant will give you a complete description of lab policies on the first day of lab. Be aware that you must attend the lab for which you are registered and may NOT switch sections. You should come prepared for lab on time and bring your new un-used lab manual. Any homework assignments that are collected must be submitted in person and not turned in by proxy (a classmate). In addition, homework is due at the beginning of lab; thus if you are late to lab and do not submit it in time it will not be graded.

UNIVERSITY POLICIES

ACADEMIC DISHONESTY:

All students are expected to engage in all academic pursuits in a manner that is above reproach. Students are expected to maintain honesty and integrity in the academic experiences both in and out of the classroom. Any student found guilty of dishonesty in any phase of academic work will be subject to disciplinary action. The University and its official representatives may initiate disciplinary proceedings against a student accused of any form of academic dishonesty including but not limited to, cheating on an examination or other academic work which is to be submitted, plagiarism, collusion and the abuse of resource materials. For a complete listing of the university policy, see: http://www.shsu.edu/syllabus.

Cell phones must be put on vibrate and put away during class, and absolutely during exams. If your cell phone is out during testing days, then your exam will be taken up and you will receive a “0” for the test, and face possible additional disciplinary action. I will give one warning during an exam if I see a cell phone out. With this warning check to make sure your phone is put away. Failure to do so will result in a zero.

STUDENT ABSENCES ON RELIGIOUS HOLY DAYS POLICY:

Section 51.911(b) of the Texas Education Code requires that an institution of higher education excuse a student from attending classes or other required activities, including examinations, for the observance of a religious holy day, including travel for that purpose. Section 51.911 (a) (2) defines a religious holy day as: “a holy day observed by a religion whose places of worship are exempt from property taxation under Section 11.20…. ” A student whose absence is excused under this subsection may not be penalized for that absence and shall be allowed to take an examination or complete an assignment from which the student is excused within a reasonable time after the absence.

University policy 861001 provides the procedures to be followed by the student and instructor. A student desiring to absent himself/herself from a scheduled class in order to observe (a) religious holy day(s) shall present to each instructor involved a written statement concerning the religious holy day(s). The instructor will complete a form notifying the student of a reasonable timeframe in which the missed assignments and/or examinations are to be completed. For a complete listing of the university policy, see: http://www.shsu.edu/syllabus.
STUDENTS WITH DISABILITIES POLICY:

It is the policy of Sam Houston State University that individuals otherwise qualified shall not be excluded, solely by reason of their disability, from participation in any academic program of the university. Further, they shall not be denied the benefits of these programs nor shall they be subjected to discrimination. Students with disabilities that might affect their academic performance should register with the Office of Services for Students with Disabilities located in the Lee Drain Annex (telephone 936-294-3512, TDD 936-294-3786, and e-mail disability@shsu.edu). They should then make arrangements with their individual instructors so that appropriate strategies can be considered and helpful procedures can be developed to ensure that participation and achievement opportunities are not impaired.

SHSU adheres to all applicable federal, state, and local laws, regulations, and guidelines with respect to providing reasonable accommodations for students with disabilities. If you have a disability that may affect adversely your work in this class, then I encourage you to register with the SHSU Services for Students with Disabilities and to talk with me about how I can best help you. All disclosures of disabilities will be kept strictly confidential. NOTE: No accommodation can be made until you register with the Services for Students with Disabilities. For a complete listing of the university policy, see: http://www.shsu.edu/syllabus

VISITORS IN THE CLASSROOM:

Only registered students may attend class. Exceptions can be made on a case-by-case basis by the professor. In all cases, visitors must not present a disruption to the class by their attendance. Students wishing to audit a class must apply to do so through the Registrar's Office. For a complete listing of the university policy, see: http://www.shsu.edu/syllabus

Classroom Rules of Conduct: Cell telephones must be turned off and put away before class begins. Students are prohibited from reading, sleeping, texting, talking at inappropriate times, or engaging in any other form of distraction. Inappropriate behavior in the classroom shall result in a directive to leave class. Students who are especially disruptive may be reported to the Dean of Students for disciplinary action in accordance with university policy. No audio or visual recording of the lecture may take place without the express written consent form signed by both instructor and student.

Tentative Schedule

The following is tentative schedule for 90 minute lecture meeting twice per week. Weeks for the exams will be followed as closely as possible, but they are subject to change. It is YOUR responsibility to attend class, check Blackboard often, and be aware of schedule changes.

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction Ch 17: Endocrine</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ch 18: Blood Ch 19: Cardiovascular system heart</td>
<td>LS Pre HW due Post HW due</td>
</tr>
<tr>
<td>3</td>
<td>Ch 19: Cardiovascular System heart Ch 20: Cardiovascular System vessels</td>
<td>LS Pre HW due Post HW due</td>
</tr>
<tr>
<td>No.</td>
<td>Chapter and System(s)</td>
<td>Homework Due Dates</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>4</td>
<td>Ch 20: Cardiovascular System vessels</td>
<td>LS Pre HW due</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post HW due</td>
</tr>
<tr>
<td>5</td>
<td>Exam I</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ch 21: Lymphatic</td>
<td>LS Pre HW due</td>
</tr>
<tr>
<td></td>
<td>Ch 22: Immune system</td>
<td>Post HW due</td>
</tr>
<tr>
<td>7</td>
<td>Ch 22: Immune system</td>
<td>LS Pre HW due</td>
</tr>
<tr>
<td></td>
<td>Ch 23: Respiratory System</td>
<td>Post HW due</td>
</tr>
<tr>
<td>8</td>
<td>Ch 23: Respiratory System</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Exam II</td>
<td>LS Pre HW due</td>
</tr>
<tr>
<td></td>
<td>Ch 24: Urinary System</td>
<td>Post HW due</td>
</tr>
<tr>
<td>10</td>
<td>Ch 24: Urinary System</td>
<td>LS Pre HW due</td>
</tr>
<tr>
<td></td>
<td>Ch 25: Fluids and Electrolytes</td>
<td>Post HW due</td>
</tr>
<tr>
<td>11</td>
<td>Ch 26: Digestive</td>
<td>LS Pre HW due</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post HW due</td>
</tr>
<tr>
<td>12</td>
<td>Exam III</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Ch 28: Reproduction</td>
<td>LS Pre HW due</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post HW due</td>
</tr>
<tr>
<td>14</td>
<td>Ch 28: Reproduction</td>
<td>LS Pre HW due</td>
</tr>
<tr>
<td></td>
<td>Ch 29: Development</td>
<td>Post HW due</td>
</tr>
<tr>
<td>15</td>
<td>Exam IV</td>
<td></td>
</tr>
</tbody>
</table>