YOU HAVE OPTIONS!

preparing for
a successful career
with your
physics degree

Dr. Toni Sauney, Texas Lutheran University
Former Director, Society of Physics Students & Sigma Pi Sigma Physics Honor Society
WHAT AM I SUPPOSED TO DO WITH MY PHYSICS DEGREE?
Acknowledgements

Project Personnel

Project Investigators
- Thomas Olsen, former Assistant Director – Society of Physics Students
- Kendra Redmond, Programs Manager – Society of Physics Students
- Roman Czujko, Director – AIP Statistical Research Center
- Toni Sauncy, former Director – Society of Physics Students and Sigma Pi Sigma

New Contributions:
- Brad Conrad, Director-SPS and Sigma Pi Sigma
- Kerry Kidwell Slak, Assistant Director – SPS and Sigma Pi Sigma

Student Contributors-SPS Summer Interns
- Amanda Palchak, University of Southern Mississippi (2011)
- Shouvik Bhattacharya, Minnesota State University (2012)
- Jose “Ro” Avila, King College, SPS Summer Intern (2013)

Work supported by the National Science Foundation
Project No. 1011829, “Expanding the STEM Workforce by Equipping Physics Bachelors Degree Recipients and their Departments to Address the Full Range of Career Options”
The Perception
of physics career options
at the bachelor’s level

Become a professor
DO RESEARCH
Data. How many?

Good news.

Physics bachelor’s degree production is on the rise.
Physics students have broad interests

- About 1/3 of all physics majors graduate with a double major

Most Common Double Majors of Physics Bachelors

- Mathematics
- Astronomy & Astrophysics
- Engineering
- Chemistry
- Computer & Information Sciences
- Music & Fine Arts
- Philosophy & Theology
- Education & Teaching Certification
- Biology
- Economics
One year later.

Good news!
Physics Bachelors 1 Year Later
7,430 Recent Degree Recipients

Workforce
46%

Graduate Study
Astronomy or Physics
32%

Graduate Study
Other Fields
22%

Private Sector
26%
High School Teaching
4%
College & University
4%
Active Military
3%
Government
2%
Other
2%
Unemployed, Seeking
5%

Physics
26%
Astronomy
6%

Engineering
10%
Other Science & Math
5%
Medicine & Law
3%
Education
2%
Other
2%
Field of Employment for New Physics Bachelors
Employed in the Private Sector

- Engineering
- Computer or Information Systems
- Other STEM
- Physics or Astronomy
- Non-STEM: Regularly Solves Technical Problems
- Non-STEM: Rarely or Never Solves Technical Problems

Percent
0 5 10 15 20 25 30 35
Typical Starting Salaries for Physics Bachelors, Classes of 2013 & 2014 Combined

Employer

- Private Sector STEM
- Private Sector non-STEM
- Civilian Govt. (incl. Natl. Labs)
- Active Military
- High School Teachers
- College or University

Typical Salaries (in thousands of dollars)
What about PhDs?

Less than 5% of Physics Bachelor’s degree recipients will enter academia in a tenure track position.

Primary employment for PhD physicists is in the private sector!

- The noticeable drop from 2008 to 2010 is likely due to the 2008 recession.
So, where do all those BS/BA physics graduates go?
Students should be equipped for the path they choose when they complete their bachelor’s degree.

Departments that provide robust programs addressing a broad range of career trajectories for undergraduate students tend to be most successful.
Resources are FREE.

https://www.spsnational.org/career-resources/career-pathways

Toni Sauncy - tsauncy@tlu.edu
Skills Used Regularly
New Physics Bachelors Employed in STEM Fields

- Work on a Team
- Manage Projects
- Work with Customers
- Manage People
- Manage Budgets
- Solve Technical Problems
- Technical Writing
- Perform Quality Control
- Design & Development
- Applied Research
- Programming
- Use Specialized Equip.
- Knowledge of Phys. or Ast.
- Advanced Math
- Simulation or Modeling
- Tech Support

Percent Regularly Using Knowledge or Skill
Physics – Common skills / skill sets

<table>
<thead>
<tr>
<th>Working with laboratory instruments</th>
<th>Computer hardware and software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting research</td>
<td>Analysis and quantitative thinking</td>
</tr>
<tr>
<td>Communicating complex ideas</td>
<td>Working with others</td>
</tr>
<tr>
<td>Problem solving and critical thinking</td>
<td>Others??</td>
</tr>
</tbody>
</table>
I can’t wait to hear where *your* Career pathway takes you!
References

• AIP Statistical Research Center, AIP Physics Trends: Research Experiences of Physics Undergraduates, Fall 2009.
• AIP Statistical Research Center, AIP Physics Trends: Physics Students Have Broad Interests, Spring 2011.
• Susan White and Raymound Chu, Physics Enrollments in Two-Year Colleges, April 2013.