# A COMPUTATIONAL ROUTE TO HANSEN SOLUBILITY PARAMETERS OF NITRATED SPECIES THROUGH A QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP (QSAR) 

A Thesis

Presented to The Faculty of the Department of Chemistry Sam Houston State University In Partial Fulfillment of the Requirements for the Degree of Master of Science by

Karl D. Kuklenz May, 2009

# A COMPUTATIONAL ROUTE TO HANSEN SOLUBILITY PARAMETERS OF NITRATED SPECIES THROUGH A QUANTITATIVE STRUCTURE ACTIVITY <br> <br> RELATIONSHIP (QSAR) 

 <br> <br> RELATIONSHIP (QSAR)}
$\qquad$

APPROVED:

Darren L. Williams Thesis Director

Benny E. Arney

Rick C. White

Approved:

Jaimie L. Hebert, Dean
College of Arts and Sciences

## DEDICATION

I wish to dedicate this work to my family for more than twenty years of their love and support. I could not have been a chemist without them. I thank my mother for teaching me to be observant, observant of my environment and also of the thoughts and feelings of others. I thank my father for teaching me to foster an attention to detail and to always, always do it right the first time. I thank my sisters, Jill and Jackie, for their smile and song.

I wish a thank you to anyone has ever been a mentor or a teacher to me. Teaching is truly mankind's noblest profession.


#### Abstract

Kuklenz, Karl Douglas, A computational route to Hansen solubility parameters of nitrated species through a quantitative structure activity relationship (QSAR). Master of Science (Chemistry), May, 2009, Sam Houston State University, Huntsville, Texas.

\section*{Purpose}


The purpose of this research was to develop a universal method for the calculation of the Hansen solubility parameters (HSPs) of nitrated materials. These energetic materials are of use to the mining industry, the pyrotechnics industry, as well as the nation's military. The use of computational chemistry to approximate HSPs is a fast, cost-effective, and safe way to explore the solubility characteristics of these and other materials.

## Methods

Electronic structure calculations of over 200 chemical species were performed using the Gaussian ${ }^{\circledR} 03 \mathrm{~W}$ software package along with GaussView for construction and visualization of optimized geometries. Structure variables were extracted from the result files and catalogued with the Hansen solubility parameters of their respective species. A step-wise regression technique was employed to determine the coefficients of a quantitative structure activity relationship (QSAR) matrix. This matrix transforms the structure variables reported in a Gaussian ${ }^{\circledR}$ result file into the HSPs of the optimized species.

## Findings

This method provides a fast and simple way to determine the HSPs of nitrated species. The method is universal in that it can be applied to any nitrated molecule that the Gaussian ${ }^{\circledR}$ program can optimize the geometry for. Larger and more diverse training
sets may allow the method to be utilized regardless of the species of interest. The method is also unambiguous in that it provides the same answer no matter how the molecule is put together. This is in contrast to functional group contribution methods which can yield varying results depending on how the molecule is assembled. This method allows for the qualitative analysis of the best solvent or blend of solvents for use with these nitrated species.

KEYWORDS: solubility parameters, solubility, computational chemistry, quantitative structure activity relationship, quantitative structure property relationship, QSAR, QSPR, energetic materials, step-wise regression.

Approved:

Darren L. Williams Thesis Director

## ACKNOWLEDGEMENTS

I would especially like to thank Dr. Darren Williams for his constant guidance, support, and coffee. He made a difficult research topic easy to understand and execute.

Derek Blaylock and Katie Rothlisberger are acknowledged for their computational work. Thank you for lightening the load.

Thank you to Dr. Arney for his computational chemistry consultations.

## TABLE OF CONTENTS

Page
DEDICATION ..... iii
ABSTRACT ..... iv
ACKNOWLEDGEMENTS ..... vi
TABLE OF CONTENTS ..... vii
LIST OF TABLES ..... ix
LIST OF FIGURES ..... X
CHAPTER
I INTRODUCTION ..... 1
History of Solubility Parameters ..... 1
Previous Methods of Calculating Solubility Parameters ..... 5
Current Project ..... 8
Theory ..... 9
II EXPERIMENTAL ..... 14
Computational Chemistry ..... 14
Structure Activity Relationship Training ..... 16
Calculation of Previously Unknown HSPs ..... 18
III RESULTS ..... 19
Molar Volumes ..... 19
QSAR Matrices ..... 22
QSAR Correlation with Literature Values ..... 23
Predicted HSPs of Nitrated Unknowns ..... 29
IV DISCUSSION ..... 32
QSAR1 ..... 32
QSAR2 ..... 34
QSAR3 ..... 36
V CONCLUSION ..... 39
LITERATURE CITED ..... 40
APPENDICIES ..... 43
Appendix A: IUPAC Nomenclature and CPU Times for Gaussian ${ }^{\circledR}$
Calculations ..... 44
Appendix B: Training Set and Structure Variables for Species Used in
QSAR1 and QSAR2 ..... 54
Appendix C: Training Set and Structure Variables for Species Used in
QSAR3 ..... 62
Appendix D: Structure Variables of Nitrated Unknowns ..... 65
Appendix E: Predictions of training set HSPs by QSAR models 1 and 2
(data for Figures 7-12) ..... 67
Appendix F: Predictions of training set HSPs by QSAR3 (data for
Figures 13-15) ..... 74
VITA ..... 77

## LIST OF TABLES

TABLE
Page

1 A comparison of two immiscible liquids predicted to be miscible by Hildebrand's equation........................................................................................... 4

2 Regression coefficients of stoichiometry modeling molar volume ( $\mathrm{N}=183$ ) ............................................................................................................... 19

3 Regression coefficients of stoichiometry modeling molar volume ( $\mathrm{N}=54$ ) ........ 21
4 HSPs of Explosive Unknowns Predicted by QSAR1.......................................... 29
5 HSPs of Explosive Unknowns Predicted by QSAR2.......................................... 30
6 HSPs of Explosive Unknowns Predicted by QSAR3.......................................... 31
7 A comparison of group contribution methods and QSAR3 HSP predictions of HMX, RDX, PETN, and HNS with experimentally determined HSPs 40

## LIST OF FIGURES

FIGURE Page
8 Chemical Structures of HNS (I) and HMX (II) ..... 89 Correlation chart of regression calculated molar volume to experimental
molar volume. $(\mathrm{N}=183)$ ..... 20
Correlation chart of regression calculated molar volume to experimentalmolar volume. $(\mathrm{N}=54)$21
QSAR1 transformation matrix ..... 2212 QSAR2 transformation matrix. Here the ellipses do not indicate a sparsematrix. They indicate the continuation of the 1 by 16 input matrix.22
13
QSAR3 transformation matrix. Here the ellipses do not indicate a sparse matrix. They indicate the continuation of the 1 by 15 input matrix ..... 23
Correlation of QSAR1 predicted $\delta_{\mathrm{D}}$ parameters of training set species toliterature values.24
15
Correlation of QSAR1 predicted $\delta_{\mathrm{P}}$ parameters of training set species toliterature values.25
16
Correlation of QSAR1 predicted $\delta_{\mathrm{H}}$ parameters of training set species to
$\qquad$literature values.25
17 Correlation of QSAR2 predicted $\delta_{\mathrm{D}}$ parameters of training set species to
literature values. ..... 26
Correlation of QSAR2 predicted $\delta_{\mathrm{P}}$ parameters of training set species toliterature values.26

19 Correlation of QSAR2 predicted $\delta_{\mathrm{H}}$ parameters of training set species to literature values. ................................................................................................... 27

20 Correlation of QSAR3 predicted $\delta_{\mathrm{D}}$ parameters of training set species to literature values.27

21 Correlation of QSAR3 predicted $\delta_{\mathrm{P}}$ parameters of training set species to
$\qquad$
22 Correlation of QSAR3 predicted $\delta_{\mathrm{H}}$ parameters of training set species to
literature values. .................................................................................................. 28

## CHAPTER I

## INTRODUCTION

For many years scientists have used the "like-dissolves-like" criteria to select solvents used in their laboratories. This method is often based on trial and error and a subjective evaluation of a solvent's polarity. This method has had varying degrees of success. One of two outcomes is usually observed. If the solvent selected provided too much solubility, then the solute becomes trapped in the solvent. This is a problem if the solute is to be extracted from the solvent later. If the solvent selected does not provide enough solubility, then the mixture is left in a heterogeneous state. This requires the addition of more solvent to achieve complete solubility. Either problem is solved with a waste of materials, particularly the solvent. In recent years scientists have endeavored to remove the guesswork from solvent selection. They have turned to model-based approaches which are capable of quantifying the solubility or solvency of a solute or solvent, and the components of their models are termed solubility parameters.

## History of Solubility Parameters

Solubility parameters have been around for a many years and are of use to a wide variety of industries. There are many models for solubility parameters, but the way in which all solubility parameters are used is this: materials with sufficiently similar solubility parameters will interact strongly with each other. Two liquids with similar solubility parameters will be miscible. A solvent and a solute with similar solubility parameters will likely result in a mixture that is homogeneous. A liquid on a smooth, solid surface with similar solubility parameters will spread evenly and with minimal contact angle. In this way solubility parameters can provide a systematic way of
selecting a single solvent or a blend of solvents for the dissolution of a given solute. In the paint and polymer industry this is applicable to solvent and pigment/binder formulations. Solubility parameters have also been useful to the cleaning industry where the cleaning solution is targeted to the particular soil and surface.

The term solubility parameter was first coined by Hildebrand and Scott (1,2). Hildebrand's parameter is defined as the square root of the cohesion energy per unit of volume:

$$
\begin{equation*}
\delta=\sqrt{E_{c} / V_{m}} \tag{1}
\end{equation*}
$$

Where $\mathrm{E}_{\mathrm{c}}$ is the energy of vaporization and $\mathrm{V}_{\mathrm{m}}$ is the molar volume. The energy of vaporization is proportional to the amount of cohesive energy of the material in the following way. The cohesive energy of a system is the sum of all intermolecular forces together. The energy required for any given molecule to escape the condensed phase and become a vapor would necessitate the breaking of all intermolecular associations.

Thermodynamics require that a spontaneous process will be characterized by a negative free-energy change. As such, the thermodynamics of mixing are governed by the free-energy equation of thermodynamics:

$$
\begin{equation*}
\Delta G_{M}=\Delta H_{M}-T \Delta S_{M} \tag{2}
\end{equation*}
$$

Where $\Delta \mathrm{G}_{\mathrm{M}}$ is the free-energy of mixing, $\Delta \mathrm{H}_{\mathrm{M}}$ is the enthalpy of mixing, T is the absolute temperature of the system, and $\Delta \mathrm{S}_{\mathrm{M}}$ is the entropy of mixing. Hildebrand and Scott proposed an equation for the determination of the enthalpy of mixing:

$$
\begin{equation*}
\Delta H_{M}=\varphi_{1} \varphi_{2} V_{T}\left(\delta_{1}-\delta_{2}\right)^{2} \tag{3}
\end{equation*}
$$

Where $\varphi_{1}$ and $\varphi_{2}$ are the volume fractions of mixture components 1 and $2, \delta_{1}$ and $\delta_{2}$ are the Hildebrand solubility parameters of components 1 and 2 , and $\mathrm{V}_{\mathrm{T}}$ is the total
volume of the mixture. Equations 2 and 3 illustrate the fundamental usage of solubility parameters. As the Hildebrand parameters of components 1 and 2 approach the same value the enthalpy of mixing will approach zero independent of their respective volume fractions. When the solubility parameters of components 1 and 2 are sufficiently similar the enthalpy of mixing will reach a value where it can no longer dominate the entropy term of equation 2. This results in a negative free-energy of mixing and spontaneous mixing will occur.

One of the fundamental weaknesses of Hildebrand's work is that it is only applicable to "regular solutions." Regular solutions have no "orienting or chemical effects" and all molecules are oriented and distributed randomly throughout (3). Unfortunately most chemical mixtures have dipole or hydrogen-bond orientations. Multi-component solubility parameter systems offer some measure of improvement by accounting for arrangement and orientation effects.

Hansen's widely popular three-component model of solubility parameters treats intermolecular attraction forces independently by giving each attractive force its own solubility parameter. Hansen chose three parameters for his model and gave them the symbols $\delta_{\mathrm{D}}, \delta_{\mathrm{P}}$, and $\delta_{\mathrm{H}}$ to account for dispersion (induced dipole-induced dipole) forces, polar (dipole-dipole) forces, and hydrogen-bonding forces respectively. They may be related to Hildebrand's "total solubility parameter" by the square root of the sum of the squares of the three Hansen parameters (4).

$$
\begin{equation*}
\delta_{T}=\sqrt{\delta_{D}^{2}+\delta_{P}^{2}+\delta_{H}^{2}} \tag{4}
\end{equation*}
$$

It now may be easy to see in Table 1 how Hildebrand's parameter predicts two substances such as ethylene carbonate and methanol $\left(\delta_{\mathrm{T}}=29.6\right)$ to be miscible when they
are not. A glance at the Hansen solubility parameters (HSPs) of each species provides an answer. Although they possess the same total quantity of cohesive energy per unit volume, each species has that energy partitioned into different attractive forces. The fundamental usage of solubility parameters still applies, however, for two species to interact strongly they must now have three sufficiently similar parameters instead of one.

Table 1. A comparison of two immiscible liquids predicted to be miscible by Hildebrand's equation.

| Species | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{T}} / \mathrm{MPa}^{1 / 2}$ |
| :--- | :---: | :---: | :---: | :---: |
| ethylene carbonate | 19.4 | 21.7 | 5.1 | 29.6 |
| methanol | 15.1 | 12.3 | 22.3 | 29.6 |

One may think of this another way. If a species' Hansen solubility parameters were plotted as a small sphere in a Cartesian coordinate space with its center defined as a point located by the three parameters, those species which share a significant volume within that coordinate space should be mutually soluble. Two species may reside at the same distance from the origin (represented by $\delta_{\mathrm{T}}$ ) yet occupy two separate volumes of space and therefore would not be soluble.

There are other multi-component solubility parameter models with varying strengths and weaknesses. All have achieved some measure of success in academia or the private sector. For example, Karger, Snyder, and Eon have developed a solubility parameter system for chromatographic solvent selection (5). Another system developed by Beerbower, Martin, and Wu provides for a more sophisticated treatment of Hansen's hydrogen-bonding parameter $(6,7)$. Because of this increased ability to handle the complex nature of hydrogen-bonding interactions Beerbower, Martin, and Wu's four-
component system is rapidly gaining acceptance in many fields of study. However, with four components, one loses the ability to visualize the interaction in a three-dimensional Cartesian space.

## Previous Methods of Calculating Solubility Parameters

One weakness of this model of solubility is the confusing and tedious methods used to calculate the parameters. These methods attempt to be universal but still do not apply to many cases. This is dependant upon how much information is known about the species of interest. For some species the methods yield wholly inaccurate results. It is this weakness that the work presented in this document aims to resolve.

Perhaps the most straightforward way in which to determine solubility parameters is to use solvents with well determined solubility parameters to experimentally determine the parameters of the unknown. This is akin to using radio tower triangulation to locate a signal between them. Picture the Cartesian coordinate system mentioned earlier. An experiment is performed where ten solvents with well known solubility parameters are used to solvate a species of unknown parameters. The solubility of the unknown species can then be ranked by percent mass composition. The user then determines an operational definition of "good" solubility. The solute is represented as a point in space with a radius of interaction which encompasses the "good" solvents and excludes the "bad" solvents (8). This produces the most reliable parameters as they are dependant upon empirical evidence alone. The obvious drawback to this method is the impracticality and cost of applying it to a large number of species. Solute dimerization can give unusual results on rare occasions. The other obvious drawback is the
fundamental criteria for the experiment: the unknown species must be soluble in something.

A cost-effective estimation of solubility parameters can be achieved via group contribution methods. This method operates on the principle that each functional group or part of a molecule accounts for some piece of the solubility parameters of the whole molecule. The molecule can then be built in pieces and the contributions of the individual pieces can then be summed to give the solubility parameters of the whole. This method was pioneered by van Krevelen and $\operatorname{Hoftyzer}(9)$ to build up the solubility parameters of polymers. It was later refined by Stefanis and Panayioutou(10).

The universality of the group contribution method is often a problem. Most functional groups are not isolated from others and as such do not exist in an independent fashion. On the contrary, groups are absolutely affected by their nearest neighbors either electrostatically or through the conjugative effects of molecular orbitals. This has an effect on the overall solubility parameters of the molecule. The other phenomenon which this method of calculation does not address is the orientation of groups. This is important to the polar parameter. If two moieties have separate dipole moments but are oriented in opposite directions then they will destructively interfere. Conversely, if they are oriented in the same direction they will constructively interfere. If the two moieties provide the only significant source of dipole-dipole interaction then this method will likely produce inaccurate results for the polar solubility parameter. The use of planes of symmetry to correct for these effects introduces more complexity for very little benefit.

Of the two problems, electronic and orientation, Stefanis and Panayioutou have successfully addressed the former. They have used conjugation theory to provide a more
sophisticated group contribution table with first order and second order groups.
Unfortunately what results is a longer and more confusing process of group contribution, albeit more successful than that of van Krevelen and Hoftyzer for many molecules. The fundamental problem of group contribution methods is that by their very nature they cannot be entirely inclusive. There are an infinite number of ways in which functional groups can be assembled and this results in an infinite number of group contributions.

There are ways of calculating individual solubility parameters. When possible, the dispersion parameter is calculated from the critical temperature and molar volume of an alkane homomorph in a procedure devised by Blanks and Prausnitz (11). The homomorph structure is defined as the non-polar analog of similar size and shape as the species of interest. Unfortunately this method breaks down when it comes to ringed structures and halogenated species. Quite often the polar parameter is calculated from Hansen and Beerbower's simplification of the Böttcher equation (12):

$$
\begin{equation*}
\delta_{P}=37.4 \mu / V_{M}^{1 / 2} \tag{5}
\end{equation*}
$$

Where $\mu$ is the dipole moment in Debye and $\mathrm{V}_{\mathrm{M}}$ is the molar volume in $\mathrm{cm}^{3 /} \mathrm{mol}$. This requires the user to know or estimate these values with some degree of certainty. When this cannot be done, group contribution methods are usually employed.

When the dispersion and polar solubility parameters can be estimated with confidence the hydrogen-bonding parameter can be calculated from equation 4 ; this requires the use of energy of vaporization data to determine the total solubility parameter. When either $\delta_{\mathrm{P}}$ or $\delta_{\mathrm{D}}$ cannot be estimated to solve for $\delta_{\mathrm{H}}$, then the group contribution method outlined by Stefanis and Panayioutou appear to be sufficient to calculate the hydrogen-bonding parameter independently.

## Current Project

The funding agency for this project, $\mathrm{B} \& \mathrm{~W}$ Pantex in Amarillo, TX is interested in the solubility of nitrated aromatic and nitramine species such as 1,3,5-Trinitro-2-[2-(2,4,6-trinitrophenyl)ethenyl]benzene (HNS) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), Figure 1. HNS is an example of a nitrated aromatic species and HMX is an example of a nitramine. These species exhibit poor solubility in common industrial solvents. The best solvents for many of these applications are N -methylpyrrolidone and N,N-dimethylformamide though they do not perform as well as desired. The Hansen solubility parameters of these explosives and other energetic materials will be explored to determine if these two solvents are the best solvents, or if blended solvents are better for dissolving energetic materials.



Figure 1. Chemical Structures of HNS (I) and HMX (II).
There are significant problems with the estimation of the HSPs of nitrated aromatics and nitramines. Primarily, they have poor solubility in most common industrial solvents. This precludes a wet chemistry solubility study. Secondly, there are no entries in group contribution methods for aromatic nitro-groups or nitramines. This precludes all group contribution methods for the estimation of HSPs. The Yamamoto
group contribution method present in HSPiP contains nitro groups, but gives unreasonable results, and is still under development.

One could approach this problem with a brute force technique and try various combinations of two, three, and four component solvent blends to determine which matches the HSPs of the unknown. The number of combinations of two, three, and four component blends of a possible ten solvents is 375 . If each combination is tested at three different volume fractions, the number of experiments top one thousand. If the number of possible solvents is expanded by just one more to eleven, then the number of experiments would top two thousand. In this case, time and cost preclude the use of this method for the determination of HSPs.

Problems of this size and complexity often necessitate the use of computers. It is the aim of this research to simplify and accelerate the determination of HSPs through the use of electronic structure calculations. These calculations are cheap, relatively accurate, and if employed with modern parallel processing computers they can be fast. Structure variables will be extracted from calculation result files and used to develop a quantitative structure activity relationship (QSAR). Electronic structure calculations will provide the structure variables and a matrix of coefficients will then relate them to HSPs (the desired activity). The result will be an inexpensive and unambiguous method for calculating the HSPs of nitrated aromatics and nitramines.

## Theory

As recent as the 1960s, chemists have begun to use computers to aid them in the modeling of molecular structure (13). There have been many developments since then and many programs now are capable of the accurate modeling of bond lengths, molecular
orbitals, and thermodynamic properties. These computational chemistry models allow scientists to predict the bulk properties of a species from the calculation of a single molecule.

There are significant advantages to this. One advantage is cost. If a scientist can research a species or a group of species without ever having to synthesize them, then the cost of conducting that research is tremendously reduced. Aside from the obvious cost of consumable materials required to synthesize a species there are many less tangible costs. For example, the user's time spent on synthesis, purification, characterization, and evaluation. Reduced instrument maintenance costs as well as less exposure to laboratory chemicals are also seen as benefits.

The least computationally expensive (fastest) model chemistry is molecular mechanics which uses pair potentials between all atoms in the system. These potentials have been parameterized to match the most common types of molecules. Unfortunately the highly nitrated species of interest are not well targeted by the molecular mechanics parameter set.

Electronic structure calculations seek to account for the electrons' contribution to the chemistry of a species. Because the exact location and velocity of an electron cannot be known, the numerical Schrödinger equation cannot be solved explicitly. The pieces which cannot be solved must be approximated by various levels of electron-correlation theory. Most structure calculations require a designation of level of theory and basis set of wavefunctions. Some popular levels of theory include HF (Hartree-Fock) and B3LYP (Becke type, 3-parameter exchange with Lee-Yang-Parr correlation functional) (14). The basis set defines the number and type of functions that will be used to approximate the
wavefunction of each electron in the species. A typical basis set is $6-31 \mathrm{G}(\mathrm{d})$. This nomenclature indicates that six functions will be used to approximate the wavefunction of the core electrons, three functions will be used for the valence electrons of heavy atoms (all atoms which are not hydrogen), and one function will be used for hydrogens. The "G" indicates that the type of functions to be used will be Gaussian functions; and the "(d)" indicates that d-orbital polarization functions will be added to heavy atoms.

Typically the input geometry is not the lowest energy conformation and so the molecule will require optimization. Any number of subsequent calculations can be performed on the resulting optimized geometry. The most common calculation is a "frequency calculation." Many of the electronic structure parameters are calculated in this step, the most prominent of which are the vibrational frequencies, and infrared(IR) and Raman spectral intensities. The publication syntax for the specification of a geometry optimization with Hartree-Fock theory and a 3-21G(d) basis set followed by a frequency calculation of higher level of theory and basis set would be: B3LYP/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p}) / / \mathrm{HF} / 3-21 \mathrm{G}(\mathrm{d})$. The B3LYP/6-31G(d) model chemistry was chosen for this project because of its high accuracy and its low computational cost. The published mean average deviation for this method on a standard set of molecules is $7.9 \mathrm{kcal} / \mathrm{mol}$ with a standard deviation of $9.5 \mathrm{kcal} / \mathrm{mol}$ (14).

The utility of electronic structure calculations to approximate bulk properties via a structure activity relationship has been demonstrated (15). This technique employs the use of structure variables to predict an unknown activity. Each variable is assigned a coefficient which indicates its weight or effect toward the total activity. For a quantitative structure activity relationship (QSAR) to be established the relationship
matrix must be trained to a set of species for which the activity and structure variables are well defined. This will yield a matrix which can be applied to the prediction of activity for species which are sufficiently similar to the training set. This relationship "training" can be accomplished by a step-wise regression technique.

The step-wise regression is a methodical way for including or excluding structure variables from the relationship matrix. The driving force for the inclusion or exclusion of variables is their correlation with activity. Correlation is quantified in the form of an Rsquared value. The criteria for the decision to include or exclude a particular variable is the probability that random noise could produce the coefficient of that variable in the structure-activity transformation matrix. This criteria is quantified by a P-test which results in the appropriately named P -value. A variable is chosen and a regression is performed, producing a transformation coefficient. There will be some level of correlation with this first structure variable. Another variable is included and another regression is performed. The coefficients of the two variables and their P -values are compared to the exclusion criteria. If a third variable is inserted and causes the P -value of another variable coefficient already in the model to exceed the exclusion criteria and also causes an increase in the R -squared value, then the third variable is kept and the criteria-exceeding variable is ejected from the model. This process is repeated until all variables in the model meet the inclusion criteria.

In the case of this research each Hansen solubility parameter will have a relationship matrix and thus will require a step-wise regression. This means that for every model there will be three step-wise regressions on $n$ number of variables which will yield three $1 \times n$ matrices $\left([\mathrm{D}]_{\mathrm{n}},[\mathrm{P}]_{\mathrm{n}}\right.$, and $\left.[\mathrm{H}]_{\mathrm{n}}\right)$ or one $3 \times n$ matrix $\left([\mathrm{D} \mathrm{P} \mathrm{H}]_{n}\right)$. These
matrices can be simplified by eliminating those variables which do not have a statistical contribution to the activity (coefficient $=0$ ) to yield matrices with numbers of rows less than $n$.

## CHAPTER II

## EXPERIMENTAL

Species which were used for training QSAR matrices 1 and 2 were selected from a single reference (16). The species in this reference were originally the only source of solubility parameters the author had access to. As the author acquired references with more comprehensive tables of solubility parameters $(4,20)$ QSAR3 was able to more effectively target the nitrated functionality.

## Computational Chemistry

All electronic structure calculations were made using the Gaussian ${ }^{\circledR 8}$ '03W (17) and GaussView computational package. Calculations were run on either one of two systems: 1) a Dell ${ }^{\text {TM }}$ Optiplex745 desktop PC running Microsoft Windows XP ${ }^{\text {TM }}$ with a dual-core central processing unit speed of 3.4 GHz and 2 Gb of random access memory, or 2) a Dell ${ }^{\text {TM }}$ Precision690 running Linux with two quad-core processors at a speed of 2.66 GHz and 32 Gb of memory. A parallel processing version of the Gaussian software package was used on the eight core machine so that as many as eight calculations could be performed simultaneously. This was also helpful in assigning multiple processors to one job to increase the computational power for difficult or long calculations. A complete list of the computational times for all structures in this work are located in Appendix A, pg 44.

Each molecule's geometry optimization and subsequent frequency calculation was made using the B3LYP hybrid density functional $(18,19)$ and a $6-31 \mathrm{G}(\mathrm{d})$ basis set. The majority of the calculations were performed by the author however acknowledgement is given to Derek Blaylock and Katie Rothlisberger who did perform
some calculations under the direction of the author and Dr. Darren Williams. All calculations were optimized to a minimum with no observed negative frequencies.

Structure variables were then extracted from the result files. The result file was opened and checked for proper optimization by verifying the absence of negative harmonic frequencies. The dipole moment $\mu$, electronic spatial extent $e_{\text {se }}, \Delta$ charge $d$, polarizability $\alpha$, and molar volume $V_{m}$ were extracted for use in the first structure activity relationship. The dipole moment is reported explicitly in the Gaussian ${ }^{\circledR}$ result file in units of Debye. The electronic spatial extent is also reported explicitly in the Gaussian ${ }^{\circledR}$ result file and has units of $\AA^{2}$. The $\Delta$ charge value is calculated from the difference in Mulliken charge of the most negative heteroatom (not carbon or hydrogen) and the most positive hydrogen atom. For species in which there are no heteroatoms or in which the heteroatoms were all positive the Mulliken charge for the most negative heteroatom was assigned the value of zero. The charge of the most positive hydrogen atom was assigned a value of zero for species in which there were no hydrogen atoms present. The polarizability was calculated as the square root of the sum of the squares of the six exact polarizability tensors reported in the result file and has units of $\AA^{3}$.

The molar volume is calculated in a rather roundabout way. The reason for this is that the electronic structure calculation does a poor job of estimating the molar volume. Hansen solubility parameters are typically reported along with a molar volume so one could look the experimental value up if one so chooses, however, it is the goal of this project to provide all the information necessary to calculate the HSPs of a nitrated species from a computational result file. To calculate the molar volume a regression was
performed on all of the training set species' experimental molar volumes with respect to the molecular formula which is an explicit output of the Gaussian ${ }^{\circledR}$ result file.

For the second and third structure activity relationships the energy of the highest occupied molecular orbital (HOMO) $I$, was extracted from the result files as well. This was done to approximate the first ionization energy of the species which was was reported to have some correlation with the dispersion properties (20).

## Structure Activity Relationship Training

Once structure variables have been calculated the relationship matrix must be optimized or "trained" to the activities of the calculated species. These species are termed the "training set." The activities of interest are the three Hansen solubility parameters. To accomplish this, a step-wise regression technique was employed. The training set structure variables and activities were imported to Minitab ${ }^{\circledR} 15$ (21) and the program's step-wise regression application was used. The step-wise regression of each HSP was performed individually so that for a given training set there were three regression matrices, one for each HSP. The criteria for inclusion and exclusion was set at a p-value of 0.2 . This is analogous to a minimum $\% 80$ confidence that the coefficient is not due to random noise.

The size of the training set as well as the structure variables selected as potential predictors are what set the various QSAR models apart. The first model contains 183 chemical species comprising a wide variety of functionality (Appendix $\mathrm{B}, \mathrm{pg} 54$ ). Structure variable predictors for this model were: dipole moment $\mu$, electronic spatial extent $e_{s e}, \Delta$ charge $d$, polarizability $\alpha$, and molar volume $V_{m}$. The matrix resulting from this first model is termed "QSAR1."

The second model which is termed "QSAR2" shares the same 183 chemical species as QSAR1 but with a larger structure variable set. In this model the set of structure variables is expanded by using mathematical transforms of the original five structure variables and the energy of the HOMO, $I$. The square, square-root, inverse, natural logarithm, and exponential of each variable was included in the model with the exception of electronic spatial extent. In addition to these simple mathematical transforms, some of the original structure variables were combined by multiplication/division. These combinations include a $\mu\left(V_{m}\right)^{-0.5}$ term, a $d \alpha$ term, an $I \alpha$ term, and an $(I \alpha)^{-1}$ term. These combination terms were included after studying equations put forth in Barton's Handbook of Solubility Parameters (20) as well as Hansen's own handbook (4).

The third model, "QSAR3" has a shortened list of chemical species in the training set. Unfortunately the accepted values for HSPs cannot be regarded as canon due to the many ways in which they can be calculated. The list of 183 chemical species was narrowed down to 39 species which were believed to be calculated from experiment based on their cost and ubiquity. Added to this list, however, are 15 more species which have similarity to the functionality depicted in Figure 1. This was done in an effort to further enhance the predictive power of the third model toward nitrated species. Because this new functionality was included, a new regression to calculate molar volume was also performed (Table 3, and Figure 3). A complete list of the training set species for QSAR3 can be found in Appendix C, page 62. In addition to the structure variables used in QSAR2, stoichiometry was also included. It was postulated that if activities such as
molar volume could be approximated using the molecular formula then they might also be useful for the approximation of HSPs.

## Calculation of Previously Unknown HSPs

Finally, the models were put to use by calculating the HSPs for various energetic materials. Each species was calculated by Gaussian ' 03 W at the same level of theory and basis set as the training set species. The appropriate structure variables were extracted from the result files and were operated on by the three QSAR matricies. Structure variables for the nitrated unknowns are tabulated in Appendix D, page65. The result is three models of HSPs for these energetic materials. The strengths and weaknesses of these models will be discussed later.

## CHAPTER III

## RESULTS

## Molar Volumes

Molar volumes were calculated using the method described in Chapter 2. QSAR1 and QSAR2 were calculated using the molar volume regression shown in Table 2 and Figure 2. Figures 2 and 3 show an equation for the correlation trendline. This is not to indicate how the correlation applies to the variable "x" but rather to show the slope of the trendline. As the correlation improves the slope will approach a value of one.

Table 2. Regression coefficients of stoichiometry modeling molar volume ( $\mathbf{N}=183$ )

| Variable | Coefficient | Standard Error |
| :---: | :---: | :---: |
| Intercept | 15.51199403 | 1.656059157 |
| \#C | 9.023012684 | 0.32021995 |
| \#H | 3.807253279 | 0.178497756 |
| \#N | 1.36510039 | 1.139692896 |
| \#O | 5.16678748 | 0.729221579 |
| \#S | 15.97578012 | 3.555444864 |
| \#P | 14.78730787 | 8.866345126 |
| \#F | 14.34459346 | 1.588282536 |
| \#Cl | 16.50292516 | 1.016481139 |
| \#Br | 19.0710091 | 1.768516926 |



Figure 2. Correlation chart of regression calculated molar volume to experimental molar volume. ( $\mathrm{N}=183$ )

The molar volumes for QSAR3 were calculated using a different regression because the number and identity of species in the training set changed. This training set includes some species which are also in the training set of QSAR1 and QSAR2 as well as several new nitrated species to enhance the predictive power of QSAR 3 toward the target nitrated species. Results of this regression are shown in Table 3 and Figure 3. Note that in this training set there were no phosphorous or fluorine containing species.

Table 3. Regression coefficients of stoichiometry modeling molar volume ( $\mathrm{N}=54$ )

| Variable | Coefficient | Standard Error |
| :---: | :---: | :---: |
| Intercept | 9.84325433 | 4.236976949 |
| \#C | 6.852084724 | 0.56839236 |
| \#H | 4.910317572 | 0.569191206 |
| \#N | 7.217614235 | 1.773869329 |
| \#O | 6.484731548 | 0.926807038 |
| \#S | 19.68305223 | 3.801321124 |
| \#P | 0 | 0 |
| \#F | 0 | 0 |
| \#Cl | 20.2641589 | 1.721525705 |
| \#Br | 27.96045898 | 5.510054368 |



Figure 3. Correlation chart of regression calculated molar volume to experimental molar volume. ( $\mathrm{N}=54$ )

## QSAR Matrices

Once the QSAR matrices were generated they were then used to calculate the HSPs of the training set to look for predictive trends. Figures 4 through 6 depict the transformation matrices and how they are used to generate HSPs.

$$
\left[\begin{array}{llllll}
1 & V_{m} & \mu & e_{s e} & d & \alpha
\end{array}\right] \cdot\left[\begin{array}{ccc}
18.07 & 3.8558 & 6.148 \\
-0.073 & -0.0513 & -0.0677 \\
0.111 & 2.51 & 0.0 \\
-.00006 & 0.00008 & 0.00013 \\
-0.68 & 1.86 & 11.85 \\
0.0632 & 0.0233 & 0.0255
\end{array}\right]=\left[\begin{array}{lll}
\delta_{D} & \delta_{P} & \delta_{H}
\end{array}\right]
$$

Figure 4. QSAR1 transformation matrix

Figure 5. QSAR2 transformation matrix. Here the ellipses do not indicate a sparse matrix. They indicate the continuation of the 1 by 16 input matrix.


Figure 6. QSAR3 transformation matrix. Here the ellipses do not indicate a sparse matrix. They indicate the continuation of the 1 by 15 input matrix.

## QSAR Correlation with Literature Values

Figures 7 through 15 illustrate the correlation of the various transformation matrices to the literature values used in each training set. The R-squared values shown are not a direct measure of the predictive power of the model. They only indicate the consistency of the model with the training set values. The equation of the trendline is included to show the slope of the trendline and not to indicate any correlation to some variable "x." Data used to generate Figures 7 through 15 are located in Appendices E and $F$ on pages 67 and 74 respectively.


Figure 7. Correlation of QSAR1 predicted $\delta_{D}$ parameters of training set species to literature values.


Figure 8. Correlation of QSAR1 predicted $\delta_{\mathrm{P}}$ parameters of training set species to literature values.


Figure 9. Correlation of QSAR1 predicted $\delta_{H}$ parameters of training set species to literature values.


Figure 10. Correlation of QSAR2 predicted $\delta_{D}$ parameters of training set species to literature values.


Figure 11. Correlation of QSAR2 predicted $\delta_{P}$ parameters of training set species to literature values.


Figure 12. Correlation of QSAR2 predicted $\delta_{\mathrm{H}}$ parameters of training set species to literature values.


Figure 13. Correlation of QSAR3 predicted $\delta_{D}$ parameters of training set species to literature values.


Figure 14. Correlation of QSAR3 predicted $\delta_{P}$ parameters of training set species to literature values.


Figure 15. Correlation of QSAR3 predicted $\delta_{H}$ parameters of training set species to literature values.

## Predicted HSPs of Nitrated Unknowns

Tables 4 through 6 display the predicted Hansen solubility parameters of the nitrated species of interest.

Table 4. HSPs of Explosive Unknowns Predicted by QSAR1.

|  | Explosive Unknowns |  | Calculated HSPs |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Abbreviated Name | IUPAC Nomenclature | $\delta_{\mathrm{D}}$ | $\delta_{\mathrm{P}}$ | $\delta_{\mathrm{H}}$ |  |
| HNS | (E)1,3,5-Trinitro-2-[2-(2,4,6- | 30.2 | 7.3 | 8.7 |  |
|  | trinitrophenyl)ethenyl]benzene |  |  |  |  |
| HNAB | 2,2',4,4',6,6'-hexanitroazobenzene | 32.0 | 6.1 | 10.5 |  |
| TACOT | tetranitrodibenzo-1,3a,4,6a-tetrazapentalene | 27.7 | 16.3 | 8.1 |  |
| TNC | 1,3,6,8-tetranitrocarbazole | 28.3 | 8.1 | 22.4 |  |
| tetryl | 2,4,6-trinitrophenylmethylnitramine | 23.1 | 11.4 | 8.3 |  |
| ethyltetryl | 2,4,6-trinitrophenylethylnitramine | 22.9 | 14.0 | 8.0 |  |
| picric acid | 2,4,6-trinitrophenol | 21.6 | 9.2 | 16.6 |  |
| picramide | 1,3,5-trinitroaniline | 22.7 | 13.7 | 21.5 |  |
| TATB | 1,3,5-triamino-2,4,6-trinitrobenzene | 24.2 | 6.9 | 22.0 |  |
| DATB | 1,3-diamino-2,4,6-trinitrobenzene | 23.9 | 12.8 | 21.8 |  |
| TNB | 1,3,5-trinitrobenzene | 21.4 | 3.7 | 8.0 |  |
| TNCB | 2,4,6-trinitrochlorobenzene | 21.6 | 3.8 | 7.6 |  |
| TNR | 3-hydroxyl-2,4,6-trinitrophenol | 21.9 | 9.1 | 17.1 |  |
| TNBA | 2,4,6-trinitrobenzoic acid | 21.4 | 7.1 | 14.3 |  |
| TNA | 2,4,6-trinitroanisole | 21.7 | 9.4 | 9.4 |  |
| TNX | 3-methyl-2,4,6-trinitrotoluene | 21.3 | 6.7 | 6.7 |  |
| PETN | 3-nitrooxy-2,2-bis(nitrooxymethyl)propyl | 19.9 | 3.6 | 6.3 |  |
| HMX | nitrate |  |  |  |  |
| RDX | 1,3,5,7-tetranitro-1,3,5,7-tetrazocane | 21.7 | 12.6 | 8.2 |  |
| phloroglucinol | 1,3,5-trinitro-1,3,5-triazinane | 20.4 | 10.6 | 8.8 |  |
| TNPG | benzene-1,3,5-triol | 17.8 | 10.3 | 15.5 |  |
| TETNB | 2,4,6-trinitrobenzene-1,3,5-triol | 22.3 | 11.3 | 17.1 |  |
| ethylpicrate | 2,4,6-trinitro-1,3,5-triethoxybenzene | 21.5 | 4.9 | 6.5 |  |

Table 5. HSPs of Explosive Unknowns Predicted by QSAR2.

|  | Explosive Unknowns | Calculated HSPs |  |  |
| :--- | :--- | :---: | :---: | :---: |
| Abbreviated Name | IUPAC Nomenclature | $\delta_{\mathrm{D}}$ | $\delta_{\mathrm{P}}$ | $\delta_{\mathrm{H}}$ |
| HNS | (E)1,3,5-Trinitro-2-[2-(2,4,6- | 30.2 | 13.8 | 9.0 |
|  | trinitrophenyl)ethenyl]benzene |  |  |  |
| HNAB | 2,2',4,4',6,6'-hexanitroazobenzene | 30.9 | 15.2 | 9.7 |
| TACOT | tetranitrodibenzo-1,3a,4,6a-tetrazapentalene | 29.3 | 14.7 | 7.5 |
| TNC | 1,3,6,8-tetranitrocarbazole | 32.2 | 13.0 | 15.1 |
| tetryl | 2,4,6-trinitrophenylmethylnitramine | 23.2 | 11.3 | 6.5 |
| ethyltetryl | 2,4,6-trinitrophenylethylnitramine | 23.8 | 12.6 | 6.5 |
| picric acid | 2,4,6-trinitrophenol | 22.3 | 10.0 | 13.4 |
| picramide | 1,3,5-trinitroaniline | 26.4 | 11.6 | 17.3 |
| TATB | 1,3,5-triamino-2,4,6-trinitrobenzene | 27.7 | 9.6 | 16.9 |
| DATB | 1,3-diamino-2,4,6-trinitrobenzene | 27.2 | 10.8 | 17.1 |
| TNB | 1,3,5-trinitrobenzene | 21.3 | 8.8 | 5.9 |
| TNCB | 2,4,6-trinitrochlorobenzene | 21.7 | 8.5 | 5.9 |
| TNR | 3-hydroxyl-2,4,6-trinitrophenol | 22.7 | 9.7 | 13.8 |
| TNBA | 2,4,6-trinitrobenzoic acid | 21.6 | 9.4 | 11.2 |
| TNA | 2,4,6-trinitroanisole | 21.5 | 10.3 | 7.1 |
| TNX | 3-methyl-2,4,6-trinitrotoluene | 21.3 | 8.3 | 5.7 |
| PETN | 3-nitrooxy-2,2-bis(nitrooxymethyl)propyl | 20.3 | 8.0 | 5.2 |
|  | nitrate |  |  |  |
| HMX | 1,3,5,7-tetranitro-1,3,5,7-tetrazocane | 22.1 | 11.0 | 6.2 |
| RDX | 1,3,5-trinitro-1,3,5-triazinane | 20.0 | 9.7 | 6.5 |
| phloroglucinol | benzene-1,3,5-triol | 18.4 | 8.7 | 15.0 |
| TNPG | 2,4,6-trinitrobenzene-1,3,5-triol | 23.1 | 10.7 | 13.7 |
| TETNB | 2,4,6-trinitro-1,3,5-triethoxybenzene | 20.8 | 7.7 | 6.3 |
| ethylpicrate | 2,4,6-trinitroethoxybenzene | 21.8 | 10.8 | 7.1 |

Table 6. HSPs of Explosive Unknowns Predicted by QSAR3.

|  | Explosive Unknowns |  | Calculated HSPs |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Abbreviated Name | IUPAC Nomenclature | $\delta_{\mathrm{D}}$ | $\delta_{\mathrm{P}}$ | $\delta_{\mathrm{H}}$ |  |
| HNS | (E)1,3,5-Trinitro-2-[2-(2,4,6- | 20.7 | 17.1 | 5.6 |  |
|  | trinitrophenyl)ethenyl]benzene |  |  |  |  |
| HNAB | 2,2',4,4',6,6'-hexanitroazobenzene | 23.0 | 22.0 | 6.5 |  |
| TACOT | tetranitrodibenzo-1,3a,4,6a-tetrazapentalene | 20.3 | 13.4 | 3.4 |  |
| TNC | 1,3,6,8-tetranitrocarbazole | 20.9 | 14.8 | 21.0 |  |
| tetryl | 2,4,6-trinitrophenylmethylnitramine | 18.5 | 13.2 | 5.6 |  |
| ethyltetryl | 2,4,6-trinitrophenylethylnitramine | 18.9 | 14.6 | 5.4 |  |
| picric acid | 2,4,6-trinitrophenol | 18.9 | 12.5 | 15.4 |  |
| picramide | 1,3,5-trinitroaniline | 19.2 | 13.8 | 19.4 |  |
| TATB | 1,3,5-triamino-2,4,6-trinitrobenzene | 18.5 | 13.4 | 21.1 |  |
| DATB | 1,3-diamino-2,4,6-trinitrobenzene | 18.8 | 12.6 | 19.7 |  |
| TNB | 1,3,5-trinitrobenzene | 19.1 | 10.8 | 6.7 |  |
| TNCB | 2,4,6-trinitrochlorobenzene | 19.5 | 11.4 | 6.5 |  |
| TNR | 3-hydroxyl-2,4,6-trinitrophenol | 19.3 | 14.0 | 15.9 |  |
| TNBA | 2,4,6-trinitrobenzoic acid | 19.0 | 13.0 | 13.7 |  |
| TNA | 2,4,6-trinitroanisole | 18.8 | 11.7 | 7.6 |  |
| TNX | 3-methyl-2,4,6-trinitrotoluene | 18.1 | 8.7 | 5.7 |  |
| PETN | 3-nitrooxy-2,2-bis(nitrooxymethyl)propyl | 16.8 | 17.8 | 6.4 |  |
|  | nitrate |  |  |  |  |
| HMX | 1,3,5,7-tetranitro-1,3,5,7-tetrazocane | 15.3 | 13.4 | 5.6 |  |
| RDX | 1,3,5-trinitro-1,3,5-triazinane | 15.5 | 11.1 | 6.5 |  |
| phloroglucinol | benzene-1,3,5-triol | 19.7 | 11.9 | 15.5 |  |
| TNPG | 2,4,6-trinitrobenzene-1,3,5-triol | 19.9 | 16.6 | 15.4 |  |
| TETNB | 2,4,6-trinitro-1,3,5-triethoxybenzene | 17.8 | 12.9 | 8.2 |  |
| ethylpicrate | 2,4,6-trinitroethoxybenzene | 18.7 | 11.6 | 7.8 |  |

## CHAPTER IV

## DISCUSSION

## QSAR1

As one might expect, the dipole moment is significant for the determination of the polar solubility parameter. The $\Delta$ charge variable was also significant for this parameter. The $\Delta$ charge variable appears to also be significant for determining the hydrogenbonding parameter, see Figure 4.

Correlation of the predicted dispersion parameters to the dispersion parameters in the training set appears to be exceptionally poor $\left(\mathrm{R}^{2}=0.4737\right)$, however this is an effect of the predicted dispersion parameter's variability over a relatively small range. Nearly all tabulated dispersion parameters exist somewhere between 15 and $30 \mathrm{MPa}^{1 / 2}$. Most of the dispersion parameters in the training sets of this work exist between 15 and 20 $\mathrm{MPa}^{1 / 2}$. The variability of the predicted values when compared to the training set values over this small range exhibit the small R-squared value seen in Figure 7. In actuality it appears as though most of the dispersion values between 15 and $20 \mathrm{MPa}^{1 / 2}$ are predicted to within $2 \mathrm{MPa}^{1 / 2}$. This is good considering that it has been shown that the very literature values the predictions are based on and compared to are possibly erroneous (REF). The only major outliers appear to be species with literature values of approximately 10 and $13 \mathrm{MPa}^{1 / 2}$ which are predicted to be around $15 \mathrm{MPa}^{1 / 2}$.

This model's prediction of the polar solubility parameter is also poor. In this case the variability is over a wider range so the previous explanation of poor correlation does not apply. Here the prediction is actually the problem. As evidenced in Figure 8, there are few species which are correctly predicted by the model $\left(\mathrm{R}^{2}=0.6472\right)$. Many are
predicted between 3 and $8 \mathrm{MPa}^{1 / 2}$ off of their target value. There appears to be no trend which can be noted in this figure. The model does not predict one sub-set of chemical species better than any other, nor does it err in any consistent fashion. The reason for this is likely due to the amount of variability in the dipole moment when calculated with the B3LYP/6-31g(d) model chemistry. A species can be optimized three times at this model chemistry to the same geometry and the resulting dipole moment calculation can vary by as much as a Debye or more. A variation of 1 Debye in the QSAR1 model will result in a $2.51 \mathrm{MPa}^{1 / 2}$ change in $\delta_{\mathrm{P}}$. For this reason, any calculation which is based on these dipole moments can be compromised. The solution for this is to calculate all species at a more computationally expensive model chemistry which will remove some of this variability. Because of the high computational cost, this change will likely have to be addressed in a later work.

Hydrogen-bonding parameter predictions from QSAR1 show considerable promise $\left(\mathrm{R}^{2}=0.7594\right)$. Many of the species with literature values between 0 and 20 $\mathrm{MPa}^{1 / 2}$ are modeled to within $3 \mathrm{MPa}^{1 / 2}$. The correlation drops off above $20 \mathrm{MPa}^{1 / 2}$; the notable outlier is water $\left(\mathrm{d}_{\mathrm{H}}=42.3\right)$ which is predicted at $20 \mathrm{MPa}^{1 / 2}$. If water is removed from the model and the correlation is quantified the R -squared value is greater than 0.8 . As with the polar parameter predictions from this model there is no discernable trend which can be noted about the predictions. No chemical group is predicted any better or worse than the others. The only trend appears to be that the hydrogen-bonding parameter becomes harder to predict the larger it becomes. This is problematic for the prediction of unknowns in that there can be no confidence in values predicted at $20 \mathrm{MPa}^{1 / 2}$ or higher. This means that this model with likely have trouble predicting the nitramine species
discussed in Chapter 1. Based on their structure, these species are suspected of having large hydrogen-bonding contributions to their total cohesive energy.

If these observations are applied to the predictions of the explosive unknowns then the reliability of these predictions (Table 4) can be evaluated. First, the dispersion values are predicted largely between 20 and $30 \mathrm{MPa}^{1 / 2}$. This is outside of the normal range of dispersion parameters; however, the size of these species is not to be underestimated. It is likely that the presence of two, three, or sometimes four nitro groups in these species serves to swell the electron cloud and increase the size of the molecule and also the value of the dispersion parameter. This might also help explain why these molecules exhibit such poor solubility in many common solvents which have dispersion parameters between 15 and $20 \mathrm{MPa}^{1 / 2}$. It may be wise to discount the polar parameter predictions from this model because of the poor correlation which was achieved in that model. The hydrogen-bonding parameter predictions should prove reliable up to $20 \mathrm{MPa}^{1 / 2}$ as noted earlier. Unfortunately, this caveat discredits the values for nitramine species such as tetranitrocarbazole, picramide, TATB, and DATB. QSAR2

As with the first model, the polar parameter depends heavily on dipole moment and $\Delta$ charge structure variables. The hydrogen-bonding parameter in this model depends largely upon $\Delta$ charge $(d)$, polarizability $(\alpha)$, and HOMO energy $(I)$ terms as was expected. It is interesting to note that the coefficient which is calculated for the $\mu / \mathrm{V}_{\mathrm{m}}{ }^{1 / 2}$ term (37.4) is the same as the coefficient in Hansen and Beerbower's simplified Böttcher equation. This tells more about the way in which most of the $\delta_{\mathrm{P}}$ parameters were calculated in the first place and not necessarily a validation of the model. What this also
means is that Gaussian ${ }^{\circledR}$ calculated dipole moments may be applied to the simplified Böttcher equation to calculate $\delta_{\mathrm{P}}$.

Correlation of the dispersion parameter predictions from this model (Figure 10) looks very similar to that of the first model. The correlation is slightly improved $\left(\mathrm{R}^{2}=\right.$ 0.5806 ) however this nominally poor correlation is subject to the same explanation as the other dispersion parameter predictions.

The polar parameter is predicted better by this model. The overall correlation is better $\left(\mathrm{R}^{2}=0.7381\right)$. More of the species are predicted accurately by the expanded variable set this model uses, however there still are some major outliers. Some species are predicted as much as $10 \mathrm{MPa}^{1 / 2}$ off of their literature values. In these extreme cases it is likely that the literature value was not determined in the same way as the rest of values.

The hydrogen-bonding parameter is also predicted better by this model. A ten percent increase in correlation with the training set values $\left(\mathrm{R}^{2}=0.8771\right)$ is accompanied by the ability to predict even the highest hydrogen-bonding parameter (water, $\delta_{\mathrm{H}}=42.3$ $\mathrm{MPa}^{1 / 2}$ ) with a degree of confidence. One thing that can be noted from Figure 12 is that a large number of the species which are calculated to be higher than the literature values are primary amines. In fact, nearly all of these species are calculated as having a hydrogen-bonding parameter $6-8 \mathrm{MPa}^{1 / 2}$ larger than the literature value. The reason for this is unknown. It is possible that the ability of primary amine to form two hydrogenbonds is somehow involved in this error. If more primary amines are investigated with this model it may be possible to institute some subtractive term for a primary amine which can be applied after the transformation matrix to correct for this effect. In practice
however this may prove difficult as there is no easy way to determine from a Gaussian ${ }^{\circledR}$ result file if the geometry present is a primary amine or not.

As with the first model, the observations about the correlations may help evaluate the prediction of the explosive unknowns. The predictions of these species from the QSAR2 model are shown in Table 5. Dispersion parameters are very similar to those calculated by QSAR1. They range from the low twenties to the low thirties and are consistent with the approximate size of those species. The polar parameters calculated by QSAR2 can now be accepted a little more than in QSAR1. It should be noted that the polar parameters are the least reliable numbers compared to the dispersion and hydrogenbonding parameters of this model. This is owing to the variability of the dipole moment calculations and also the varied methods with which the training set polar parameters were calculated. The hydrogen-bonding parameter predictions fall within the normal range of values, however, species with large expected hydrogen-bonding parameters $\left(\delta_{\mathrm{H}}>20 \mathrm{MPa}^{1 / 2}\right)$ such as DATB and picramide were not predicted to be so. They were indeed larger than their companion explosive unknowns; however, this fact coupled with the primary amine discrepancy leaves some doubt with these numbers.

## QSAR3

In general, the correlation of this model's prediction of the training set values appears to be increased. This is due to the smaller training set and so any comparison of correlation with QSAR1 or QSAR2 would be erroneous. There are some important features to notice in this model that may serve to interpret the predictions of the explosive unknowns later on.

The dispersion parameter predictions of the training set species in this model are very accurate. The overall correlation is great for the variability over the small range of dispersion parameters $\left(\mathrm{R}^{2}=0.8132\right)$. A look at Figure 13 shows that most species are predicted to within $1 \mathrm{MPa}^{1 / 2}$ of the literature values. The deviation that is present likely results from the variability in the computational route to the structure variables. A higher basis set such as $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ could possibly tighten these values up; however, they are accurate enough for use with other solubility parameters in their current state.

Polar parameter predictions of training set species are accurate as well. Figure 14 shows a good overall correlation $\left(\mathrm{R}^{2}=0.9008\right)$. There are a few species which are predicted to be $4-5 \mathrm{MPa}^{1 / 2}$ from their target values, most notably on the high side. The majority of species are predicted within $3 \mathrm{MPa}^{1 / 2}$ and $44.4 \%$ are calculated to within 1 $\mathrm{MPa}^{1 / 2}$. The major outliers are not exclusively of one chemical group or another. Two are oxygen containing ringed systems (1,4-dioxacyclohexane and 4-methyl-1,3-dioxolan-2-one). The rest are species which contain nitro-groups (nitrobenzene, 4-nitrotoluene, and 3,5-dinitrophenol). This is not to say that all species with nitro-groups were predicted poorly. In fact, several species of this category were very accurately predicted. 3-nitroaniline, 2,4-dinitrotoluene, and the nitropropanes were some of the best.

QSAR3 consistently predicts hydrogen-bonding parameters to within $5 \mathrm{MPa}^{1 / 2}$ or less. This is not ideal; however the high correlation which is achieved suggests that the model may be on the right track. One thing that may tighten these values up may be achieved with an increase the computational effort. Figure 6 shows that the model for the hydrogen-bonding parameter in QSAR3 is extremely simple. One variable is the $\mu / \mathrm{V}_{\mathrm{m}}{ }^{1 / 2}$ term. An increase in the computational effort as discussed earlier may determine this
$\mu / \mathrm{V}_{\mathrm{m}}{ }^{1 / 2}$ term more accurately and lead to a better prediction of the hydrogen-bonding parameter.

Dispersion parameter predictions of the explosive unknowns are much lower than the other models. It has been noted that this model seems to predict dispersion parameters as much as $5 \mathrm{MPa}^{1 / 2}$ below the actual value of the parameter. This suggests that the real dispersion parameters of these species may lie between 20 and $26 \mathrm{MPa}^{1 / 2}$ instead of between 15 and $21 \mathrm{MPa}^{1 / 2}$ as shown in Table 6. Predictions of the polar parameters for the explosive unknowns must be taken with a grain of salt. QSAR3 predicts polar parameters between 8 and $22 \mathrm{MPa}^{1 / 2}$. According to the training set correlation these predictions should be lower than actual; however these predictions are higher than the previous two models. The hydrogen-bonding parameters may be off by as much as $5 \mathrm{MPa}^{1 / 2}$.

## CHAPTER V

## CONCLUSION

In conclusion, the author has demonstrated a fast, unambiguous tool for the determination of the solubility parameters of nitrated materials. There is good evidence to suggest that the explosive unknowns presented in this work have dispersion parameters in the high teens to around $20 \mathrm{MPa}^{1 / 2}$. Polar parameters were determined but users should be cautious of values which were calculated by QSAR models 1 and 2 because many values were calculated to be as much as $5 \mathrm{MPa}^{1 / 2}$ off of their target values. However, the polar parameters predicted by QSAR3 appear to be very reliable. The most interesting findings in this work may be the hydrogen-bonding parameters. The precision with which the hydrogen-bonding parameter can be calculated by QSARs 2 and 3 suggests that this work is well on its way to the reliable determination of hydrogenbonding parameters. Recent work in the area of solute precipitation has indicated that the hydrogen-bonding character of a solvent may influence the crystal morphology of the precipitate (22). This is exciting for explosives manufacturers because certain crystal morphologies have been linked to desirable detonation properties.

This information may be enough for the estimation of where to begin probing blended solvents for the solubility of nitrated species. Table 7 shows recently obtained experimental data from the Pantex facility (23). $\mathrm{R}_{\mathrm{a}}$ is a value that represents the "distance" between two solubility parameters in the ( $\mathrm{D}, \mathrm{P}, \mathrm{H}$ ) Cartesian space. Clearly a small $R_{a}$ would indicate a prediction is close to accuracy. This column shows that QSAR3 predicts the HSPs of HMX, RDX, PETN, and HNS better than either group contribution method.

Table 7. A comparison of group contribution methods and QSAR3 HSP predictions of HMX, RDX, PETN, and HNS with experimentally determined HSPs

| HE | Method | Cutoff $\mathrm{g} / 100 \mathrm{~mL}$ | $\delta_{D} / M P a^{1 / 2}$ | $\delta_{P} / M^{\prime} a^{1 / 2}$ | $\delta_{H} / M P a^{1 / 2}$ | $\mathrm{R}_{0} / \mathrm{MPa}^{1 / 2}$ | FIT | $\mathrm{R}_{\mathrm{a}} \mathrm{Exp} / \mathrm{MPa}^{1 / 2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HMX | exp | 0.10 | 17.7 | 11.6 | 13.7 | 12.1 | 1.00 |  |
|  | $\mathrm{GC}^{\text {a }}$ |  | 22.5 | 22.9 | 6.9 |  |  | 16.4 |
|  | $\mathrm{GC}^{\text {b }}$ |  | 23.5 | 45.2 | 7.3 |  |  | 36.1 |
|  | QSAR3 |  | 15.3 | 13.4 | 5.6 |  |  | 8.6 |
| RDX | exp | 1.40 | 17.3 | 12.4 | 9.1 | 8.4 | 1.00 |  |
|  | $\mathrm{GC}^{\text {a }}$ |  | 18.5 | 18.8 | 5.7 |  |  | 7.7 |
|  | GC ${ }^{\text {b }}$ |  | 22.0 | 35.8 | 7.5 |  |  | 25.3 |
|  | QSAR3 |  | 15.5 | 11.1 | 6.5 |  |  | 3.4 |
| PETN | exp | 1.50 | 16.7 | 12.0 | 8.4 | 7.8 | 1.00 |  |
|  | $\mathrm{GC}^{\text {a }}$ |  | 21.4 | 21.2 | 9.5 |  |  | 13.1 |
|  | GC ${ }^{\text {b }}$ |  | 18.8 | 50.4 | 3.0 |  |  | 39.0 |
|  | QSAR3 |  | 16.8 | 17.8 | 6.4 |  |  | 6.1 |
| HNS | exp | 0.15 | 18.9 | 13.9 | 6.1 | 6.0 | 0.98 |  |
|  | $\mathrm{GC}^{\text {a }}$ |  | 21.0 | 13.3 | 8.6 |  |  | 4.9 |
|  | $\mathrm{GC}^{\text {b }}$ |  | 28.0 | 33.0 | 1.9 |  |  | 26.7 |
|  | QSAR3 |  | 20.7 | 17.1 | 5.6 |  |  | 3.7 |

${ }^{a}$ VanKrevelen method, ${ }^{b}$ Stefanis method
Another exciting aspect of this work is that the methodology can be applied to predict the solubility parameters of any chemical group. Indeed, it may be possible to expand this work to predict the Hansen solubility parameters of species that are important to other disciplines such as ink pigments, polymer additives, surfactants, etc.

## LITERATURE CITED

(1) Hildebrand, J.; Scott, R.L. The Solubility of Nonelectrolytes, $3^{\text {rd }}$ ed.; Reinhold: New York, 1950, 1 ff.
(2) Hildebrand, J.; Scott, R.L. Regular Solutions; Prentice-Hall: Englewood Cliffs, NJ, 1962, 1 ff.
(3) Hildebrand, J.H. The term 'Regular Solution.' Nature. 1951, 168, 868.
(4) Hansen, C.M. Hansen Solubility Parameters: A Users Handbook, $2^{\text {nd }}$ ed.; CRC Press: Boca Raton, FL, 2007, 45-46.
(5) Karger, B.L.; Snyder, L.R.; Eon, C. An expanded solubility parameter treatment for classification and use of chromatographic solvents and adsorbents. Parameters for dispersion, dipole, and hydrogen bonding interactions. J. Chromatogr. 1976, 125, 71.
(6) Beerbower, A., Wu, P.L., and Martin, A., Expanded solubility parameter approach I. Naphthalene and benzoic acid in individual solvents, J. Pharm. Sci. 1984, 73, 179.
(7) Martin, A.; Wu, P.L.; Beerbower, A. Expanded solubility parameter approach II. phydroxybenzoic acid and p-hydroxybenzoate in individual solvents. J. Pharm. Sci. 1984, 73, 188.
(8) Hansen, C.M.; Skaarup, K. The three dimensional solubility parameter - key to paint component affinities III. J. Paint Technol. 1967, 39, 511-514.
(9) van Krevelen, D.W.; Hoftyzer, P.J. Properties of Polymers: Their Estimation and Correlation with Chemical Structure, $2^{\text {nd }}$ ed.; Elsevier: Amsterdam, 1976, pp 189225.
(10) Stefanis, E.; Panayioutou, C. Prediction of Hansen Solubility Parameters with a New Group-Contribution Method. Int. J. Thermophys. 2008, 29, 568-585.
(11) Blanks, R.F.; Prausnitz, J.M. Thermodynamics of polymer solubility in polar and nonpolar systems. Ind. Eng. Chem. Fundam. 1964, 3, 1-8.
(12) Hansen, C.M.; Beerbower, A. Solubility parameters, in Kirk-Othmer Encyclopedia of Chemical Technology, Suppl. Vol., $2^{\text {nd }}$ ed.; Standen, A., Ed.; Interscience: New York, 1971; 889-910.
(13) Barnett, M.P. Mechanized Molecular Calculations - The POLYATOM system. Rev. Mod. Phys. 1963, 35, 571-572.
(14) Foresman, J.; Frisch, A. Exploring Chemistry with Electronic Stucture Methods, $2^{\text {nd }}$ ed.; Gaussian, Inc.: Pittsburgh, 1996, pp 157-159.
(15) Zeng, X.; Wang, Z.; Ge, Z.; Liu, H. Quantitative structure-property relationships for predicting subcooled liquid vapor pressure (PL) of 209 polychlorinated diphenyl ethers (PCDEs) by DFT and the position of Cl substitution (PCS) methods. Atmos. Environ. 2007, 41, 3590-3603.
(16) Mollet, H.; Grubenmann, A. Formulation Technology; Wiley-VCH: Weinheim, 2001, pp 268-272.
(17) Gaussian 03, Revision D.01, M. J. Frisch; G. W. Trucks; H. B. Schlegel; G. E. Scuseria; M. A. Robb; J. R. Cheeseman; J. A. Montgomery, Jr.; T. Vreven; K. N. Kudin; J. C. Burant; J. M. Millam; S. S. Iyengar; J. Tomasi; V. Barone; B. Mennucci; M. Cossi; G. Scalmani; N. Rega; G. A. Petersson; H. Nakatsuji; M. Hada; M. Ehara; K. Toyota; R. Fukuda; J. Hasegawa; M. Ishida; T. Nakajima; Y. Honda; O. Kitao; H. Nakai; M. Klene; X. Li; J. E. Knox; H. P. Hratchian; J. B.

Cross; V. Bakken; C. Adamo; J. Jaramillo; R. Gomperts; R. E. Stratmann; O.
Yazyev; A. J. Austin; R. Cammi; C. Pomelli; J. W. Ochterski; P. Y. Ayala; K.
Morokuma; G. A. Voth; P. Salvador; J. J. Dannenberg; V. G. Zakrzewski; S.
Dapprich; A. D. Daniels; M. C. Strain; O. Farkas; D. K. Malick; A. D. Rabuck; K.
Raghavachari; J. B. Foresman; J. V. Ortiz; Q. Cui; A. G. Baboul; S. Clifford; J.
Cioslowski; B. B. Stefanov; G. Liu; A. Liashenko; P. Piskorz; I. Komaromi; R. L.
Martin; D. J. Fox; T. Keith; M. A. Al-Laham; C. Y. Peng; A. Nanayakkara; M.

Challacombe; P. M. W. Gill; B. Johnson; W. Chen; M. W. Wong; C. Gonzalez; and J. A. Pople. Gaussian, Inc.: Wallingford CT, 2004.
(18) Becke, A. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648-5652.
(19) Lee, C.; Wang, W.; Parr, R.G. Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785-789.
(20) Barton, A.F. Handbook of Solubility Parameters and Other Cohesion Parameters, $2^{\text {nd }}$ ed.; CRC Press: Boca Raton, FL, 1991, 57-58.
(21) Minitab ${ }^{\circledR}$ 15.1.0.0; Minitab, Inc.: State College, PA, 2006.
(22) Williams, D.L. Measurement of Constants of Crystalline Explosives; Final Report to B\&W Pantex LLC. On Grant Contract 60785; Sam Houston State University: Huntsville, 2008.
(23) Duncan, A., Unpublished compilation of HE Solubility Data, B\&W Pantex LLC, Amarillo, TX 2008.

## APPENDICES

## Appendix A: IUPAC Nomenclature and CPU Times for Gaussian ${ }^{\circledR}$ Calculations

| IUPAC nomenclature | Molecular Formula | CPU TIMES |  |
| :---: | :---: | :---: | :---: |
|  |  | OPT | FREQ |
| (chloromethyl)benzene | $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Cl}$ | 33 minutes 18.0 seconds | 1 hours 13 minutes 3.0 seconds |
| (E) 1,3,5-Trinitro-2-[2-(2,4,6trinitrophenyl)ethenyl]benzene | $\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{~N}_{6} \mathrm{O}_{12}$ | 8 hours 21 minutes 15.5 seconds | 9 hours 24 minutes 9.2 seconds |
| (Z)-octadec-9-en-1-ol | $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}$ | 3 hours 33 minutes 30.5 seconds | 18 hours 5 minutes 12.1 seconds |
| (Z)-octadec-9-enoic acid | $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2}$ | 4 hours 14 minutes 37.4 seconds | 19 hours 45 minutes 40.6 seconds |
| 1-(phenoxy)-3-[3- <br> (phenoxy)phenoxy]benzene | $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{3}$ | 4 hours 36 minutes 46.5 seconds | 11 hours 45 minutes 10.4 seconds |
| 1,1,1-trichloroethane | $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}_{3}$ | 1 minutes 27.5 seconds | 13 minutes 58.4 seconds |
| 1,1,2,2-tetrabromoethane | $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{4}$ | 7 minutes 49.3 seconds | 30 minutes 43.2 seconds |
| 1,1,2,2-tetrachloroethane | $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}$ | 3 minutes 7.6 seconds | 13 minutes 38.4 seconds |
| 1,1,2-trichlorotrifluoroethane | $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}$ | 10 minutes 47.0 seconds | 33 minutes 60.0 seconds |
| 1,1,3,3-tetramethylurea | $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ | 1 hours 6 minutes 26.2 seconds | 1 hours 38 minutes 48.4 seconds |
| 1,1-dichloroethane | $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ | 50.0 seconds | 6 minutes 10.5 seconds |
| 1,1-dichloroethene | $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$ | 40.4 seconds | 4 minutes 5.5 seconds |
| 1,1-dimethylhydrazine | $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}$ | 2 minutes 38.6 seconds | 15 minutes 0.4 seconds |
| 1,1-thiobisethane | $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~S}$ | 3 minutes 56.1 seconds | 29 minutes 2.1 seconds |
| 1,2,3,4-tetrahydronaphthalene | $\mathrm{C}_{10} \mathrm{H}_{12}$ | 14 minutes 36.3 seconds | 1 hours 44 minutes 47.0 seconds |
| 1,2-diaminoethane | $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}$ | 5 minutes 16.4 seconds | 14 minutes 48.0 seconds |
| 1,2-dibromoethane | $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$ | 1 minutes 27.2 seconds | 7 minutes 57.6 seconds |
| 1,2-dichlorobenzene | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ | 5 minutes 7.0 seconds | 52 minutes 2.2 seconds |
| 1,2-dichloroethane | $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ | 1 minutes 16.0 seconds | 6 minutes 1.0 seconds |


| IUPAC nomenclature | Molecular Formula | CPU TIMES |  |
| :---: | :---: | :---: | :---: |
|  |  | OPT | FREQ |
| 1,2-dichlorotetrafluoroethane | $\mathrm{C}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{4}$ | 3 minutes 1.1 seconds | 20 minutes 18.2 seconds |
| 1,2-dimethylbenzene | $\mathrm{C}_{8} \mathrm{H}_{10}$ | 15 minutes 37.7 seconds | 1 hours 29 minutes 10.6 seconds |
| 1,2-dinitrobenzene | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}$ | 4 hours 6 minutes 12.8 seconds | 2 hours 8 minutes 31.8 seconds |
| 1,3,5,7-tetranitro-1,3,5,7-tetrazocane | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{8} \mathrm{O}_{8}$ | 5 hours 16 minutes 25.6 seconds | 6 hours 9 minutes 14.5 seconds |
| 1,3,5-triamino-2,4,6-trinitrobenzene | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{6} \mathrm{O}_{6}$ | 44 minutes 39.0 seconds | 23 hours 1 minutes 9.0 seconds |
| 1,3,5-trimethylbenzene | $\mathrm{C}_{9} \mathrm{H}_{12}$ | 5 minutes 11.9 seconds | 42 minutes 51.9 seconds |
| 1,3,5-trinitro-1,3,5-triazinane | $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{6} \mathrm{O}_{6}$ | 6 hours 44 minutes 13.4 seconds | 4 hours 42 minutes 59.9 seconds |
| 1,3,5-trinitroaniline | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{6}$ | 9 hours 52 minutes 10.9 seconds | 4 hours 30 minutes 8.5 seconds |
| 1,3,5-trinitrobenzene | $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{6}$ | 3 hours 5 minutes 59.7 seconds | 3 hours 23 minutes 27.5 seconds |
| 1,3,5-trinitrotoluene | $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}$ | 5 hours 1 minutes 10.6 seconds | 5 hours 15 minutes 53.6 seconds |
| 1,3,6,8-tetranitrocarbazole | $\mathrm{C}_{12} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{O}_{8}$ | 1 days 8 hours 18 minutes 11.4 seconds | 21 hours 24 minutes 18.5 seconds |
| 1,3-diamino-2,4,6-trinitrobenzene | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{O}_{6}$ | 15 hours 18 minutes 9.9 seconds | 6 hours 25 minutes 21.6 seconds |
| 1,3-dimethylbutan-1-ol | $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$ | 20 minutes 53.3 seconds | 1 hours 19 minutes 41.4 seconds |
| 1,3-dinitrooxypropan-2-yl nitrate | $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}$ | 3 hours 43 minutes 11.3 seconds | 3 hours 9 minutes 13.1 seconds |
| 1,3-dioxolan-2-one | $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$ | 18 minutes 56.0 seconds | 21 minutes 45.0 seconds |
| 1,4-dioxacyclohexane | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ | 6 minutes 10.5 seconds | 37 minutes 10.2 seconds |
| 1-bromoethane | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$ | 1 minutes 38.2 seconds | 7 minutes 6.6 seconds |
| 1-bromonaphthalene | $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Br}$ | 16 minutes 16.3 seconds | 2 hours 32 minutes 35.7 seconds |
| 1-bromopropane | $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$ | 5 minutes 10.0 seconds | 22 minutes 28.0 seconds |
| 1-chlorobutane | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ | 5 minutes 1.2 seconds | 28 minutes 12.4 seconds |
| 1-chloropropane | $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$ | 2 minutes 26.9 seconds | 12 minutes 58.5 seconds |
| 1-decanol | $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}$ | 21 minutes 22.1 seconds | 4 hours 16 minutes 21.3 seconds |
| 1-methyl-2-pyrrolidone | $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}$ | 2 hours 10 minutes 5.0 seconds | 1 hours 4 minutes 33.0 seconds |
| 1-methylnaphthalene | $\mathrm{C}_{11} \mathrm{H}_{10}$ | 18 minutes 24.7 seconds | 2 hours 53 minutes 3.6 seconds |


| IUPAC nomenclature | Molecular Formula | CPU TIMES |  |
| :---: | :---: | :---: | :---: |
|  |  | OPT | FREQ |
| 1-nitropropane | $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}$ | 10 minutes 16.0 seconds | 33 minutes 37.0 seconds |
| 1-octanol | $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$ | 13 minutes 49.0 seconds | 2 hours 11 minutes 52.3 seconds |
| 1-pentanol | $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ | 6 minutes 12.7 seconds | 48 minutes 49.0 seconds |
| 1-propanol | $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ | 2 minutes 26.0 seconds | 15 minutes 37.0 seconds |
| 1-tridecanol | $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}$ | 35 minutes 45.4 seconds | 7 hours 23 minutes 57.8 seconds |
| 1-trifluoromethyl-1,2,2,3,3,4,4,5,5,6,6unedecafluorocyclohexane | $\mathrm{C}_{7} \mathrm{~F}_{14}$ | 2 hours 21 minutes 12.9 seconds | 10 hours 32 minutes 59.6 seconds |
| 2-(2-butoxyethoxy)ethanol | $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{3}$ | 15 minutes 15.3 seconds | 2 hours 55 minutes 30.4 seconds |
| 2-(2-ethoxyethoxy)ethanol | $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{3}$ | 11 minutes 9.4 seconds | 1 hours 42 minutes 11.9 seconds |
| 2-(2-Methoxyethoxy)ethanol | $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{3}$ | 7 minutes 38.8 seconds | 1 hours 12 minutes 0.3 seconds |
| 2,2',4,4',6,6'-hexanitroazobenzene | $\mathrm{C}_{12} \mathrm{H}_{4} \mathrm{~N}_{8} \mathrm{O}_{12}$ | 7 hours 39 minutes 29.5 seconds | 1 days 8 hours 55 minutes 27.8 seconds |
| 2,2,4-trimethylpentane | $\mathrm{C}_{8} \mathrm{H}_{18}$ | 1 hours 22 minutes 24.1 seconds | 2 hours 33 minutes 48.8 seconds |
| 2,4,6-trinitro-1,3,5-triethoxybenzene | $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{9}$ | 18 hours 54 minutes 3.4 seconds | 1 days 9 hours 32 minutes 55.4 seconds |
| 2,4,6-trinitroanisole | $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{7}$ | 4 hours 6 minutes 48.4 seconds | 6 hours 39 minutes 52.0 seconds |
| 2,4,6-trinitrobenzene-1,3,5-triol | $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{9}$ | 5 hours 52 minutes 27.7 seconds | 7 hours 4 minutes 8.2 seconds |
| 2,4,6-trinitrobenzoic acid | $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{8}$ | 11 hours 10 minutes 32.0 seconds | 6 hours 49 minutes 44.2 seconds |
| 2,4,6-trinitrochlorobenzene | $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{ClN}_{3} \mathrm{O}_{6}$ | 2 hours 30 minutes 2.7 seconds | 4 hours 13 minutes 1.1 seconds |
| 2,4,6-trinitroethoxybenzene | $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{7}$ | 5 hours 4 minutes 40.6 seconds | 8 hours 17 minutes 11.2 seconds |
| 2,4,6-trinitrophenol | $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{7}$ | 11 minutes 55.6 seconds | 4 hours 26 minutes 28.4 seconds |
| 2,4,6-trinitrophenylethylnitramine | $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}_{8}$ | 8 hours 23 minutes 32.8 seconds | 15 hours 55 minutes 44.5 seconds |
| 2,4,6-trinitrophenylmethylnitramine | $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{O}_{8}$ | 6 hours 14 minutes 15.3 seconds | 12 hours 18 minutes 37.6 seconds |
| 2,4-dinitrotoluene | $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{4}$ | 3 hours 49 minutes 46.4 seconds | 2 hours 47 minutes 16.4 seconds |
| 2,6-dimethylheptan-4-one | $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}$ | 2 hours 8 minutes 57.0 seconds | 6 hours 28 minutes 34.0 seconds |
| 2-aminoethanol | $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NO}$ | 2 minutes 49.0 seconds | 13 minutes 41.0 seconds |
| 2-butanol | $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ | 6 minutes 59.7 seconds | 29 minutes 4.4 seconds |


| IUPAC nomenclature | Molecular Formula | CPU TIMES |  |
| :---: | :---: | :---: | :---: |
|  |  | OPT | FREQ |
| 2-butoxyethanol | $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{2}$ | 9 minutes 27.6 seconds | 1 hours 26 minutes 52.3 seconds |
| 2-ethoxyethanol | $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$ | 4 minutes 59.9 seconds | 39 minutes 21.8 seconds |
| 2-ethoxyethyl acetate | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{3}$ | 19 minutes 1.8 seconds | 1 hours 32 minutes 1.3 seconds |
| 2-ethylbutan-1-ol | $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$ | 53 minutes 3.3 seconds | 1 hours 22 minutes 25.4 seconds |
| 2-ethylhexan-1-ol | $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$ | 1 hours 37 minutes 21.3 seconds | 2 hours 36 minutes 24.8 seconds |
| 2-furanmethanol | $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{2}$ | 16 minutes 25.9 seconds | 38 minutes 40.6 seconds |
| 2-methoxyethanol | $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{2}$ | 8 minutes 51.0 seconds | 25 minutes 33.0 seconds |
| 2-methyl-1-propanol | $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ | 6 minutes 43.6 seconds | 32 minutes 7.6 seconds |
| 2-methylbutane | $\mathrm{C}_{5} \mathrm{H}_{12}$ | 7 minutes 4.7 seconds | 40 minutes 29.3 seconds |
| 2-methylpropyl 2-methylpropanote | $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$ | 1 hours 45 minutes 26.5 seconds | 2 hours 58 minutes 19.7 seconds |
| 2-methylpropyl ethanoate | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$ | 1 hours 35 minutes 4.0 seconds | 2 hours 46 minutes 35.0 seconds |
| 2-nitropropane | $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}$ | 9 minutes 7.0 seconds | 33 minutes 12.5 seconds |
| 2-octanol | $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$ | 29 minutes 52.9 seconds | 2 hours 24 minutes 20.6 seconds |
| 2-propanol | $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ | 3 minutes 12.0 seconds | 16 minutes 27.0 seconds |
| 2-pyrrolidone | $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}$ | 19 minutes 27.0 seconds | 37 minutes 12.0 seconds |
| 3,5,5-trimethylcyclohex-2-en-1-one | $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}$ | 43 minutes 53.3 seconds | 3 hours 2 minutes 46.3 seconds |
| 3,5-dinitrophenol | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{5}$ | 5 hours 30 minutes 46.1 seconds | 2 hours 17 minutes 21.2 seconds |
| 3,6,9-trioxa-(18Z)-heptacosan-1ol | $\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{O}_{4}$ | 7 hours 44 minutes 0.9 seconds | 2 days 9 hours 37 minutes 33.9 seconds |
| 3-chloropropan-1-ol | $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{ClO}$ | 4 minutes 0.7 seconds | 21 minutes 34.2 seconds |
| 3-hydroxyl-2,4,6-trinitrophenol | $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{8}$ | 3 hours 25 minutes 11.9 seconds | 5 hours 52 minutes 33.7 seconds |
| 3-methyl-2,4,6-trinitrotoluene | $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{6}$ | 5 hours 5 minutes 28.1 seconds | 7 hours 40 minutes 40.5 seconds |
| 3-methylbutyl ethanoate | $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$ | 33 minutes 49.8 seconds | 1 hours 59 minutes 18.8 seconds |
| 3-methylphenol | $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$ | 24 minutes 28.7 seconds | 1 hours 6 minutes 45.1 seconds |
| 3-nitroaniline | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$ | 3 hours 23 minutes 27.7 seconds | 1 hours 30 minutes 47.2 seconds |


| IUPAC nomenclature | Molecular Formula | CPU TIMES |  |
| :---: | :---: | :---: | :---: |
|  |  | OPT | FREQ |
| $\begin{aligned} & \text { 3-nitrooxy-2,2- } \\ & \text { bis(nitrooxymethyl)propyl nitrate } \end{aligned}$ | $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{12}$ | 2 minutes 26.7 seconds* | 1 minutes 45.3 seconds* |
| 4-hydroxy-4-methylpentan-2-one | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$ | 57 minutes 52.0 seconds | 1 hours 35 minutes 29.3 seconds |
| 4-methyl-1,3-dioxolan-2-one | $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}$ | 1 hours 8 minutes 9.0 seconds | 45 minutes 2.0 seconds |
| 4-methylpent-3-en-2-one | $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$ | 25 minutes 50.8 seconds | 57 minutes 11.1 seconds |
| 4-methylpentan-2-one | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$ | 36 minutes 47.2 seconds | 1 hours 8 minutes 45.0 seconds |
| 4-nitrochlorobenzene | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ClNO}_{2}$ | 32 minutes 24.7 seconds | 1 hours 17 minutes 8.9 seconds |
| 4-nitrophenol | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{3}$ | 2 hours 15 minutes 42.7 seconds | 1 hours 19 minutes 43.1 seconds |
| 4-nitrotoluene | $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$ | 2 hours 27 minutes 10.5 seconds | 1 hours 30 minutes 37.3 seconds |
| 5-methylhexan-2-one | $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$ | 2 hours 5 minutes 33.4 seconds | 1 hours 36 minutes 4.5 seconds |
| acetaldehyde | $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ | 12.3 seconds | 3 minutes 52.4 seconds |
| acetic acid | $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ | 2 minutes 47.3 seconds | 6 minutes 37.0 seconds |
| acetonitrile | $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$ | 26.0 seconds | 2 minutes 44.0 seconds |
| acetophenone | $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}$ | 32 minutes 12.0 seconds | 1 hours 36 minutes 44.0 seconds |
| aniline | $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$ | 1 hours 23 minutes 47.8 seconds | 45 minutes 46.3 seconds |
| benzaldehyde | $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}$ | 21 minutes 10.0 seconds | 1 hours 1 minutes 27.0 seconds |
| benzene | $\mathrm{C}_{6} \mathrm{H}_{6}$ | 3 minutes 37.0 seconds | 1 hours 2 minutes 3.0 seconds |
| benzene-1,2-diol | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}$ | 18 minutes 47.4 seconds | 54 minutes 41.3 seconds |
| benzene-1,3,5-triol | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{3}$ | 25 minutes 31.5 seconds | 1 hours 7 minutes 36.6 seconds |
| benzene-1,3-diol | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{3}$ | 23 minutes 3.2 seconds | 56 minutes 37.6 seconds |
| benzene-1,4-diol | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{4}$ | 16 minutes 27.9 seconds | 50 minutes 46.1 seconds |
| benzoic acid | $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$ | 1 hours 17 minutes 4.0 seconds | 1 hours 20 minutes 2.0 seconds |
| benzonitrile | $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}$ | 8 minutes 7.0 seconds | 58 minutes 36.0 seconds |
| benzyl n-butyl phthalate | $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}$ | 9 minutes 40.3 seconds | 8 hours 39 minutes 8.7 seconds |
| biphenyl | $\mathrm{C}_{12} \mathrm{H}_{10}$ | 22 minutes 19.9 seconds | 3 hours 6 minutes 4.0 seconds |


| IUPAC nomenclature | Molecular Formula | CPU TIMES |  |
| :---: | :---: | :---: | :---: |
|  |  | OPT | FREQ |
| bis(2-aminoethyl)amine | $\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{~N}_{3}$ | 12 minutes 9.0 seconds | 1 hours 35 minutes 5.0 seconds |
| bis(2-chloroethyl) ether | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}$ | 11 minutes 3.0 seconds | 52 minutes 27.0 seconds |
| bis(2-chloroisopropyl) ether | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}$ | 1 hours 1 minutes 29.6 seconds | 2 hours 8 minutes 52.1 seconds |
| bis(2-methoxyethyl) ether | $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{3}$ | 11 minutes 15.4 seconds | 1 hours 39 minutes 17.7 seconds |
| bromobenzene | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$ | 7 minutes 24.3 seconds | 48 minutes 50.0 seconds |
| bromochloromethane | $\mathrm{CH}_{2} \mathrm{BrCl}$ | 51.0 seconds | 4 minutes 7.0 seconds |
| bromotrifluoromethane | $\mathrm{CBrF}_{3}$ | 1 minutes 1.6 seconds | 7 minutes 29.6 seconds |
| butan-1-ol | $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ | 3 minutes 0.8 seconds | 26 minutes 48.1 seconds |
| butanal | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ | 9 minutes 4.0 seconds | 26 minutes 5.0 seconds |
| butane | $\mathrm{C}_{4} \mathrm{H}_{10}$ | 8 minutes 11.3 seconds | 17 minutes 26.5 seconds |
| butanenitrile | $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}$ | 4 minutes 55.0 seconds | 39 minutes 15.0 seconds |
| butano-4-lactone | $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$ | 9 minutes 26.9 seconds | 28 minutes 22.9 seconds |
| butanoic acid | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ | 26 minutes 13.0 seconds | 1 hours 3 minutes 5.0 seconds |
| butanone | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ | 21 minutes 14.0 seconds | 45 minutes 44.0 seconds |
| butyl (2R)-hydroxypropanoate | $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{3}$ | 38 minutes 14.3 seconds | 2 hours 23 minutes 37.4 seconds |
| butyl ethanoate | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$ | 15 minutes 32.7 seconds | 1 hours 16 minutes 17.9 seconds |
| butylamine | $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}$ | 16 minutes 27.0 seconds | 1 hours 0 minutes 33.0 seconds |
| carbon disulfide | $\mathrm{CS}_{2}$ | 10.0 seconds | 55.0 seconds |
| chlorobenzene | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ | 6 minutes 23.0 seconds | 43 minutes 53.0 seconds |
| chlorocyclohexane | $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}$ | 17 minutes 59.3 seconds | 1 hours 14 minutes 5.5 seconds |
| chlorodifluoromethane | $\mathrm{CHClF}_{2}$ | 45.0 seconds | 3 minutes 42.0 seconds |
| chloromethane | $\mathrm{CH}_{4} \mathrm{Cl}$ | 23.0 seconds | 1 minutes 38.0 seconds |
| chloromethyloxirane | $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{ClO}$ | 3 minutes 15.2 seconds | 17 minutes 32.0 seconds |
| cis-bicyclo[4.4.0]decane | $\mathrm{C}_{10} \mathrm{H}_{18}$ | 35 minutes 16.4 seconds | 4 hours 33 minutes 28.1 seconds |


| IUPAC nomenclature | Molecular Formula | CPU TIMES |  |
| :---: | :---: | :---: | :---: |
|  |  | OPT | FREQ |
| cyclohexanamine | $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}$ | 9 minutes 58.0 seconds | 1 hours 26 minutes 46.0 seconds |
| cyclohexane | $\mathrm{C}_{6} \mathrm{H}_{12}$ | 9 minutes 55.3 seconds | 1 hours 0 minutes 9.5 seconds |
| cyclohexanol | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$ | 15 minutes 54.6 seconds | 1 hours 22 minutes 39.7 seconds |
| cyclohexanone | $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$ | 18 minutes 49.9 seconds | 1 hours 7 minutes 1.5 seconds |
| decane | $\mathrm{C}_{10} \mathrm{H}_{22}$ | 7 minutes 14.3 seconds | 46 minutes 53.5 seconds |
| dibutyl phthalate | $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}$ | 7 hours 14 minutes 15.6 seconds | 22 hours 15 minutes 8.6 seconds |
| dibutyl sebacate | $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{4}$ | 4 hours 37 minutes 14.4 seconds | 1 days 1 hours 20 minutes 49.7 seconds |
| dichlorodifluoromethane | $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ | 41.0 seconds | 4 minutes 59.8 seconds |
| dichlorofluoromethane | $\mathrm{CHCl}_{2} \mathrm{~F}$ | 39.7 seconds | 3 minutes 30.7 seconds |
| dichloromethane | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 27.0 seconds | 2 minutes 11.0 seconds |
| diethyl carbonate | $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}$ | 7 minutes 1.2 seconds | 47 minutes 41.8 seconds |
| diethyl phthalate | $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$ | 3 hours 9 minutes 48.2 seconds | 8 hours 45 minutes 8.0 seconds |
| diethyl sulfate | $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}$ | 1 hours 17 minutes 6.0 seconds | 1 hours 48 minutes 51.0 seconds |
| diethylamine | $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}$ | 4 minutes 57.4 seconds | 31 minutes 37.0 seconds |
| dimethyl phthalate | $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$ | 1 hours 34 minutes 14.4 seconds | 2 hours 12 minutes 29.0 seconds |
| dimethyl sulfone | $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{~S}$ | 20 minutes 25.0 seconds | 23 minutes 42.0 seconds |
| dimethyl sulfoxide | $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$ | 9 minutes 56.0 seconds | 13 minutes 5.0 seconds |
| dioctyl phthalate | $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{4}$ | 7 hours 0 minutes 1.8 seconds | 14 hours 48 minutes 36.7 seconds |
| dodecane | $\mathrm{C}_{12} \mathrm{H}_{26}$ | 24 minutes 34.5 seconds | 5 hours 0 minutes 23.8 seconds |
| ethanol | $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ | 1 minutes 19.0 seconds | 7 minutes 14.0 seconds |
| ethoxyethane | $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ | 3 minutes 20.0 seconds | 28 minutes 59.8 seconds |
| ethyl 2-hydroxypropanoate | $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}$ | 43 minutes 58.9 seconds | 1 hours 6 minutes 52.5 seconds |
| ethyl 3-phenyl-2-propenonate | $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}$ | 1 hours 6 minutes 42.1 seconds | 3 hours 34 minutes 45.1 seconds |
| ethyl ethanoate | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ | 7 minutes 9.0 seconds | 32 minutes 7.1 seconds |


| IUPAC nomenclature | Molecular Formula | CPU TIMES |  |
| :---: | :---: | :---: | :---: |
|  |  | OPT | FREQ |
| ethyl methanoate | $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$ | 24 minutes 55.0 seconds | 19 minutes 38.0 seconds |
| ethylbenzene | $\mathrm{C}_{8} \mathrm{H}_{10}$ | 36 minutes 26.8 seconds | 1 hours 21 minutes 50.0 seconds |
| furan | $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}$ | 3 minutes 42.7 seconds | 14 minutes 8.0 seconds |
| furan-2-carbaldehyde | $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}_{2}$ | 10 minutes 48.0 seconds | 34 minutes 48.0 seconds |
| heptane | $\mathrm{C}_{7} \mathrm{H}_{16}$ | 8 minutes 50.3 seconds | 1 hours 27 minutes 2.0 seconds |
| hexadecane | $\mathrm{C}_{16} \mathrm{H}_{34}$ | 37 minutes 55.5 seconds | 11 hours 12 minutes 19.4 seconds |
| hexane | $\mathrm{C}_{6} \mathrm{H}_{14}$ | 5 minutes 35.7 seconds | 55 minutes 56.6 seconds |
| icosane | $\mathrm{C}_{20} \mathrm{H}_{42}$ | 1 hours 31 minutes 37.9 seconds | 20 hours 35 minutes 58.3 seconds |
| isopropyl hexadecanoate | $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{2}$ | 3 hours 7 minutes 15.9 seconds | 23 hours 34 minutes 31.2 seconds |
| methanamide | $\mathrm{CH}_{3} \mathrm{NO}$ | 48.0 seconds | 3 minutes 44.0 seconds |
| methanoic acid | $\mathrm{CH}_{2} \mathrm{O}_{2}$ | 1 minutes 24.0 seconds | 4 minutes 41.0 seconds |
| methanol | $\mathrm{CH}_{4} \mathrm{O}$ | 41.0 seconds | 2 minutes 24.0 seconds |
| methoxybenzene | $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$ | 22 minutes 22.9 seconds | 1 hours 3 minutes 37.2 seconds |
| methyl ( $Z$ )-octadec-9-eneoate | $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{2}$ | 2 hours 25 minutes 22.9 seconds | 7 hours 33 minutes 40.4 seconds |
| methyl acetate | $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$ | 20 minutes 23.0 seconds | 20 minutes 29.0 seconds |
| methyl benzoate | $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$ | 32 minutes 6.2 seconds | 1 hours 34 minutes 41.1 seconds |
| methylcyclohexane | $\mathrm{C}_{7} \mathrm{H}_{14}$ | 9 minutes 32.7 seconds | 1 hours 37 minutes 12.0 seconds |
| morpholine | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}$ | 3 minutes 48.0 seconds | 32 minutes 23.7 seconds |
| N,N-dimethylacetamide | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}$ | 1 hours 19 minutes 5.0 seconds | 1 hours 17 minutes 12.0 seconds |
| $\mathrm{N}, \mathrm{N}$-dimethylmethanamide | $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$ | 23 minutes 50.0 seconds | 24 minutes 6.0 seconds |
| naphthalene | $\mathrm{C}_{10} \mathrm{H}_{8}$ | 12 minutes 20.1 seconds | 1 hours 54 minutes 5.1 seconds |
| nitrobenzene | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ | 19 minutes 25.3 seconds | 1 hours 5 minutes 7.9 seconds |
| nitroethane | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}$ | 12 minutes 12.0 seconds | 15 minutes 38.7 seconds |
| nitromethane | $\mathrm{CH}_{3} \mathrm{NO}_{2}$ | 2 minutes 34.0 seconds | 6 minutes 47.0 seconds |


| IUPAC nomenclature | Molecular Formula | CPU TIMES |  |
| :---: | :---: | :---: | :---: |
|  |  | OPT | FREQ |
| nonane | $\mathrm{C}_{9} \mathrm{H}_{20}$ | 15 minutes 26.5 seconds | 2 hours 33 minutes 35.7 seconds |
| N-propylpropanamine | $\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}$ | 9 minutes 49.7 seconds | 1 hours 16 minutes 29.8 seconds |
| octadecanoic acid | $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}$ | 1 hours 55 minutes 15.0 seconds | 5 hours 54 minutes 19.1 seconds |
| octane | $\mathrm{C}_{8} \mathrm{H}_{18}$ | 13 minutes 24.1 seconds | 1 hours 49 minutes 23.9 seconds |
| octanoic acid | $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$ | 22 minutes 16.4 seconds | 2 hours 14 minutes 18.3 seconds |
| oxacyclopentane | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ | 18 minutes 46.6 seconds | 25 minutes 52.6 seconds |
| oxidane (water) | $\mathrm{H}_{2} \mathrm{O}$ | 13.0 seconds | 29.0 seconds |
| pentan-3-one | $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ | 1 hours 40 minutes 22.0 seconds | 1 hours 20 minutes 11.0 seconds |
| pentane | $\mathrm{C}_{5} \mathrm{H}_{12}$ | 4 minutes 12.0 seconds | 36 minutes 28.9 seconds |
| phenol | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$ | 8 minutes 36.2 seconds | 39 minutes 41.0 seconds |
| phenyl ethanoate | $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$ | 43 minutes 35.3 seconds | 1 hours 40 minutes 33.5 seconds |
| phenylethene | $\mathrm{C}_{8} \mathrm{H}_{8}$ | 1 hours 23 minutes 30.6 seconds | 1 hours 8 minutes 19.9 seconds |
| phenylmethanol | $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$ | 23 minutes 42.1 seconds | 1 hours 3 minutes 42.4 seconds |
| phenylmethoxymethylbenzene | $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}$ | 2 hours 49 minutes 2.5 seconds | 6 hours 24 minutes 36.6 seconds |
| p-nonylphenoxyethanol | $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}$ | 4 hours 12 minutes 51.4 seconds | 5 hours 54 minutes 45.4 seconds |
| propanenitrile | $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}$ | 1 minutes 27.0 seconds | 9 minutes 37.0 seconds |
| propanone | $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ | 8 minutes 12.0 seconds | 19 minutes 29.0 seconds |
| propenonitrile | $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$ | 1 minutes 8.0 seconds | 5 minutes 13.0 seconds |
| propylamine | $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$ | 10 minutes 19.0 seconds | 32 minutes 1.0 seconds |
| pyridine | $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ | 2 minutes 20.1 seconds | 22 minutes 49.7 seconds |
| quinoline | $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$ | 14 minutes 25.0 seconds | 2 hours 0 minutes 16.0 seconds |
| tetrachloroethene | $\mathrm{C}_{2} \mathrm{Cl}_{4}$ | 1 minutes 3.8 seconds | 6 minutes 56.2 seconds |
| tetrachloromethane | $\mathrm{CCl}_{4}$ | 38.0 seconds | 5 minutes 24.0 seconds |
| tetranitrodibenzo-1,3a,4,6atetrazapentalene | $\mathrm{C}_{12} \mathrm{H}_{4} \mathrm{~N}_{8} \mathrm{O}_{8}$ | 13 hours 53 minutes 46.5 seconds | 1 days 10 hours 22 minutes 52.3 seconds |


| IUPAC nomenclature | Molecular Formula | CPU TIMES |  |
| :--- | :---: | :---: | :---: |
|  |  |  | OPT |
| toluene | $\mathrm{C}_{7} \mathrm{H}_{8}$ | 4 minutes 57.6 seconds | 49 minutes 23.1 seconds |
| trans-bicyclo[4.4.0]decane | $\mathrm{C}_{10} \mathrm{H}_{18}$ | 31 minutes 42.0 seconds | 4 hours 24 minutes 0.9 seconds |
| tribromomethane | $\mathrm{CHBr}_{4}$ | 1 minutes 9.0 seconds | 14 minutes 49.0 seconds |
| trichloroethene | $\mathrm{C}_{2} \mathrm{HCl}_{3}$ | 1 minutes 38.2 seconds | 8 minutes 31.0 seconds |
| trichlorofluoromethane | $\mathrm{CCl}_{3} \mathrm{~F}$ | 54.5 seconds | 6 minutes 49.9 seconds |
| trichloromethane | $\mathrm{CHCl}_{3}$ | 33.0 seconds | 4 minutes 3.0 seconds |
| triethyl phosphate | $\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{P}$ | 2 hours 1 minutes 28.0 seconds | 3 hours 38 minutes 44.2 seconds |
| trimethyl phosphate | $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{P}$ | 50 minutes 47.0 seconds | 1 hours 23 minutes 40.0 seconds |
| trinitromethane | $\mathrm{CHN}_{3} \mathrm{O}_{6}$ | 1 hours 21 minutes 2.3 seconds | 58 minutes 22.7 seconds |

## Appendix B: Training Set and Structure Variables for Species Used in QSAR1 and QSAR2

It should be noted that the molar volume, $V_{m}$, in this table is not the literature molar volume but rather a calculated molar volume from the regression in Table 2. The HSPs shown here are the literature values obtained from reference 4.

| IUPAC Nomenclature | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $V_{m} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$ | $\mu$ / Debye | $d /$ charge | I/ hartrees | $\alpha / \AA^{3}$ | $e_{s e} / \AA^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| dimethyl sulfoxide | 18.4 | 16.4 | 10.2 | 77.54 | 3.9039 | 0.67692 | -0.2224 | 74.49 | 370.1573 |
| methanamide | 17.2 | 26.2 | 19 | 42.49 | 3.8323 | 1.08579 | -0.25475 | 24.19 | 146.0894 |
| acetonitrile | 15.3 | 18 | 6.1 | 46.34 | 3.6498 | 0.42166 | -0.3254 | 42.05 | 161.6442 |
| 1-methyl-2-pyrrolidone | 18 | 12.3 | 7.2 | 101.42 | 3.7702 | 0.51374 | -0.23342 | 103.99 | 728.9479 |
| acetophenone | 19.6 | 8.6 | 3.7 | 123.32 | 3.0018 | 0.40187 | -0.24707 | 150.97 | 1237.2127 |
| propanone | 15.5 | 10.4 | 7 | 70.59 | 2.8181 | 0.36802 | -0.24419 | 59.37 | 293.9463 |
| oxidane (water) | 15.5 | 16 | 42.3 | 28.29 | 2.069 | 1.32999 | -0.2915 | 9.60 | 19.2 |
| chloromethane | 15.3 | 6.1 | 3.9 | 52.46 | 1.949 | 0.07602 | -0.296 | 36.23 | 132.456 |
| chlorobenzene | 19 | 4.3 | 2 | 105.19 | 1.9341 | 0.03369 | -0.24641 | 125.51 | 902.6719 |
| trichloromethane | 17.8 | 3.1 | 5.7 | 77.85 | 1.4013 | 0.08146 | -0.31604 | 70.95 | 640.633 |
| tribromomethane | 21.4 | 4.1 | 6.1 | 85.56 | 1.1504 | 0.08599 | -0.28099 | 107.73 | 1444.191 |
| 1,1,2,2-tetrabromoethane | 22.6 | 5.1 | 8.2 | 117.46 | 0.5458 | 0.09293 | -0.26844 | 160.51 | 2977.2654 |
| 2,2,4-trimethylpentane | 14.1 | 0 | 0 | 156.23 | 0.4661 | 0.02262 | -0.29376 | 148.47 | 1308.9261 |
| methylcyclohexane | 16 | 0 | 1 | 131.97 | 0.2641 | 0.02137 | -0.28818 | 125.13 | 863.6494 |
| 2-methylbutane | 13.7 | 0 | 0 | 106.31 | 0.1932 | 0.02200 | -0.30895 | 94.29 | 566.9052 |
| heptane | 15.3 | 0 | 0 | 139.59 | 0.3282 | 0.02191 | -0.29942 | 134.31 | 1711.535 |
| nonane | 15.7 | 0 | 0 | 172.86 | 0.4117 | 0.02190 | -0.29265 | 173.69 | 3382.7661 |
| benzene | 18.4 | 0 | 2 | 92.49 | 0.1008 | 0.01652 | -0.24629 | 102.94 | 458.2225 |
| butane | 14.1 | 0 | 0 | 89.68 | 0.19161 | 0.02196 | -0.31762 | 76.70 | 427.376 |
| 1,3-dioxolan-2-one | 19.4 | 21.7 | 5.1 | 73.31 | 5.2751 | 0.40194 | -0.29404 | 65.56 | 460.0791 |


| IUPAC Nomenclature | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $V_{m} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$ | $\mu /$ Debye | $d /$ charge | I / hartrees | $\alpha / \AA^{3}$ | $e_{s e} / \AA^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| dimethyl sulfone | 19 | 19.4 | 12.3 | 82.71 | 4.6138 | 0.57782 | -0.28943 | 75.81 | 578.567 |
| nitromethane | 15.8 | 18.8 | 5.1 | 47.66 | 3.4781 | 0.34652 | -0.29485 | 44.51 | 229.3976 |
| 4-methyl-1,3-dioxolan-2-one | 20 | 18 | 4.1 | 89.95 | 5.4801 | 0.41627 | -0.29061 | 84.07 | 704.7619 |
| 2-pyrrolidone | 19.4 | 17.4 | 11.3 | 84.79 | 3.9274 | 0.83285 | -0.23716 | 84.00 | 523.3845 |
| propenonitrile | 16 | 12.8 | 6.8 | 55.37 | 3.8834 | 0.42204 | -0.28922 | 63.42 | 279.9072 |
| butano-4-lactone | 19 | 16.6 | 7.4 | 84.78 | 4.5015 | 0.41496 | -0.26518 | 76.91 | 508.4396 |
| trimethyl phosphate | 16.7 | 15.9 | 10.2 | 124.59 | 3.3849 | 0.54809 | -0.28222 | 105.71 | 1114.4989 |
| 2-aminoethanol | 17 | 15.5 | 21.2 | 66.74 | 2.782 | 1.20894 | -0.23398 | 57.56 | 361.9713 |
| nitroethane | 16 | 15.5 | 4.5 | 64.29 | 3.5934 | 0.33403 | -0.29217 | 62.35 | 408.5659 |
| furan-2-carbaldehyde | 18.6 | 14.9 | 5.1 | 86.19 | 4.1695 | 0.34118 | -0.24961 | 104.11 | 682.1196 |
| diethyl sulfate | 15.7 | 14.7 | 7.1 | 126.32 | 3.3649 | 0.53108 | -0.29567 | 126.40 | 1622.4417 |
| propanenitrile | 15.3 | 14.3 | 5.5 | 62.98 | 3.901 | 0.44767 | -0.32166 | 60.09 | 501.1152 |
| N,N-dimethylmethanamide | 17.4 | 13.7 | 11.3 | 75.76 | 3.832 | 0.45114 | -0.24218 | 75.06 | 443.7825 |
| bis(2-aminoethyl)amine | 16.7 | 13.3 | 14.3 | 105.19 | 3.1558 | 1.04491 | -0.21416 | 115.93 | 1548.8059 |
| butanenitrile | 15.3 | 12.4 | 5.1 | 79.62 | 4.0439 | 0.44996 | -0.31886 | 79.41 | 587.8475 |
| methanol | 15.1 | 12.3 | 22.3 | 44.93 | 1.6952 | 0.99137 | -0.26454 | 27.31 | 84.0942 |
| 2-nitropropane | 16.2 | 12.1 | 4.1 | 80.93 | 3.6826 | 0.32963 | -0.28935 | 79.06 | 563.2793 |
| methanoic acid | 14.3 | 11.9 | 16.6 | 42.48 | 3.8701 | 0.85316 | -0.28742 | 31.00 | 134.5035 |
| N,N-dimethylacetamide | 16.8 | 11.5 | 10.2 | 92.40 | 3.6641 | 0.51174 | -0.2338 | 92.49 | 624.6825 |
| triethyl phosphate | 16.7 | 11.4 | 9.2 | 162.21 | 3.0161 | 0.57835 | -0.27294 | 163.14 | 2272.9746 |
| benzyl n-butyl phthalate | 19 | 11.3 | 3.1 | 283.76 | 2.438 | 0.41915 | -0.24442 | 370.07 | 12438.84 |
| dimethyl phthalate | 18.6 | 10.8 | 4.9 | 164.48 | 0.4036 | 0.44132 | -0.26017 | 204.50 | 2675.9393 |
| chloromethyloxirane | 18.9 | 7.6 | 6.6 | 83.29 | 3.4054 | 0.39048 | -0.27989 | 76.98 | 615.8262 |
| $p$-nonylphenoxyethanol | 16.7 | 10.2 | 8.4 | 285.84 | 1.6643 | 0.99161 | -0.20583 | 344.54 | 16330.2258 |
| diethyl phthalate | 17.6 | 9.6 | 4.5 | 197.76 | 0.9481 | 0.46125 | -0.25758 | 242.08 | 3681.8645 |
| 2-(2-ethoxyethoxy)ethanol | 16.1 | 9.2 | 12.2 | 138.45 | 1.5532 | 1.03811 | -0.25044 | 137.23 | 2860.1985 |
| 2-ethoxyethanol | 16.2 | 9.2 | 14.3 | 100.01 | 0.545 | 1.03825 | -0.25097 | 90.68 | 967.167 |


| IUPAC Nomenclature | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $V_{m} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$ | $\mu / \mathrm{Debye}$ | $d / \mathrm{charge}$ | $I / \mathrm{hartrees}$ | $\alpha / \AA^{3}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2-methoxyethanol | 16.2 | 9.2 | 16.4 | 83.37 | 1.4663 | 0.99445 | -0.24792 | 71.56 |
| bis(2-chloroethyl) ether | 18.8 | 9 | 5.7 | 120.23 | 0.7171 | 0.48550 | -0.27964 | 120.79 |
| benzonitrile | 17.4 | 9 | 3.3 | 99.07 | 4.5624 | 0.40567 | -0.26682 | 136.69 |
| butanone | 16 | 9 | 5.1 | 87.23 | 2.6959 | 0.37638 | -0.24346 | 77.27 |
| pyridine | 19 | 8.8 | 5.9 | 81.03 | 2.1944 | 0.30260 | -0.25258 | 94.79 |
| 1,2-diaminoethane | 16.6 | 8.8 | 17 | 66.75 | 2.202 | 1.08711 | -0.21719 | 63.51 |
| ethanol | 15.8 | 8.8 | 19.4 | 61.57 | 1.5675 | 1.00501 | -0.26155 | 45.92 |
| nitrobenzene | 20 | 8.6 | 4.1 | 100.39 | 4.5827 | 0.33397 | -0.279 | 135.48 |
| dibutyl phthalate | 17.8 | 8.6 | 4.1 | 264.31 | 0.9529 | 0.44888 | -0.25855 | 324.15 |
| benzene-1,3-diol | 18 | 8.4 | 21 | 102.83 | 1.3612 | 1.11131 | -0.2123 | 120.84 |
| bis(2-chloroisopropyl) ether | 19 | 8.2 | 5.1 | 153.51 | 1.2998 | 0.48666 | -0.26999 | 155.17 |
| ethyl 3-phenyl-2-propenonate | 18.4 | 8.2 | 4.1 | 170.79 | 2.7836 | 0.46830 | -0.23434 | 251.92 |
| 1,1,3,3-tetramethylurea | 16.7 | 8.2 | 11 | 114.21 | 3.2205 | 0.52622 | -0.22601 | 123.52 |
| 1,1-dichloroethane | 16.5 | 7.8 | 3 | 81.79 | 2.2841 | 0.07753 | -0.30404 | 72.673 |
| 3,5,5-trimethylcyclohex-2-en-1-one | 16.6 | 8.2 | 7.4 | 155.19 | 4.072 | 0.42893 | -0.23097 | 166.04 |
| 4-hydroxy-4-methylpentan-2-one | 15.8 | 8.2 | 10.8 | 125.67 | 2.8396 | 1.07093 | -0.23606 | 119.26 |
| acetaldehyde | 14.7 | 12.5 | 7.9 | 53.95 | 2.6425 | 0.30970 | -0.25523 | 42.06 |
| acetic acid | 14.5 | 8 | 13.5 | 59.12 | 1.5812 | 0.93049 | -0.27543 | 46.86 |
| 2-(2-Methoxyethoxy)ethanol | 16.2 | 7.8 | 12.6 | 121.81 | 1.6649 | 1.03810 | -0.25178 | 117.32 |
| 1-chloropropane | 16 | 7.8 | 2 | 85.73 | 2.3735 | 0.08826 | -0.29042 | 75.15 |
| 2-furanmethanol | 17.4 | 7.6 | 15.1 | 93.80 | 1.7212 | 1.00213 | -0.22533 | 95.91 |
| ethyl 2-hydroxypropanoate | 16 | 7.6 | 12.5 | 114.20 | 1.5138 | 1.00959 | -0.26651 | 109.89 |
| pentan-3-one | 15.8 | 7.6 | 4.7 | 103.87 | 2.5777 | 0.37323 | -0.24248 | 95.59 |
| benzaldehyde | 19.4 | 7.4 | 5.3 | 106.68 | 3.3048 | 0.32526 | -0.25518 | 134.40 |
| 1,2-dichloroethane | 19 | 7.4 | 4.1 | 81.79 | 0.1412 | 0.08824 | -0.30678 | 76.17 |
| (chloromethyl)benzene | 18.8 | 7.1 | 2.6 | 121.83 | 2.5685 | 0.09727 | -0.25308 | 142.25 |
| ethyl methanoate | 15.5 | 8.4 | 8.4 | 75.76 | 4.2487 | 0.38306 | -0.27789 | 86.81 |


| IUPAC Nomenclature | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $V_{m} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$ | $\mu /$ Debye | $d /$ charge | I / hartrees | $\alpha / \AA^{3}$ | $e_{s e} / \AA^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| methyl acetate | 15.5 | 7.2 | 7.6 | 75.76 | 1.7847 | 0.42947 | -0.26949 | 65.42 | 429.5196 |
| quinoline | 19.8 | 5.6 | 5.7 | 124.73 | 2.0254 | 0.40808 | -0.23118 | 183.70 | 1250.647 |
| benzoic acid | 18.2 | 6.9 | 9.8 | 111.85 | 1.9228 | 0.99022 | -0.26037 | 138.69 | 1178.2062 |
| dioctyl phthalate | 16.6 | 7 | 3.1 | 397.41 | 1.3629 | 0.43678 | -0.25404 | 469.21 | 25664.5047 |
| 2-(2-butoxyethoxy)ethanol | 16 | 7 | 10.6 | 171.73 | 1.5497 | 1.03815 | -0.24994 | 176.45 | 5157.8992 |
| 1,2-dibromoethane | 19.2 | 3.5 | 8.6 | 86.93 | 0.1908 | 0.12196 | -0.28216 | 104.41 | 1538.7058 |
| 1,1-dichloroethene | 16.4 | 5.2 | 2.4 | 74.18 | 1.5158 | 0.03457 | -0.26627 | 73.36 | 487.9885 |
| 1-propanol | 16 | 6.8 | 17.4 | 78.21 | 1.4974 | 1.01769 | -0.26149 | 64.18 | 383.7464 |
| tetrachloroethene | 18.3 | 5.7 | 0 | 99.57 | 0.1335 | 0.00000 | -0.26166 | 114.90 | 1295.0247 |
| butyl (2R)-hydroxypropanoate | 15.8 | 6.5 | 10.2 | 147.47 | 3.2554 | 0.99160 | -0.26375 | 148.44 | 2676.08 |
| 1,2-dichlorobenzene | 19.2 | 6.3 | 3.3 | 117.88 | 2.7892 | 0.02653 | -0.2516 | 145.96 | 1298.2544 |
| phenylmethanol | 18.4 | 6.3 | 13.7 | 114.30 | 1.771 | 1.02738 | -0.23467 | 131.47 | 993.644 |
| dichloromethane | 18.2 | 6.3 | 6.1 | 65.16 | 1.9757 | 0.07448 | -0.30952 | 53.71 | 379.8284 |
| cyclohexanone | 17.8 | 6.3 | 5.1 | 112.89 | 3.1674 | 0.37200 | -0.23433 | 107.68 | 750.0492 |
| chlorodifluoromethane | 12.3 | 6.3 | 5.7 | 73.53 | 1.479 | 0.17318 | -0.33357 | 38.70 | 327.3132 |
| 4-methylpent-3-en-2-one | 16.4 | 6.1 | 6.1 | 112.89 | 2.8532 | 0.46562 | -0.2351 | 123.65 | 961.7145 |
| 2-propanol | 15.8 | 6.1 | 16.4 | 78.21 | 1.6521 | 1.01999 | -0.26038 | 63.92 | 319.1177 |
| bis(2-methoxyethyl) ether | 15.7 | 6.1 | 6.5 | 138.45 | 1.2988 | 0.42377 | -0.25108 | 138.15 | 2856.6365 |
| 4-methylpentan-2-one | 15.3 | 6.1 | 4.1 | 120.50 | 2.6897 | 0.39080 | -0.24353 | 113.66 | 1004.7263 |
| phenol | 18 | 5.9 | 14.9 | 97.66 | 1.3592 | 1.10033 | -0.21895 | 112.15 | 668.2477 |
| 1,1-dimethylhydrazine | 15.3 | 5.9 | 11 | 66.75 | 0.4663 | 0.76471 | -0.18899 | 65.66 | 305.9881 |
| 3-chloropropan-1-ol | 17.5 | 5.7 | 14.7 | 90.90 | 3.4058 | 1.01784 | -0.2755 | 81.48 | 868.457 |
| bromochloromethane | 17.3 | 5.7 | 3.5 | 67.72 | 1.7051 | 0.10176 | -0.28962 | 65.29 | 534.6537 |
| oxacyclopentane | 16.8 | 5.7 | 8 | 87.23 | 1.8 | 0.42105 | -0.23738 | 75.71 | 383.6015 |
| butan-1-ol | 16 | 5.7 | 15.8 | 94.84 | 1.5369 | 1.01956 | -0.26112 | 83.03 | 670.7109 |
| 5-methylhexan-2-one | 16 | 5.7 | 4.1 | 137.14 | 2.7532 | 0.38105 | -0.24265 | 133.21 | 1555.7554 |
| 2-butanol | 15.8 | 5.7 | 14.5 | 94.84 | 1.6465 | 1.03182 | -0.26083 | 82.33 | 523.2595 |


| IUPAC Nomenclature | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $V_{m} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$ | $\mu /$ Debye | $d /$ charge | I / hartrees | $\alpha / \AA^{3}$ | $e_{s e} / \AA^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2-methyl-1-propanol | 15.1 | 5.7 | 15.9 | 94.84 | 1.5815 | 1.03451 | -0.26193 | 81.91 | 517.6949 |
| bromobenzene | 20.5 | 5.5 | 4.1 | 107.76 | 1.8295 | 0.08339 | -0.24192 | 138.59 | 1232.1253 |
| chlorocyclohexane | 17.3 | 5.5 | 2 | 128.03 | 2.7097 | 0.08783 | -0.28319 | 124.91 | 1071.859 |
| 1-chlorobutane | 16.2 | 5.5 | 2 | 102.37 | 2.458 | 0.08803 | -0.28891 | 94.35 | 926.8829 |
| ethyl ethanoate | 15.8 | 5.3 | 7.2 | 92.40 | 1.9702 | 0.43149 | -0.26663 | 84.83 | 721.9179 |
| butanal | 15.6 | 10.1 | 6.2 | 87.23 | 2.5092 | 0.30160 | -0.25243 | 78.07 | 555.9574 |
| aniline | 19.4 | 5.1 | 10.2 | 97.67 | 1.7965 | 1.23558 | -0.19822 | 121.52 | 686.297 |
| 1,1,2,2-tetrachloroethane | 18.8 | 5.1 | 5.3 | 107.18 | 0.3791 | 0.06919 | -0.30651 | 109.35 | 1346.8991 |
| 3-methylphenol | 18 | 5.1 | 12.9 | 114.30 | 1.6351 | 1.10451 | -0.21553 | 133.02 | 975.2173 |
| 2-butoxyethanol | 16 | 5.1 | 12.3 | 133.29 | 0.6047 | 1.03831 | -0.25035 | 129.25 | 2176.4616 |
| morpholine | 18.8 | 4.9 | 9.2 | 92.40 | 1.2747 | 0.66534 | -0.20987 | 88.87 | 521.3311 |
| propylamine | 16.9 | 4.9 | 8.6 | 78.21 | 1.4973 | 1.03018 | -0.22869 | 70.19 | 406.7962 |
| 2-octanol | 16.1 | 4.9 | 11 | 161.39 | 1.3567 | 1.02319 | -0.2604 | 159.54 | 2815.0888 |
| 2-ethoxyethyl acetate | 15.9 | 4.7 | 10.6 | 130.84 | 2.927 | 0.44416 | -0.25979 | 131.78 | 2332.475 |
| butylamine | 16.2 | 4.5 | 8 | 94.85 | 1.5503 | 1.03062 | -0.2285 | 89.07 | 699.8184 |
| 1-pentanol | 15.9 | 5.9 | 13.9 | 111.48 | 1.4852 | 1.01935 | -0.26096 | 102.12 | 1083.4185 |
| dibutyl sebacate | 16.7 | 4.5 | 4.1 | 328.04 | 2.8204 | 0.42978 | -0.26062 | 365.74 | 28826.8796 |
| 1,1,1-trichloroethane | 16.8 | 4.3 | 2 | 94.49 | 2.2001 | 0.04038 | -0.30879 | 89.39 | 788.7227 |
| 2-ethylbutan-1-ol | 15.8 | 4.3 | 13.5 | 128.12 | 1.7786 | 1.02603 | -0.25908 | 118.93 | 1046.2036 |
| methoxybenzene | 17.8 | 4.1 | 6.7 | 114.30 | 1.3189 | 0.45598 | -0.21515 | 133.72 | 968.5391 |
| cyclohexanol | 17.4 | 4.1 | 13.5 | 120.50 | 1.7069 | 1.04430 | -0.25673 | 112.40 | 812.2139 |
| butanoic acid | 14.9 | 4.1 | 10.6 | 92.40 | 1.4073 | 0.95585 | -0.27428 | 83.49 | 765.1659 |
| methyl ( $Z$ )-octadec-9-eneoate | 14.5 | 3.9 | 3.7 | 334.34 | 1.3201 | 0.42230 | -0.23297 | 380.90 | 28033.2811 |
| isopropyl hexadecanoate | 14.3 | 3.9 | 3.7 | 341.96 | 2.0062 | 0.43627 | -0.26455 | 381.77 | 32237.0589 |
| phenylmethoxymethylbenzene | 19.6 | 3.4 | 5.2 | 200.30 | 1.1557 | 0.40164 | -0.2369 | 257.15 | 4978.6927 |
| 2,6-dimethylheptan-4-one | 16 | 3.7 | 4.1 | 170.42 | 2.2737 | 0.38363 | -0.23651 | 169.49 | 2235.4482 |
| butyl ethanoate | 15.8 | 3.7 | 6.3 | 125.67 | 2.0483 | 0.43158 | -0.26574 | 123.46 | 1743.5659 |


| IUPAC Nomenclature | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $V_{m} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$ | $\mu / \mathrm{Debye}$ | $d / \mathrm{charge}$ | $I / \mathrm{hartrees}$ | $\alpha / \AA^{3}$ | $e_{s e} / \AA^{2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2-methylpropyl ethanoate | 15.1 | 3.7 | 6.3 | 125.67 | 1.9516 | 0.42326 | -0.26628 | 121.74 | 1393.7146 |
| 1-octanol | 16 | 5 | 11.9 | 161.39 | 1.5551 | 1.01945 | -0.26079 | 160.78 | 3293.7601 |
| octadecanoic acid | 16.3 | 3.3 | 5.5 | 325.32 | 1.5659 | 0.95712 | -0.27332 | 361.67 | 30623.4809 |
| 2-ethylhexan-1-ol | 15.9 | 3.3 | 11.8 | 161.39 | 1.7378 | 1.03216 | -0.262 | 156.91 | 2104.4596 |
| 1,3-dimethylbutan-1-ol | 15.4 | 3.3 | 12.3 | 128.12 | 1.3061 | 1.01922 | -0.26027 | 119.26 | 1059.2858 |
| octanoic acid | 15.1 | 3.3 | 8.2 | 158.95 | 1.4119 | 0.95716 | -0.27355 | 161.21 | 3652.5321 |
| 1-bromonaphthalene | 20.3 | 3.1 | 4.1 | 151.46 | 1.7671 | 0.08192 | -0.21831 | 223.76 | 2372.4633 |
| 1-(phenoxy)-3-[3- | 19.6 | 3.1 | 5.1 | 316.10 | 2.1784 | 0.55931 | -0.21212 | 464.85 | 16220.7806 |
| (phenoxy)phenoxy]benzene |  |  |  |  |  |  |  |  |  |
| trichloroethene | 18 | 3.1 | 5.3 | 86.87 | 0.9553 | 0.04879 | -0.2613 | 95.26 |  |
| cyclohexanamine | 17.2 | 3.1 | 6.5 | 120.51 | 1.5626 | 1.04310 | -0.22877 | 118.95 | 831.9411 |
| 1,1-thiobisethane | 16.8 | 3.1 | 2 | 105.65 | 1.7067 | 0.02931 | -0.2132 | 108.00 | 815.0563 |
| diethyl carbonate | 15.1 | 6.3 | 3.5 | 114.20 | 0.7399 | 0.44051 | -0.27952 | 112.00 | 1475.1898 |
| dichlorofluoromethane | 15.8 | 3.1 | 5.7 | 75.69 | 1.4058 | 0.20306 | -0.32221 | 55.53 | 475.9884 |
| 1-bromoethane | 16.5 | 8.4 | 2.3 | 71.67 | 2.1801 | 0.12406 | -0.26808 | 67.70 | 381.4604 |
| 3-methylbutyl ethanoate | 15.3 | 3.1 | 7 | 142.31 | 2.1002 | 0.43681 | -0.26587 | 141.35 | 2088.6388 |
| 1-tridecanol | 16.2 | 3.1 | 9 | 244.58 | 1.5649 | 1.01939 | -0.26073 | 260.55 | 11647.8941 |
| (Z)-octadec-9-enoic acid | 16 | 2.8 | 6.2 | 317.71 | 1.1631 | 0.96787 | -0.23358 | 359.93 | 24466.5116 |
| 3,6,9-trioxa-(18Z)-heptacosan-1ol | 16 | 3.1 | 8.4 | 435.48 | 1.5969 | 1.05058 | -0.23338 | 501.45 | 69935.0318 |
| 2-methylpropyl 2-methylpropanote | 15.1 | 2.9 | 5.9 | 158.95 | 2.0351 | 0.42379 | -0.26296 | 158.74 | 2275.4177 |
| ethoxyethane | 14.5 | 2.9 | 5.1 | 94.84 | 1.0476 | 0.40007 | -0.2481 | 84.78 | 632.4849 |
| 1-decanol | 16 | 4.7 | 10 | 194.67 | 1.5757 | 1.01943 | -0.26075 | 200.50 | 5817.3318 |
| (Z)-octadec-9-en-1-ol | 14.3 | 2.6 | 8 | 320.15 | 0.9059 | 1.00871 | -0.23275 | 360.03 | 22639.5358 |
| bromotrifluoromethane | 9.6 | 2.4 | 0 | 86.64 | 0.302 | 0.04973 | -0.31233 | 50.51 | 566.3108 |
| diethylamine | 14.9 | 2.3 | 6.1 | 94.85 | 1.1037 | 0.69586 | -0.21477 | 90.72 | 671.9246 |
| trichlorofluoromethane | 15.3 | 2 | 0 | 88.39 | 0.0292 | 0.03571 | -0.32523 | 72.38 | 731.3448 |
| 1,2,3,4-tetrahydronaphthalene | 19.6 | 2 | 2.9 | 151.43 | 0.0189 | 0.02160 | -0.22574 | 175.67 | 1442.0464 |
|  |  |  |  |  |  |  |  |  |  |


| IUPAC Nomenclature | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $V_{m} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$ | $\mu$ / Debye | $d /$ charge | $I /$ hartrees | $\alpha / \AA^{3}$ | $e_{s e} / \AA^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| naphthalene | 19.2 | 2 | 5.9 | 136.20 | 0.1569 | 0.01678 | -0.21269 | 192.01 | 1291.6749 |
| dichlorodifluoromethane | 12.3 | 2 | 0 | 86.23 | 0.0558 | 0.03989 | -0.3337 | 56.16 | 565.771 |
| 1,4-dioxacyclohexane | 19 | 1.8 | 7.4 | 92.40 | 0.2076 | 0.38459 | -0.23558 | 82.93 | 500.4187 |
| furan | 17.8 | 1.8 | 5.3 | 72.00 | 0.6375 | 0.30119 | -0.22446 | 68.61 | 290.1752 |
| 1,2-dichlorotetrafluoroethane | 12.6 | 1.8 | 0 | 123.94 | 0.1579 | 0.05151 | -0.34256 | 79.01 | 1126.1404 |
| 1,1,2-trichlorotrifluoroethane | 14.7 | 1.6 | 0 | 126.10 | 0.1102 | 0.05083 | -0.33527 | 89.53 | 1299.3857 |
| toluene | 18 | 1.4 | 2 | 109.13 | 0.3678 | 0.03020 | -0.23531 | 124.24 | 719.366 |
| N-propylpropanamine | 15.3 | 1.4 | 4.1 | 128.12 | 1.1378 | 0.72676 | -0.21415 | 129.16 | 1625.3211 |
| biphenyl | 19.7 | 1 | 2 | 161.86 | 0.2435 | 0.01853 | -0.22221 | 230.47 | 2312.2183 |
| phenylethene | 18.6 | 1 | 4.1 | 118.15 | 0.2317 | 0.02084 | -0.22167 | 157.89 | 991.3716 |
| 1,2-dimethylbenzene | 17.8 | 1 | 3.1 | 125.77 | 0.5785 | 0.02742 | -0.22949 | 144.31 | 954.6567 |
| 1-methylnaphthalene | 20.6 | 0.8 | 4.7 | 152.84 | 0.3578 | 0.02887 | -0.20851 | 210.91 | 1613.8337 |
| ethylbenzene | 17.8 | 0.6 | 1.4 | 125.77 | 0.3087 | 0.02389 | -0.23582 | 142.75 | 1043.6853 |
| carbon disulfide | 20.5 | 0 | 0.6 | 56.49 | 0.4104 | 0.00000 | -0.27779 | 90.13 | 347.3342 |
| cis-bicyclo[4.4.0]decane | 18.8 | 0 | 0 | 174.27 | 0.4323 | 0.01743 | -0.27573 | 172.53 | 1518.8489 |
| 1,3,5-trimethylbenzene | 18 | 0 | 0.6 | 142.41 | 0.3562 | 0.02950 | -0.22718 | 167.05 | 1372.873 |
| trans-bicyclo[4.4.0]decane | 18 | 0 | 0 | 174.27 | 0.4164 | 0.01920 | -0.2742 | 173.57 | 1627.2903 |
| tetrachloromethane | 17.8 | 0 | 0.6 | 90.55 | 0.2421 | 0.00000 | -0.32352 | 87.29 | 902.2646 |
| cyclohexane | 16.8 | 0 | 0.2 | 115.34 | 0.2712 | 0.01821 | -0.29179 | 106.26 | 595.2914 |
| icosane | 16.5 | 0 | 0 | 355.88 | 0.8702 | 0.02189 | -0.27977 | 394.46 | 33190.4532 |
| hexadecane | 16.3 | 0 | 0 | 289.33 | 0.7024 | 0.02189 | -0.28223 | 313.79 | 17325.9855 |
| dodecane | 16 | 0 | 0 | 222.78 | 0.5344 | 0.02189 | -0.28661 | 233.46 | 7582.0399 |
| decane | 15.7 | 0 | 0 | 189.50 | 0.4502 | 0.02190 | -0.29023 | 192.60 | 4533.6833 |
| octane | 15.5 | 0 | 0 | 156.23 | 0.3659 | 0.02190 | -0.29566 | 153.95 | 2451.2248 |
| hexane | 14.9 | 0 | 0 | 122.95 | 0.2814 | 0.02192 | -0.3044 | 114.90 | 1145.3461 |
| pentane | 14.5 | 0 | 0 | 106.31 | 0.245 | 0.02195 | -0.31087 | 95.63 | 722.8208 |


| IUPAC Nomenclature | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $V_{m} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$ | $\mu /$ Debye | $d /$ charge | $I /$ hartrees | $\alpha / \AA^{3}$ | $e_{s e} / \AA^{2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-trifluoromethyl- | 12.4 | 0 | 0 | 131.97 | 0.4479 | 0.08976 | -0.35625 | 127.27 | 4052.2529 |
| $1,2,2,3,3,4,4,5,5,6,6-$ |  |  |  |  |  |  |  |  |  |
| unedecafluorocyclohexane | 18.9 | 8.2 | 4.7 | 128.49 | 1.8755 | 0.44843 | -0.25706 | 159.95 | 1623.5705 |
| methyl benzoate | 19.8 | 5.2 | 6.4 | 128.49 | 4.4985 | 0.48931 | -0.25093 | 151.31 | 1451.8616 |

## Appendix C: Training Set and Structure Variables for Species Used in QSAR3

It should be noted that the molar volume, $V_{m}$, in this table is not the literature molar volume but rather a calculated molar volume from the regression in Table 3. The HSPs shown here are the literature values obtained from reference 4.

| IUPAC <br> Nomenclature | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\# C$ | \#H | $\# N$ | \#O | \#S | $\# C l$ | $\# B r$ | $V_{m} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$ | $\mu /$ Debye | $d /$ charge | $I /$ hartrees | $\alpha / \AA^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| dimethyl sulfoxide | 18.4 | 16.4 | 10.2 | 2 | 6 | 0 | 1 | 1 | 0 | 0 | 77.5441 | 3.9039 | 0.67692 | -0.2224 | 74.4905 |
| acetonitrile | 15.3 | 18 | 6.1 | 2 | 3 | 1 | 0 | 0 | 0 | 0 | 46.3449 | 3.6498 | 0.42166 | -0.3254 | 42.047 |
| 1-methyl-2pyrrolidone | 18 | 12.3 | 7.2 | 5 | 9 | 1 | 1 | 0 | 0 | 0 | 101.424 | 3.7702 | 0.51374 | -0.2334 | 103.989 |
| acetophenone | 19.6 | 8.6 | 3.7 | 8 | 8 | 0 | 1 | 0 | 0 | 0 | 123.321 | 3.0018 | 0.40187 | -0.2471 | 150.972 |
| propanone | 15.5 | 10.4 | 7 | 3 | 6 | 0 | 1 | 0 | 0 | 0 | 70.5913 | 2.8181 | 0.36802 | -0.2442 | 59.3683 |
| oxidane | 15.5 | 16 | 42.3 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 28.2933 | 2.069 | 1.32999 | -0.2915 | 9.59574 |
| chlorobenzene | 19 | 4.3 | 2 | 6 | 5 | 0 | 0 | 0 | 1 | 0 | 105.189 | 1.9341 | 0.03369 | -0.2464 | 125.512 |
| trichloromethane | 17.8 | 3.1 | 5.7 | 1 | 1 | 0 | 0 | 0 | 3 | 0 | 77.851 | 1.4013 | 0.08146 | -0.316 | 70.9478 |
| benzene | 18.4 | 0 | 2 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 92.4936 | 0.1008 | 0.01652 | -0.2463 | 102.937 |
| nitromethane | 15.8 | 18.8 | 5.1 | 1 | 3 | 1 | 2 | 0 | 0 | 0 | 47.6554 | 3.4781 | 0.34652 | -0.2949 | 44.507 |
| 4-methyl-1,3-dioxolan-2-one | 20 | 18 | 4.1 | 4 | 6 | 0 | 3 | 0 | 0 | 0 | 89.9479 | 5.4801 | 0.41627 | -0.2906 | 84.0749 |
| butano-4-lactone | 19 | 16.6 | 7.4 | 4 | 6 | 0 | 2 | 0 | 0 | 0 | 84.7811 | 4.5015 | 0.41496 | -0.2652 | 76.911 |
| $\mathrm{N}, \mathrm{N}-$ <br> dimethylmethanami de | 17.4 | 13.7 | 11.3 | 3 | 7 | 1 | 1 | 0 | 0 | 0 | 75.7637 | 3.832 | 0.45114 | -0.2422 | 75.0584 |
| methanol | 15.1 | 12.3 | 22.3 | 1 | 4 | 0 | 1 | 0 | 0 | 0 | 44.9308 | 1.6952 | 0.99137 | -0.2645 | 27.3115 |
| butanone | 16 | 9 | 5.1 | 4 | 8 | 0 | 1 | 0 | 0 | 0 | 87.2289 | 2.6959 | 0.37638 | -0.2435 | 77.2734 |
| 1,2-diaminoethane | 16.6 | 8.8 | 17 | 2 | 8 | 2 | 0 | 0 | 0 | 0 | 66.7462 | 2.202 | 1.08711 | -0.2172 | 63.5081 |
| ethanol | 15.8 | 8.8 | 19.4 | 2 | 6 | 0 | 1 | 0 | 0 | 0 | 61.5683 | 1.5675 | 1.00501 | -0.2616 | 45.9189 |


| IUPAC <br> Nomenclature | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | \#C | \#H | \#N | \#O | \#S | \#Cl | \#Br | $V_{m} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$ | $\mu$ / Debye | $d /$ charge | I/ hartrees | $\alpha / \AA^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| nitrobenzene | 20 | 8.6 | 4.1 | 6 | 5 | 1 | 2 | 0 | 0 | 0 | 100.385 | 4.5827 | 0.33397 | -0.279 | 135.481 |
| acetic acid | 14.5 | 8 | 13.5 | 2 | 4 | 0 | 2 | 0 | 0 | 0 | 59.1206 | 1.5812 | 0.93049 | -0.2754 | 46.8561 |
| 1,2-dichloroethane | 19 | 7.4 | 4.1 | 2 | 4 | 0 | 0 | 0 | 2 | 0 | 81.7929 | 0.1412 | 0.08824 | -0.3068 | 76.1709 |
| dichloromethane | 18.2 | 6.3 | 6.1 | 1 | 2 | 0 | 0 | 0 | 2 | 0 | 65.1554 | 1.9757 | 0.07448 | -0.3095 | 53.707 |
| cyclohexanone | 17.8 | 6.3 | 5.1 | 6 | 10 | 0 | 1 | 0 | 0 | 0 | 112.889 | 3.1674 | 0.372 | -0.2343 | 107.685 |
| 2-propanol | 15.8 | 6.1 | 16.4 | 3 | 8 | 0 | 1 | 0 | 0 | 0 | 78.2058 | 1.6521 | 1.01999 | -0.2604 | 63.9234 |
| phenol | 18 | 5.9 | 14.9 | 6 | 6 | 0 | 1 | 0 | 0 | 0 | 97.6604 | 1.3592 | 1.10033 | -0.219 | 112.152 |
| oxacyclopentane | 16.8 | 5.7 | 8 | 4 | 8 | 0 | 1 | 0 | 0 | 0 | 87.2289 | 1.8 | 0.42105 | -0.2374 | 75.7101 |
| bromobenzene | 20.5 | 5.5 | 4.1 | 6 | 5 | 0 | 0 | 0 | 0 | 1 | 107.757 | 1.8295 | 0.08339 | -0.2419 | 138.591 |
| ethyl ethanoate | 15.8 | 5.3 | 7.2 | 4 | 8 | 0 | 2 | 0 | 0 | 0 | 92.3956 | 1.9702 | 0.43149 | -0.2666 | 84.8265 |
| aniline | 19.4 | 5.1 | 10.2 | 6 | 7 | 1 | 0 | 0 | 0 | 0 | 97.6659 | 1.7965 | 1.23558 | -0.1982 | 121.523 |
| 3-methylphenol | 18 | 5.1 | 12.9 | 7 | 8 | 0 | 1 | 0 | 0 | 0 | 114.298 | 1.6351 | 1.10451 | -0.2155 | 133.018 |
| 1,1,1- <br> trichloroethane | 16.8 | 4.3 | 2 | 2 | 3 | 0 | 0 | 0 | 3 | 0 | 94.4886 | 2.2001 | 0.04038 | -0.3088 | 89.3883 |
| cyclohexanol | 17.4 | 4.1 | 13.5 | 6 | 12 | 0 | 1 | 0 | 0 | 0 | 120.504 | 1.7069 | 1.0443 | -0.2567 | 112.395 |
| trichloroethene | 18 | 3.1 | 5.3 | 2 | 1 | 0 | 0 | 0 | 3 | 0 | 86.874 | 0.9553 | 0.04879 | -0.2613 | 95.2609 |
| 1,4- <br> dioxacyclohexane | 19 | 1.8 | 7.4 | 4 | 8 | 0 | 2 | 0 | 0 | 0 | 92.3956 | 0.2076 | 0.38459 | -0.2356 | 82.9323 |
| toluene | 18 | 1.4 | 2 | 7 | 8 | 0 | 0 | 0 | 0 | 0 | 109.131 | 0.3678 | 0.0302 | -0.2353 | 124.239 |
| 1,2dimethylbenzene | 17.8 | 1 | 3.1 | 8 | 10 | 0 | 0 | 0 | 0 | 0 | 125.769 | 0.5785 | 0.02742 | -0.2295 | 144.311 |
| carbon disulfide | 20.5 | 0 | 0.6 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 56.4866 | 0.4104 | $9.6 \mathrm{E}-09$ | -0.2778 | 90.1255 |
| hexane | 14.9 | 0 | 0 | 6 | 14 | 0 | 0 | 0 | 0 | 0 | 122.952 | 0.2814 | 0.02192 | -0.3044 | 114.895 |
| 1,3,5-trinitrotoluene | 19.5 | 10 | 4.5 | 7 | 5 | 3 | 6 | 0 | 0 | 0 | 132.805 | 1.5037 | 0.3726 | -0.3108 | 215.289 |
| 1,3- <br> dinitrooxypropan- | 16.2 | 17.8 | 5.9 | 3 | 5 | 3 | 9 | 0 | 0 | 0 | 112.214 | 2.3959 | 0.37794 | -0.3334 | 158.571 |
| 2-yl nitrate trinitromethane | 15.5 | 10.3 | 7.3 | 1 | 1 | 3 | 6 | 0 | 0 | 0 | 63.4383 | 1.996 | 0.36188 | -0.3482 | 90.1046 |


| IUPAC <br> Nomenclature | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | \#C | \#H | \#N | \# | \#S | \#Cl | $\# B r$ | $V_{m} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$ | $\mu /$ Debye | $d /$ charge | $I /$ hartrees | $\alpha / \AA^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| nitroethane | 16 | 15.5 | 4.5 | 2 | 5 | 1 | 2 | 0 | 0 | 0 | 64.293 | 3.5934 | 0.33403 | -0.2922 | 62.3524 |
| 1-nitropropane | 16.6 | 12.3 | 5.5 | 3 | 7 | 1 | 2 | 0 | 0 | 0 | 80.9305 | 3.7349 | 0.31526 | -0.2906 | 80.7281 |
| 2-nitropropane | 16.2 | 12.1 | 4.1 | 3 | 7 | 1 | 2 | 0 | 0 | 0 | 80.9305 | 3.6825 | 0.32963 | -0.2894 | 79.0555 |
| 4nitrochlorobenzene | 20 | 8.8 | 3.9 | 6 | 4 | 1 | 2 | 0 | 1 | 0 | 113.081 | 2.9345 | 0.3421 | -0.278 | 164.702 |
| 4-nitrophenol | 20.4 | 20.9 | 15.1 | 6 | 5 | 1 | 3 | 0 | 0 | 0 | 105.552 | 5.3422 | 1.08795 | -0.2543 | 151.241 |
| 3,5-dinitrophenol | 19.5 | 12.9 | 14.4 | 6 | 4 | 2 | 5 | 0 | 0 | 0 | 113.443 | 4.6426 | 1.10934 | -0.2761 | 176.726 |
| 3-nitroaniline | 21.2 | 18.7 | 10.3 | 6 | 6 | 2 | 2 | 0 | 0 | 0 | 105.557 | 5.6821 | 1.27339 | -0.2256 | 155.089 |
| 1,2-dinitrobenzene | 20.6 | 22.7 | 5.4 | 6 | 4 | 2 | 4 | 0 | 0 | 0 | 108.276 | 6.6758 | 0.31796 | -0.2916 | 158.338 |
| benzene-1,2-diol | 20 | 11.3 | 21.8 | 6 | 6 | 0 | 2 | 0 | 0 | 0 | 102.827 | 2.5192 | 1.22295 | -0.2066 | 120.123 |
| benzene-1,3-diol | 18 | 8.4 | 21 | 6 | 6 | 0 | 2 | 0 | 0 | 0 | 102.827 | 1.3612 | 1.11131 | -0.2123 | 120.836 |
| benzene-1,4-diol | 21 | 10.2 | 27.2 | 6 | 6 | 0 | 2 | 0 | 0 | 0 | 102.827 | 0.1189 | 1.1142 | -0.1989 | 121.603 |
| 4-nitrotoluene | 20.1 | 9.6 | 3.9 | 7 | 7 | 1 | 2 | 0 | 0 | 0 | 117.023 | 5.2119 | 0.34092 | -0.2706 | 160.958 |
| 2,4-dinitrotoluene | 20 | 13.1 | 4.9 | 7 | 6 | 2 | 4 | 0 | 0 | 0 | 124.914 | 4.8537 | 0.3807 | -0.2982 | 190.095 |
| 1-bromopropane | 16.4 | 7.9 | 4.8 | 3 | 7 | 0 | 0 | 0 | 0 | 1 | 88.3028 | 2.2861 | 0.12227 | -0.2672 | 87.7963 |

## Appendix D: Structure Variables of Nitrated Unknowns

| IUPAC Nomenclature | $\# \mathrm{C}$ | $\# \mathrm{H}$ | $\# \mathrm{~N}$ | $\# \mathrm{O}$ | $\# \mathrm{Cl}$ | $V_{m} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$ | $V_{m} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$ | $\mu /$ Debye | $d /$ charge | $I /$ hartrees | $\alpha / \AA^{3}$ | $e_{s e} / \AA^{2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (E)1,3,5-Trinitro-2-[2-(2,4,6- <br> trinitrophenyl)ethenyl]benzene | 14 | 6 | 6 | 12 | 0 | 241.21 | 256.36 | 0.993 | 0.37668 | -0.29459 | 487.886 | 15558.21 |
| 2,2,4,4',6,6-hexanitroazobenzene | 12 | 4 | 8 | 12 | 0 | 219.03 | 247.27 | 0.0719 | 0.41205 | -0.2775 | 490.432 | 13476.36 |
| tetranitrodibenzo-1,3a,4,6a- <br> tetrazapentalene | 12 | 4 | 8 | 8 | 0 | 196.59 | 221.33 | 4.794 | 0.33753 | -0.28821 | 385.796 | 11142.67 |
| 1,3,6,8-tetranitrocarbazole | 12 | 5 | 5 | 8 | 0 | 195.27 | 204.59 | 0.4336 | 1.49789 | -0.28605 | 412.669 | 9604.23 |
| 2,4,6- | 7 | 5 | 5 | 8 | 0 | 150.22 | 170.33 | 3.2055 | 0.43193 | -0.30255 | 256.365 | 5034.97 |
| trinitrophenylmethylnitramine <br> 2,4,6-trinitrophenylethylnitramine | 8 | 7 | 5 | 8 | 0 | 166.79 | 187.00 | 4.409 | 0.46574 | -0.2967 | 271.525 | 5381.35 |
| 2,4,6-trinitrophenol | 6 | 3 | 3 | 7 | 0 | 124.64 | 132.73 | 1.7891 | 1.09962 | -0.30272 | 212.508 | 3579.40 |
| 1,3,5-trinitroaniline | 6 | 4 | 4 | 6 | 0 | 124.51 | 138.38 | 3.1233 | 1.46649 | -0.2776 | 231.200 | 3619.48 |
| 1,3,5-triamino-2,4,6- | 6 | 6 | 6 | 6 | 0 | 135.47 | 162.63 | 0.215 | 1.47604 | -0.2659 | 273.549 | 4270.98 |
| trinitrobenzene |  |  |  |  |  |  |  |  |  |  |  |  |
| 1,3-diamino-2,4,6-trinitrobenzene | 6 | 5 | 5 | 6 | 0 | 129.99 | 150.50 | 2.6233 | 1.46860 | -0.26463 | 257.277 | 3928.46 |
| 1,3,5-trinitrobenzene | 6 | 3 | 3 | 6 | 0 | 119.03 | 126.25 | 0.1772 | 0.37561 | -0.32819 | 196.557 | 3332.51 |
| 2,4,6-trinitrochlorobenzene | 6 | 2 | 3 | 6 | 1 | 132.99 | 141.60 | 0.3013 | 0.37191 | -0.3168 | 216.437 | 3882.47 |
| 3-hydroxyl-2,4,6-trinitrophenol | 6 | 3 | 3 | 8 | 0 | 130.25 | 139.22 | 1.7182 | 1.14062 | -0.29271 | 224.076 | 3822.26 |
| 2,4,6-trinitrobenzoic acid | 7 | 3 | 3 | 8 | 0 | 139.26 | 146.07 | 1.2009 | 0.95232 | -0.30926 | 226.267 | 4246.54 |
| 2,4,6-trinitroanisole | 7 | 5 | 3 | 7 | 0 | 141.21 | 149.41 | 2.4685 | 0.55041 | -0.30402 | 225.920 | 3983.32 |
| 3-methyl-2,4,6-trinitrotoluene | 8 | 7 | 3 | 6 | 0 | 152.17 | 159.59 | 1.6875 | 0.37232 | -0.29999 | 231.501 | 3934.40 |
| 3-nitrooxy-2,2- | 5 | 8 | 4 | 12 | 0 | 164.28 | 190.07 | 0.6192 | 0.38313 | -0.33269 | 229.001 | 6979.37 |
| bis(nitrooxymethyl)propyl nitrate |  |  |  |  |  |  |  |  |  |  |  |  |
| 1,3,5,7-tetranitro-1,3,5,7- | 4 | 8 | 8 | 8 | 0 | 139.63 | 186.15 | 3.8035 | 0.43886 | -0.30898 | 221.069 | 4748.94 |
| tetrazocane |  |  |  |  |  |  |  |  |  |  |  |  |
| 1,3,5-trinitro-1,3,5-triazinane | 3 | 6 | 6 | 6 | 0 | 108.44 | 142.08 | 2.9441 | 0.46139 | -0.30355 | 163.871 | 2762.93 |
| benzene-1,3,5-triol | 6 | 6 | 0 | 3 | 0 | 108.44 | 99.87 | 2.7166 | 1.11712 | -0.21261 | 129.094 | 1186.07 |


| IUPAC Nomenclature | $\# \mathrm{C}$ | $\# \mathrm{H}$ | $\# \mathrm{~N}$ | $\# \mathrm{O}$ | $\# \mathrm{Cl}$ | $V_{m} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$ | $V_{m} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$ | $\mu /$ Debye | $d /$ charge | $I /$ hartrees | $\alpha / \AA^{3}$ | $e_{s e} / \AA^{2}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2,4,6-trinitrobenzene-1,3,5-triol | 6 | 3 | 3 | 9 | 0 | 135.86 | 145.70 | 2.5859 | 1.14472 | -0.28219 | 235.368 | 4110.05 |  |
| 2,4,6-trinitro-1,3,5- | 12 | 15 | 3 | 9 | 0 | 235.28 | 245.74 | 1.4262 | 0.56259 | -0.26987 | 337.188 | 7830.15 |  |
| triethoxybenzene | 8 | 7 | 3 | 7 | 0 | 157.78 | 166.08 | 2.8343 | 0.58435 | -0.30711 | 247.746 | 4650.44 |  |
| $2,4,6$-trinitroethoxybenzene |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Appendix E: Predictions of training set HSPs by QSAR models 1 and 2 (data for Figures 7-12)

| IUPAC Nomenclature | Literature HSPs |  |  | QSAR1 Predicted HSPs |  |  | QSAR2 Predicted HSPs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ |
| dimethyl sulfoxide | 18.4 | 16.4 | 10.2 | 17.1 | 12.7 | 10.9 | 17.1 | 13.4 | 10.6 |
| methanamide | 17.2 | 26.2 | 19 | 16.2 | 13.9 | 16.8 | 15.9 | 20.1 | 23.3 |
| acetonitrile | 15.3 | 18 | 6.1 | 17.5 | 12.4 | 9.1 | 15.3 | 17.5 | 7.8 |
| 1-methyl-2-pyrrolidone | 18 | 12.3 | 7.2 | 17.3 | 11.6 | 8.1 | 17.3 | 10.6 | 7.4 |
| acetophenone | 19.6 | 8.6 | 3.7 | 18.6 | 9.4 | 6.6 | 18.4 | 8.3 | 5.9 |
| propanone | 15.5 | 10.4 | 7 | 16.7 | 9.4 | 7.3 | 16.2 | 10.2 | 7.5 |
| oxidane | 15.5 | 16 | 42.3 | 15.9 | 10.3 | 20.2 | 15.3 | 17.7 | 42.1 |
| chloromethane | 15.3 | 6.1 | 3.9 | 16.7 | 7.1 | 4.4 | 15.2 | 7.1 | 5.5 |
| chlorobenzene | 19 | 4.3 | 2 | 18.5 | 6.4 | 2.7 | 18.6 | 3.4 | 2.6 |
| trichloromethane | 17.8 | 3.1 | 5.7 | 16.9 | 5.2 | 3.7 | 15.7 | 4.0 | 3.0 |
| tribromomethane | 21.4 | 4.1 | 6.1 | 18.6 | 5.1 | 4.3 | 18.4 | 4.1 | 3.6 |
| 1,1,2,2-tetrabromoethane | 22.6 | 5.1 | 8.2 | 19.5 | 3.4 | 3.8 | 19.6 | 3.6 | 3.7 |
| 2,2,4-trimethylpentane | 14.1 | 0 | 0 | 16.0 | 0.6 | -0.2 | 16.2 | 0.8 | 0.7 |
| methylcyclohexane | 16 | 0 | 1 | 16.3 | 0.8 | 0.8 | 16.4 | 0.9 | 1.0 |
| 2-methylbutane | 13.7 | 0 | 0 | 16.2 | 1.2 | 1.7 | 15.7 | 1.2 | 1.0 |
| heptane | 15.3 | 0 | 0 | 16.3 | 0.8 | 0.6 | 16.4 | 1.1 | 0.9 |
| nonane | 15.7 | 0 | 0 | 16.3 | 0.4 | -0.4 | 16.7 | 1.1 | 0.8 |
| benzene | 18.4 | 0 | 2 | 17.8 | 1.8 | 2.8 | 18.0 | 1.3 | 2.0 |
| butane | 14.1 | 0 | 0 | 16.4 | 1.6 | 2.3 | 15.4 | 1.3 | 1.2 |
| 1,3-dioxolan-2-one | 19.4 | 21.7 | 5.1 | 17.1 | 15.6 | 7.7 | 18.7 | 17.9 | 6.5 |
| dimethyl sulfone | 19 | 19.4 | 12.3 | 16.9 | 14.1 | 9.4 | 16.9 | 15.0 | 8.0 |
| nitromethane | 15.8 | 18.8 | 5.1 | 17.5 | 11.8 | 8.2 | 16.1 | 16.0 | 7.6 |
| 4-methyl-1,3-dioxolan-2-one | 20 | 18 | 4.1 | 17.1 | 15.8 | 7.2 | 19.7 | 16.3 | 6.1 |
| 2-pyrrolidone | 19.4 | 17.4 | 11.3 | 17.0 | 12.9 | 12.5 | 17.1 | 12.9 | 11.9 |
| propenonitrile | 16 | 12.8 | 6.8 | 18.2 | 13.0 | 9.1 | 17.3 | 16.8 | 7.4 |
| butano-4-lactone | 19 | 16.6 | 7.4 | 16.9 | 13.4 | 7.4 | 17.3 | 13.9 | 6.6 |
| trimethyl phosphate | 16.7 | 15.9 | 10.2 | 15.6 | 9.5 | 7.0 | 14.9 | 8.2 | 6.4 |


| IUPAC Nomenclature | Literature HSPs |  |  | QSAR1 Predicted HSPs |  |  | QSAR2 Predicted HSPs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ |
| 2-aminoethanol | 17 | 15.5 | 21.2 | 16.3 | 11.0 | 17.5 | 17.3 | 11.2 | 19.2 |
| nitroethane | 16 | 15.5 | 4.5 | 17.5 | 11.7 | 7.4 | 16.5 | 13.6 | 6.3 |
| furan-2-carbaldehyde | 18.6 | 14.9 | 5.1 | 18.5 | 13.0 | 7.1 | 19.0 | 13.0 | 6.1 |
| diethyl sulfate | 15.7 | 14.7 | 7.1 | 16.8 | 9.9 | 7.3 | 16.1 | 9.0 | 6.2 |
| propanenitrile | 15.3 | 14.3 | 5.5 | 17.4 | 12.7 | 8.8 | 15.9 | 15.5 | 7.0 |
| N,N-dimethylmethanamide | 17.4 | 13.7 | 11.3 | 17.4 | 12.2 | 8.3 | 17.3 | 13.1 | 7.7 |
| bis(2-aminoethyl)amine | 16.7 | 13.3 | 14.3 | 17.3 | 11.1 | 14.6 | 17.8 | 9.3 | 14.2 |
| butanenitrile | 15.3 | 12.4 | 5.1 | 17.4 | 12.7 | 8.2 | 16.4 | 14.0 | 6.4 |
| methanol | 15.1 | 12.3 | 22.3 | 16.0 | 8.3 | 15.6 | 14.8 | 10.7 | 20.0 |
| 2-nitropropane | 16.2 | 12.1 | 4.1 | 17.3 | 11.4 | 6.7 | 16.7 | 11.9 | 5.6 |
| methanoic acid | 14.3 | 11.9 | 16.6 | 16.8 | 13.7 | 14.2 | 15.2 | 19.9 | 15.9 |
| N,N-dimethylacetamide | 16.8 | 11.5 | 10.2 | 17.2 | 11.5 | 8.4 | 17.1 | 11.0 | 7.7 |
| triethyl phosphate | 16.7 | 11.4 | 9.2 | 16.3 | 8.2 | 6.5 | 16.1 | 7.1 | 6.2 |
| benzyl n-butyl phthalate | 19 | 11.3 | 3.1 | 20.0 | 5.8 | 3.0 | 18.7 | 5.8 | 5.0 |
| dimethyl phthalate | 18.6 | 10.8 | 4.9 | 18.6 | 2.2 | 5.8 | 18.2 | 5.5 | 5.5 |
| chloromethyloxirane | 18.9 | 7.6 | 6.6 | 16.9 | 10.7 | 7.2 | 16.2 | 10.9 | 6.2 |
| p-nonylphenoxyethanol | 16.7 | 10.2 | 8.4 | 17.5 | 4.5 | 9.5 | 15.9 | 3.5 | 8.8 |
| diethyl phthalate | 17.6 | 9.6 | 4.5 | 18.5 | 2.9 | 4.9 | 17.9 | 5.2 | 5.3 |
| 2-(2-ethoxyethoxy)ethanol | 16.1 | 9.2 | 12.2 | 15.9 | 6.0 | 12.9 | 16.2 | 5.3 | 12.5 |
| 2-ethoxyethanol | 16.2 | 9.2 | 14.3 | 15.8 | 4.2 | 14.1 | 15.9 | 5.0 | 14.1 |
| 2-methoxyethanol | 16.2 | 9.2 | 16.4 | 16.0 | 6.8 | 14.2 | 15.8 | 6.6 | 14.4 |
| bis(2-chloroethyl) ether | 18.8 | 9 | 5.7 | 16.5 | 3.4 | 7.2 | 15.9 | 4.8 | 6.0 |
| benzonitrile | 17.4 | 9 | 3.3 | 19.7 | 14.2 | 7.9 | 20.5 | 14.0 | 6.3 |
| butanone | 16 | 9 | 5.1 | 16.6 | 8.7 | 6.7 | 16.3 | 8.4 | 6.6 |
| pyridine | 19 | 8.8 | 5.9 | 18.2 | 8.0 | 6.7 | 17.9 | 8.0 | 6.0 |
| 1,2-diaminoethane | 16.6 | 8.8 | 17 | 16.7 | 9.5 | 16.2 | 17.2 | 9.6 | 17.4 |
| ethanol | 15.8 | 8.8 | 19.4 | 16.0 | 7.6 | 15.1 | 15.3 | 8.3 | 16.4 |
| nitrobenzene | 20 | 8.6 | 4.1 | 19.5 | 14.1 | 6.9 | 20.4 | 13.7 | 5.6 |
| dibutyl phthalate | 17.8 | 8.6 | 4.1 | 18.6 | 1.6 | 2.8 | 17.8 | 5.4 | 4.7 |
| benzene-1,3-diol | 18 | 8.4 | 21 | 17.5 | 7.0 | 15.6 | 18.1 | 6.0 | 15.2 |


| IUPAC Nomenclature | Literature HSPs |  |  | QSAR1 Predicted HSPs |  |  | QSAR2 Predicted HSPs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ |
| bis(2-chloroisopropyl) ether | 19 | 8.2 | 5.1 | 16.3 | 4.0 | 5.8 | 15.8 | 4.7 | 5.5 |
| ethyl 3-phenyl-2-propenonate | 18.4 | 8.2 | 4.1 | 21.3 | 9.1 | 7.1 | 20.3 | 7.7 | 6.4 |
| 1,1,3,3-tetramethylurea | 16.7 | 8.2 | 11 | 17.5 | 10.0 | 7.9 | 17.2 | 8.6 | 7.3 |
| 1,1-dichloroethane | 16.5 | 7.8 | 3 | 16.9 | 7.3 | 3.5 | 15.9 | 5.7 | 3.0 |
| 3,5,5-trimethylcyclohex-2-en-1-one | 16.6 | 8.2 | 7.4 | 17.3 | 10.9 | 5.2 | 17.6 | 8.1 | 5.5 |
| 4-hydroxy-4-methylpentan-2-one | 15.8 | 8.2 | 10.8 | 16.0 | 9.4 | 13.5 | 16.4 | 7.4 | 13.7 |
| acetaldehyde | 14.7 | 12.5 | 7.9 | 16.9 | 9.3 | 7.3 | 16.0 | 11.5 | 8.4 |
| acetic acid | 14.5 | 8 | 13.5 | 16.2 | 7.6 | 14.4 | 15.0 | 8.5 | 14.8 |
| 2-(2-Methoxyethoxy)ethanol | 16.2 | 7.8 | 12.6 | 15.9 | 6.6 | 13.5 | 16.1 | 5.8 | 13.1 |
| 1-chloropropane | 16 | 7.8 | 2 | 16.7 | 7.4 | 3.4 | 16.2 | 5.9 | 3.3 |
| 2-furanmethanol | 17.4 | 7.6 | 15.1 | 16.7 | 7.5 | 14.2 | 16.9 | 6.8 | 14.0 |
| ethyl 2-hydroxypropanoate | 16 | 7.6 | 12.5 | 16.1 | 6.3 | 13.3 | 16.0 | 6.0 | 12.8 |
| pentan-3-one | 15.8 | 7.6 | 4.7 | 16.5 | 8.0 | 6.1 | 16.3 | 7.1 | 6.0 |
| benzaldehyde | 19.4 | 7.4 | 5.3 | 18.9 | 10.5 | 6.3 | 18.8 | 9.6 | 5.6 |
| 1,2-dichloroethane | 19 | 7.4 | 4.1 | 16.8 | 2.0 | 3.7 | 16.0 | 3.0 | 3.1 |
| (chloromethyl)benzene | 18.8 | 7.1 | 2.6 | 18.3 | 7.7 | 2.8 | 18.5 | 5.2 | 3.5 |
| ethyl methanoate | 15.5 | 8.4 | 8.4 | 18.2 | 13.4 | 7.8 | 18.2 | 14.7 | 6.4 |
| methyl acetate | 15.5 | 7.2 | 7.6 | 16.6 | 6.8 | 7.8 | 15.6 | 7.3 | 7.2 |
| quinoline | 19.8 | 5.6 | 5.7 | 20.4 | 7.7 | 7.4 | 19.9 | 7.1 | 6.4 |
| benzoic acid | 18.2 | 6.9 | 9.8 | 18.1 | 8.1 | 14.0 | 18.1 | 7.6 | 12.5 |
| dioctyl phthalate | 16.6 | 7 | 3.1 | 17.0 | 0.7 | -0.3 | 16.0 | 4.9 | 4.2 |
| 2-(2-butoxyethoxy)ethanol | 16 | 7 | 10.6 | 15.8 | 5.4 | 12.0 | 16.2 | 4.9 | 11.5 |
| 1,2-dibromoethane | 19.2 | 3.5 | 8.6 | 18.2 | 2.7 | 4.6 | 18.1 | 3.8 | 3.9 |
| 1,1-dichloroethene | 16.4 | 5.2 | 2.4 | 17.4 | 5.7 | 3.5 | 17.0 | 3.4 | 2.8 |
| 1-propanol | 16 | 6.8 | 17.4 | 15.9 | 7.0 | 14.6 | 15.5 | 7.0 | 14.9 |
| tetrachloroethene | 18.3 | 5.7 | 0 | 18.0 | 1.9 | 2.5 | 17.4 | -0.2 | -0.5 |
| butyl (2R)-hydroxypropanoate | 15.8 | 6.5 | 10.2 | 16.2 | 10.0 | 12.0 | 16.4 | 7.9 | 11.5 |
| 1,2-dichlorobenzene | 19.2 | 6.3 | 3.3 | 18.9 | 8.4 | 2.4 | 19.0 | 4.5 | 2.2 |
| phenylmethanol | 18.4 | 6.3 | 13.7 | 17.5 | 7.5 | 14.1 | 17.6 | 6.6 | 13.3 |
| dichloromethane | 18.2 | 6.3 | 6.1 | 16.9 | 6.9 | 4.0 | 15.4 | 5.9 | 3.6 |
| cyclohexanone | 17.8 | 6.3 | 5.1 | 16.7 | 9.3 | 5.8 | 16.7 | 7.9 | 5.9 |


| IUPAC Nomenclature | Literature HSPs |  |  | QSAR1 Predicted HSPs |  |  | QSAR2 Predicted HSPs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ |
| chlorodifluoromethane | 12.3 | 6.3 | 5.7 | 15.2 | 5.0 | 4.3 | 13.5 | 5.8 | 5.2 |
| 4-methylpent-3-en-2-one | 16.4 | 6.1 | 6.1 | 17.6 | 9.1 | 7.3 | 17.3 | 8.0 | 6.7 |
| 2-propanol | 15.8 | 6.1 | 16.4 | 15.9 | 7.4 | 14.6 | 15.5 | 7.4 | 15.0 |
| bis(2-methoxyethyl) ether | 15.7 | 6.1 | 6.5 | 16.4 | 4.2 | 5.7 | 16.1 | 4.4 | 5.5 |
| 4-methylpentan-2-one | 15.3 | 6.1 | 4.1 | 16.4 | 7.9 | 5.6 | 16.2 | 6.7 | 5.7 |
| phenol | 18 | 5.9 | 14.9 | 17.4 | 7.0 | 15.5 | 18.0 | 6.2 | 15.2 |
| 1,1-dimethylhydrazine | 15.3 | 5.9 | 11 | 16.9 | 4.6 | 12.4 | 16.7 | 5.5 | 13.5 |
| 3-chloropropan-1-ol | 17.5 | 5.7 | 14.7 | 16.2 | 11.6 | 14.2 | 16.0 | 10.9 | 13.8 |
| bromochloromethane | 17.3 | 5.7 | 3.5 | 17.3 | 6.4 | 4.5 | 16.5 | 5.6 | 4.0 |
| oxacyclopentane | 16.8 | 5.7 | 8 | 16.4 | 6.5 | 7.2 | 16.0 | 6.4 | 7.2 |
| butan-1-ol | 16 | 5.7 | 15.8 | 15.8 | 6.7 | 14.0 | 15.7 | 6.4 | 13.9 |
| 5-methylhexan-2-one | 16 | 5.7 | 4.1 | 16.4 | 7.7 | 5.0 | 16.3 | 6.2 | 5.3 |
| 2-butanol | 15.8 | 5.7 | 14.5 | 15.8 | 7.0 | 14.1 | 15.7 | 6.6 | 14.1 |
| 2-methyl-1-propanol | 15.1 | 5.7 | 15.9 | 15.8 | 6.8 | 14.1 | 15.7 | 6.5 | 14.2 |
| bromobenzene | 20.5 | 5.5 | 4.1 | 19.0 | 6.4 | 3.5 | 19.2 | 4.4 | 3.8 |
| chlorocyclohexane | 17.3 | 5.5 | 2 | 16.8 | 7.2 | 1.8 | 16.9 | 4.8 | 2.6 |
| 1-chlorobutane | 16.2 | 5.5 | 2 | 16.7 | 7.2 | 2.8 | 16.4 | 5.3 | 2.9 |
| ethyl ethanoate | 15.8 | 5.3 | 7.2 | 16.6 | 6.9 | 7.3 | 15.9 | 6.9 | 6.5 |
| butanal | 15.6 | 10.1 | 6.2 | 16.7 | 8.1 | 5.9 | 16.5 | 6.9 | 5.3 |
| aniline | 19.4 | 5.1 | 10.2 | 17.9 | 8.5 | 17.4 | 19.3 | 6.9 | 17.4 |
| 1,1,2,2-tetrachloroethane | 18.8 | 5.1 | 5.3 | 17.1 | 2.1 | 2.7 | 16.5 | 2.4 | 2.4 |
| 3-methylphenol | 18 | 5.1 | 12.9 | 17.5 | 7.3 | 15.0 | 18.0 | 6.1 | 14.6 |
| 2-butoxyethanol | 16 | 5.1 | 12.3 | 15.7 | 3.7 | 13.0 | 16.1 | 4.7 | 12.7 |
| morpholine | 18.8 | 4.9 | 9.2 | 16.6 | 5.7 | 10.1 | 16.2 | 5.6 | 9.9 |
| propylamine | 16.9 | 4.9 | 8.6 | 16.2 | 7.2 | 14.9 | 16.4 | 7.0 | 15.6 |
| 2-octanol | 16.1 | 4.9 | 11 | 15.7 | 4.8 | 11.8 | 15.9 | 5.0 | 11.6 |
| 2-ethoxyethyl acetate | 15.9 | 4.7 | 10.6 | 16.7 | 8.6 | 6.2 | 16.4 | 7.3 | 5.7 |
| butylamine | 16.2 | 4.5 | 8 | 16.2 | 6.9 | 14.3 | 16.5 | 6.3 | 14.5 |
| 1-pentanol | 15.9 | 5.9 | 13.9 | 15.8 | 6.2 | 13.4 | 15.8 | 5.9 | 13.2 |
| dibutyl sebacate | 16.7 | 4.5 | 4.1 | 15.5 | 5.7 | 2.1 | 15.9 | 4.8 | 3.7 |


| IUPAC Nomenclature | Literature HSPs |  |  | QSAR1 Predicted HSPs |  |  | QSAR2 Predicted HSPs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ |
| 1,1,1-trichloroethane | 16.8 | 4.3 | 2 | 17.0 | 6.8 | 2.6 | 16.1 | 4.3 | 1.8 |
| 2-ethylbutan-1-ol | 15.8 | 4.3 | 13.5 | 15.7 | 6.5 | 12.8 | 15.8 | 5.8 | 12.7 |
| methoxybenzene | 17.8 | 4.1 | 6.7 | 18.0 | 5.3 | 7.3 | 17.6 | 5.1 | 6.9 |
| cyclohexanol | 17.4 | 4.1 | 13.5 | 15.8 | 6.6 | 13.3 | 16.0 | 5.9 | 13.2 |
| butanoic acid | 14.9 | 4.1 | 10.6 | 16.1 | 6.4 | 13.4 | 15.5 | 6.4 | 12.8 |
| methyl (Z)-octadec-9-eneoate | 14.5 | 3.9 | 3.7 | 15.9 | 1.9 | 1.9 | 15.2 | 3.3 | 3.9 |
| isopropyl hexadecanoate | 14.3 | 3.9 | 3.7 | 15.2 | 3.6 | 2.1 | 15.8 | 4.7 | 3.7 |
| phenylmethoxymethylbenzene | 19.6 | 3.4 | 5.2 | 19.3 | 3.6 | 4.6 | 18.5 | 4.8 | 5.3 |
| 2,6-dimethylheptan-4-one | 16 | 3.7 | 4.1 | 16.2 | 5.7 | 3.8 | 16.0 | 4.5 | 4.8 |
| butyl ethanoate | 15.8 | 3.7 | 6.3 | 16.5 | 6.4 | 6.1 | 16.1 | 5.9 | 5.6 |
| 2-methylpropyl ethanoate | 15.1 | 3.7 | 6.3 | 16.4 | 6.0 | 5.9 | 16.0 | 5.7 | 5.6 |
| 1-octanol | 16 | 5 | 11.9 | 15.7 | 5.4 | 11.8 | 16.0 | 5.2 | 11.5 |
| octadecanoic acid | 16.3 | 3.3 | 5.5 | 14.9 | 3.8 | 8.7 | 16.0 | 5.6 | 7.2 |
| 2-ethylhexan-1-ol | 15.9 | 3.3 | 11.8 | 15.6 | 5.7 | 11.7 | 15.8 | 5.3 | 11.7 |
| 1,3-dimethylbutan-1-ol | 15.4 | 3.3 | 12.3 | 15.6 | 5.3 | 12.7 | 15.7 | 5.2 | 12.6 |
| octanoic acid | 15.1 | 3.3 | 8.2 | 15.9 | 5.1 | 11.3 | 16.0 | 5.4 | 10.6 |
| 1-bromonaphthalene | 20.3 | 3.1 | 4.1 | 21.2 | 6.1 | 2.9 | 20.7 | 3.7 | 4.3 |
| 1-(phenoxy)-3-[3- <br> (phenoxy)phenoxy]benzene | 19.6 | 3.1 | 5.1 | 23.3 | 6.3 | 5.3 | 19.3 | 5.7 | 6.8 |
| trichloroethene | 18 | 3.1 | 5.3 | 17.8 | 4.2 | 3.4 | 17.6 | 2.4 | 2.9 |
| cyclohexanamine | 17.2 | 3.1 | 6.5 | 16.2 | 6.4 | 13.5 | 16.5 | 5.5 | 13.5 |
| 1,1-thiobisethane | 16.8 | 3.1 | 2 | 17.3 | 5.4 | 2.2 | 17.7 | 2.0 | 2.8 |
| diethyl carbonate | 15.1 | 6.3 | 3.5 | 16.5 | 3.4 | 6.7 | 15.9 | 4.8 | 5.8 |
| dichlorofluoromethane | 15.8 | 3.1 | 5.7 | 16.0 | 5.2 | 4.9 | 14.6 | 5.5 | 4.6 |
| 1-bromoethane | 16.5 | 8.4 | 2.3 | 17.3 | 7.5 | 4.5 | 16.9 | 6.8 | 4.6 |
| 3-methylbutyl ethanoate | 15.3 | 3.1 | 7 | 16.4 | 6.1 | 5.6 | 16.1 | 5.6 | 5.4 |
| 1-tridecanol | 16.2 | 3.1 | 9 | 15.5 | 4.1 | 9.8 | 16.0 | 4.8 | 9.4 |
| ( $Z$ )-octadec-9-enoic acid | 16 | 2.8 | 6.2 | 15.6 | 2.6 | 8.5 | 15.2 | 4.0 | 7.6 |
| 3,6,9-trioxa-(18Z)-heptacosan-1ol | 16 | 3.1 | 8.4 | 13.2 | 4.8 | 11.0 | 14.0 | 3.8 | 6.7 |
| 2-methylpropyl 2-methylpropanote | 15.1 | 2.9 | 5.9 | 16.3 | 5.5 | 4.8 | 16.0 | 5.1 | 5.0 |
| ethoxyethane | 14.5 | 2.9 | 5.1 | 16.3 | 4.4 | 6.7 | 15.9 | 4.8 | 6.5 |


| IUPAC Nomenclature | Literature HSPs |  |  | QSAR1 Predicted HSPs |  |  | QSAR2 Predicted HSPs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ |
| 1-decanol | 16 | 4.7 | 10 | 15.7 | 4.9 | 10.9 | 16.0 | 5.0 | 10.6 |
| (Z)-octadec-9-en-1-ol | 14.3 | 2.6 | 8 | 15.5 | 1.8 | 8.6 | 15.2 | 4.0 | 8.0 |
| bromotrifluoromethane | 9.6 | 2.4 | 0 | 14.9 | 1.5 | 2.2 | 14.6 | 1.8 | 3.0 |
| diethylamine | 14.9 | 2.3 | 6.1 | 16.5 | 5.2 | 10.4 | 16.2 | 5.4 | 10.1 |
| trichlorofluoromethane | 15.3 | 2 | 0 | 16.1 | 1.2 | 2.5 | 15.1 | 2.4 | 1.7 |
| 1,2,3,4-tetrahydronaphthalene | 19.6 | 2 | 2.9 | 18.0 | 0.4 | 0.8 | 18.1 | 1.8 | 1.9 |
| naphthalene | 19.2 | 2 | 5.9 | 20.2 | 1.9 | 2.2 | 20.0 | 1.4 | 2.6 |
| dichlorodifluoromethane | 12.3 | 2 | 0 | 15.3 | 1.0 | 2.3 | 14.2 | 2.1 | 2.0 |
| 1,4-dioxacyclohexane | 19 | 1.8 | 7.4 | 16.3 | 2.3 | 6.6 | 16.1 | 4.3 | 6.6 |
| furan | 17.8 | 1.8 | 5.3 | 17.0 | 3.9 | 6.6 | 16.9 | 4.5 | 7.1 |
| 1,2-dichlorotetrafluoroethane | 12.6 | 1.8 | 0 | 13.9 | -0.1 | 0.5 | 14.0 | 1.8 | 1.4 |
| 1,1,2-trichlorotrifluoroethane | 14.7 | 1.6 | 0 | 14.4 | -0.1 | 0.7 | 14.4 | 2.0 | 1.4 |
| toluene | 18 | 1.4 | 2 | 17.9 | 2.2 | 2.4 | 18.2 | 1.2 | 2.5 |
| N-propylpropanamine | 15.3 | 1.4 | 4.1 | 16.4 | 4.6 | 9.6 | 16.0 | 4.6 | 9.2 |
| biphenyl | 19.7 | 1 | 2 | 20.7 | 1.8 | 1.6 | 20.3 | 1.7 | 2.7 |
| phenylethene | 18.6 | 1 | 4.1 | 19.4 | 2.2 | 2.6 | 19.5 | 1.4 | 2.6 |
| 1,2-dimethylbenzene | 17.8 | 1 | 3.1 | 18.0 | 2.3 | 1.8 | 18.3 | 0.8 | 2.3 |
| 1-methylnaphthalene | 20.6 | 0.8 | 4.7 | 20.2 | 2.0 | 1.7 | 19.8 | 1.3 | 3.0 |
| ethylbenzene | 17.8 | 0.6 | 1.4 | 17.9 | 1.6 | 1.7 | 18.1 | 0.9 | 2.1 |
| carbon disulfide | 20.5 | 0 | 0.6 | 19.7 | 4.1 | 4.7 | 19.0 | 1.0 | 0.4 |
| cis-bicyclo[4.4.0]decane | 18.8 | 0 | 0 | 16.2 | 0.2 | -0.8 | 16.5 | 0.4 | 0.6 |
| 1,3,5-trimethylbenzene | 18 | 0 | 0.6 | 18.2 | 1.5 | 1.3 | 18.4 | 0.9 | 2.3 |
| trans-bicyclo[4.4.0]decane | 18 | 0 | 0 | 16.3 | 0.2 | -0.8 | 16.6 | 0.5 | 0.7 |
| tetrachloromethane | 17.8 | 0 | 0.6 | 16.9 | 1.9 | 2.4 | 15.3 | -0.3 | -1.3 |
| cyclohexane | 16.8 | 0 | 0.2 | 16.3 | 1.2 | 1.3 | 16.2 | 0.8 | 0.9 |
| icosane | 16.5 | 0 | 0 | 15.1 | -0.3 | -3.3 | 16.9 | 1.7 | 1.5 |
| hexadecane | 16.3 | 0 | 0 | 15.8 | -0.5 | -2.9 | 17.0 | 1.4 | 1.0 |
| dodecane | 16 | 0 | 0 | 16.2 | -0.1 | -1.7 | 16.9 | 1.2 | 0.8 |
| decane | 15.7 | 0 | 0 | 16.2 | 0.2 | -0.9 | 16.7 | 1.1 | 0.7 |
| octane | 15.5 | 0 | 0 | 16.3 | 0.6 | 0.1 | 16.6 | 1.1 | 0.8 |
| hexane | 14.9 | 0 | 0 | 16.3 | 1.1 | 1.2 | 16.1 | 1.1 | 0.9 |


| IUPAC Nomenclature | Literature HSPs |  |  | QSAR1 Predicted HSPs |  |  | QSAR2 Predicted HSPs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ |
| pentane | 14.5 | 0 | 0 | 16.3 | 1.3 | 1.7 | 15.8 | 1.2 | 1.0 |
| 1-trifluoromethyl- | 12.4 | 0 | 0 | 16.2 | 1.7 | 2.0 | 15.8 | 3.4 | 2.1 |
| $1,2,2,3,3,4,4,5,5,6,6-$ unedecafluorocyclohexane |  |  |  |  |  |  |  |  |  |
| methyl benzoate | 18.9 | 8.2 | 4.7 | 18.6 | 6.7 | 7.1 | 18.2 | 6.6 | 6.1 |
| phenyl ethanoate | 19.8 | 5.2 | 6.4 | 18.3 | 13.1 | 7.3 | 19.0 | 11.2 | 6.4 |

## Appendix F: Predictions of training set HSPs by QSAR3 (data for Figures 13-15)

| IUPAC Nomenclature | Literature HSP |  |  |  | QSAR3 HSPs |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ |  |
| dimethyl sulfoxide | 18.4 | 16.4 | 10.2 | 18.5 | 14.2 | 9.9 |  |
| acetonitrile | 15.3 | 18 | 6.1 | 15.8 | 16.8 | 8.4 |  |
| 1-methyl-2-pyrrolidone | 18 | 12.3 | 7.2 | 17.6 | 10.0 | 7.2 |  |
| acetophenone | 19.6 | 8.6 | 3.7 | 19.0 | 6.4 | 5.6 |  |
| propanone | 15.5 | 10.4 | 7 | 16.9 | 10.6 | 7.3 |  |
| oxidane | 15.5 | 16 | 42.3 | 14.4 | 17.5 | 41.8 |  |
| chlorobenzene | 19 | 4.3 | 2 | 19.0 | 3.1 | 1.6 |  |
| trichloromethane | 17.8 | 3.1 | 5.7 | 17.5 | 4.5 | 4.1 |  |
| benzene | 18.4 | 0 | 2 | 19.7 | 2.2 | 3.1 |  |
| nitromethane | 15.8 | 18.8 | 5.1 | 16.2 | 17.3 | 7.4 |  |
| 4-methyl-1,3-dioxolan-2-one | 20 | 18 | 4.1 | 18.8 | 20.3 | 5.0 |  |
| butano-4-lactone | 19 | 16.6 | 7.4 | 18.2 | 16.4 | 5.8 |  |
| N,N-dimethylmethanamide | 17.4 | 13.7 | 11.3 | 17.1 | 13.0 | 6.9 |  |
| methanol | 15.1 | 12.3 | 22.3 | 15.3 | 10.3 | 21.2 |  |
| butanone | 16 | 9 | 5.1 | 16.9 | 8.0 | 6.7 |  |
| 1,2-diaminoethane | 16.6 | 8.8 | 17 | 15.6 | 7.6 | 17.3 |  |
| ethanol | 15.8 | 8.8 | 19.4 | 15.7 | 7.6 | 18.1 |  |
| nitrobenzene | 20 | 8.6 | 4.1 | 19.4 | 13.6 | 3.6 |  |
| acetic acid | 14.5 | 8 | 13.5 | 16.1 | 9.2 | 16.9 |  |
| 1,2-dichloroethane | 19 | 7.4 | 4.1 | 18.0 | 3.8 | 4.9 |  |
| dichloromethane | 18.2 | 6.3 | 6.1 | 16.7 | 6.0 | 4.5 |  |
| cyclohexanone | 17.8 | 6.3 | 5.1 | 17.6 | 7.4 | 5.7 |  |
|  |  |  |  |  |  |  |  |


| IUPAC Nomenclature | Literature HSPs |  |  |  | QSAR3 HSPs |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ |  |
| 2-propanol | 15.8 | 6.1 | 16.4 | 15.8 | 6.5 | 16.8 |  |
| phenol | 18 | 5.9 | 14.9 | 18.7 | 6.3 | 16.5 |  |
| oxacyclopentane | 16.8 | 5.7 | 8 | 16.7 | 5.7 | 8.1 |  |
| bromobenzene | 20.5 | 5.5 | 4.1 | 19.4 | 6.1 | 2.2 |  |
| ethyl ethanoate | 15.8 | 5.3 | 7.2 | 16.5 | 6.6 | 7.8 |  |
| aniline | 19.4 | 5.1 | 10.2 | 18.7 | 6.2 | 17.8 |  |
| 3-methylphenol | 18 | 5.1 | 12.9 | 18.8 | 6.1 | 16.1 |  |
| 1,1,1-trichloroethane | 16.8 | 4.3 | 2 | 17.7 | 5.0 | 2.3 |  |
| cyclohexanol | 17.4 | 4.1 | 13.5 | 16.2 | 4.5 | 15.6 |  |
| trichloroethene | 18 | 3.1 | 5.3 | 19.0 | 4.3 | 3.1 |  |
| 1,4-dioxacyclohexane | 19 | 1.8 | 7.4 | 17.6 | 6.3 | 8.6 |  |
| toluene | 18 | 1.4 | 2 | 18.4 | 1.1 | 2.7 |  |
| 1,2-dimethylbenzene | 17.8 | 1 | 3.1 | 18.2 | 0.5 | 2.2 |  |
| carbon disulfide | 20.5 | 0 | 0.6 | 19.1 | 0.2 | 2.9 |  |
| hexane | 14.9 | 0 | 0 | 15.4 | -0.3 | 2.8 |  |
| 1,3,5-trinitrotoluene | 19.5 | 10 | 4.5 | 18.2 | 8.8 | 5.8 |  |
| 1,3-dinitrooxypropan-2-yl nitrate | 16.2 | 17.8 | 5.9 | 17.0 | 14.5 | 5.7 |  |
| trinitromethane | 15.5 | 10.3 | 7.3 | 16.1 | 11.9 | 6.6 |  |
| nitroethane | 16 | 15.5 | 4.5 | 16.4 | 14.0 | 6.0 |  |
| 1-nitropropane | 16.6 | 12.3 | 5.5 | 16.5 | 11.8 | 5.0 |  |
| 2-nitropropane | 16.2 | 12.1 | 4.1 | 16.4 | 11.7 | 5.3 |  |
| 4-nitrochlorobenzene | 20 | 8.8 | 3.9 | 19.5 | 8.2 | 4.7 |  |
| 4-nitrophenol | 20.4 | 20.9 | 15.1 | 20.8 | 18.9 | 13.1 |  |
| 3,5-dinitrophenol | 19.5 | 12.9 | 14.4 | 20.2 | 17.3 | 13.8 |  |
|  |  |  |  |  |  |  |  |


| IUPAC Nomenclature | Literature HSPs |  |  | QSAR3 HSPs |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{D}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{P}} / \mathrm{MPa}^{1 / 2}$ | $\delta_{\mathrm{H}} / \mathrm{MPa}^{1 / 2}$ |
| 3-nitroaniline | 21.2 | 18.7 | 10.3 | 20.8 | 18.7 | 15.4 |
| 1,2-dinitrobenzene | 20.6 | 22.7 | 5.4 | 21.4 | 21.5 | 1.9 |
| benzene-1,2-diol | 20 | 11.3 | 21.8 | 19.5 | 10.8 | 17.2 |
| benzene-1,3-diol | 18 | 8.4 | 21 | 19.1 | 7.8 | 16.5 |
| benzene-1,4-diol | 21 | 10.2 | 27.2 | 20.9 | 9.5 | 17.4 |
| 4-nitrotoluene | 20.1 | 9.6 | 3.9 | 20.1 | 13.6 | 3.2 |
| 2,4-dinitrotoluene | 20 | 13.1 | 4.9 | 19.8 | 13.5 | 3.9 |
| 1-bromopropane | 16.4 | 7.9 | 4.8 | 17.0 | 7.4 | 3.4 |

## VITA

Karl D. Kuklenz was born in Edina, Minnesota on August 31' 1983. He attended public school in Brooklyn Park, Minnesota until age fourteen. Karl graduated from The Colony High School in The Colony, Texas in the spring of 2002 and began his undergraduate studies at Sam Houston State University later that fall. In 2007, he graduated with a bachelor of science degree in forensic chemistry. Karl liked chemistry so much that he stayed on the Sam Houston State campus to earn his master of science degree in chemistry in the spring of 2009.

Mr. Kuklenz's many accomplishments include presentations at the American Chemical Society's south-west regional meetings in 2007 and 2008 as well as a presentation at the Texas Academy of Science meeting in 2008. At the time of this writing he has publications in Industrial and Engineering Chemistry as well as the Journal of the Texas Academy of Science. Mr. Kuklenz is proficient in several areas of chemistry having spent lots of time teaching physical chemistry laboratories as well as many undergraduate laboratories. He especially enjoyed expanding his knowledge of organic chemistry with help from the many accomplished professors and students of that field at SHSU.

