

Topic: Osmosis and Diffusion Lab

Summary: Students will observe diffusion and osmosis of cell membranes.

Goals & Objectives: Students will be able to analyze the type of osmotic solution. Students will be able to perform diffusion. Students will be able to analyze the turgor of plants.

Standards: CA Biology *1a. Students know* that cells are enclosed within semipermeable membranes that regulate their interaction with their surroundings.

Time Length: 90 minutes

Prerequisite Knowledge: Knowledge of osmosis and diffusion, cell knowledge, use of a balance, and the ability to measure the circumference of an object.

Materials:

- 2 Eggs per group
- 2 Potato slices per group
- Corn Syrup
- Water
- Vinegar
- Salt water
- 4 Beakers or mason jars per group
- 1 Graduated cylinder per group
- Triple beam balances or digital scales
- Pipette
- Vanilla extract
- Balloon
- Ziploc Baggie

Lab Setup:

Soak the eggs in vinegar for about one day until the shells of the egg have dissolved. Cut the potato into one-centimeter thick slices. Prepare the beaker/jars 2/3 full: one with water, one with colored water, one with salt water and one with corn syrup. Label the beakers #1-colored water, #2-corn syrup, #3-water, #4-salt water.

Procedures:

1. Measure the circumference and mass of the three eggs. Record your findings in data table 1.

2. Place one egg into #1 beaker of water and the second egg in the #2 beaker with corn syrup. Wait for one hour to take a second measurement.

3. Feel the texture of the potato slices. Then put one slice into the fresh water, one slice into the salt water, and leave the third slice exposed to air. Wait for one hour to feel the difference.

4. Place 10 drops of Vanilla extract inside a deflated balloon. Make sure not to get any vanilla on the outside of the bag. Inflate the balloon to a size that will easily fit inside the bag. Place the balloon in the bag and seal up the bag. Wait for one hour.

5. Try to answer the questions in the analysis section until it has been one hour for the eggs in the beaker/jar.

5. Take the eggs out of their solutions and measure their circumference and mass. Place the eggs back into their solution.

- 6. Feel the texture of the two slices of potato.
- 7. Open the Ziploc bag and smell the air inside. Record your results in data table 3.
- 8. Let the bag sit open for 2 minutes. Smell the air inside once again. Record your results.

Accommodations: Students with an IEP can take the handout home if they need extra time and/or do the even numbered questions, or just do the potato lab and not the other two.

Evaluation:

Each hypothesis is worth 2 points, for a total of 4 points. Each of the 12 questions is worth 3 points, for a total of 36 points. The conclusion is worth 5 points. This assignment is worth a total of 45 points.

Name: ______ Row: _____

Date:_____ Period:_____

Osmosis and Diffusion Lab

Problem Statement:

In this lab, you will observe the process of diffusion and osmosis. Three labs help demonstrate these processes. Each of these labs needs time to work.

Hypothesis:

If I put the egg in a hypotonic solution, then it will ______. If I put the egg in a hypertonic solution, then it will ______.

Materials:

- 2 Eggs per group
- 4 Beakers or mason jars Balance or digital scale
- 3 Potato slices per group
- Corn syrupWater

1 Graduated cylinder per groupSalt water

- Vinegar
- Food coloring
- Vanilla extract
- Pipette
- Balloon
- Ziploc bag

Procedures:

1. Measure the circumference and mass of the two eggs. Record your data in the data table.

2. Place one egg into the #1 beaker of water and the second egg in the #2 beaker with corn syrup. Wait for one hour to take a second measurement.

3. Feel the texture of the potato slices. Put one slice into the fresh water, one slice into the salt water, and leave the third slice exposed to air. Wait for one hour to feel the difference.

4. Place 10 drops of Vanilla extract inside a deflated balloon. Make sure not to get any vanilla on the outside of the bag. Inflate the balloon to a size that will easily fit inside the bag. Place the balloon in the bag and seal up the bag. Wait for one hour.

5. Wait for one hour for osmosis/diffusion to occur. The teacher may have another assignment for you to do.

5. Take the eggs out of their solutions and measure the circumference and mass. Place the eggs back into their solution.

6. Feel the texture of the three slices of potato.

7. Open the Ziploc bag and smell the air inside. Record your results.

8. Let the bag sit open for 2 minutes. Smell the air inside once again. Record your results.

Analysis: Use complete sentences when possible.

Egg Lab

Liquid	Initial	Initial	1 Hour	1 Hour	24 Hours	Hypertonic or
туре	Mass	Circumference	wass	Circumference	IVIASS	нуротопіс
1) What	is the ind	ependent variable	for the e	gg lab?		
2) What	are the de	pendent variables	s for the e	gg lab?		
				1 1 1 1	1 1	
3) What	happened	to the water in th	ie egg wh	en placed into the	e colored wat	er solution?
4) What	happened	to the water in th	e egg wh	en placed into the	e corn syrup s	solution?
		1.1	~		1 1	
5) What	type of so	olution was the co	rn syrup?		colored wa	ater?
Potato L	ab					
6) The te	exture of t	he fresh potato sl	ice is turg	gid, in between or	flaccid?	
7) What	happened	to the water in th	ie potato v	when it was soake	ed in the wate	er solution?
.,			- F			
8) What	happened	to the water in th	e potato v	when it was soake	ed in saline so	olution?
9) Comp	paring the	potato exposed to	water an	d the potato soak	ed in saline s	olution. Which
towtumo i		aid 9 Wilny 9		L		
texture 1	s more tur	'gid? wny?				
10) Plan	t cells use	the central vacuo	ole to prov	vide support for the	neir cell walls	s. When a plant
becomes	s turgid, w	hat is happing ins	side the co	ell?		
11) Wha	t type of s	solution was the v	vater solu	tion?	Saline solu	ution?

Vanilla Balloon Lab

10) After one hour, did it smell inside the bag?
11) How did the smell get into the bag?
12) After the bag was open for two minutes, was the smell more or less concentrated compared
to when you first opened it? Why?
Conclusion:
What is the difference between osmosis and diffusion? How does diffusion use concentration
gradients?