The Fibonacci Numbers

The numbers are:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, …

Each Fibonacci number is the sum of the previous two Fibonacci numbers!

Let n any positive integer. If F_n is what we use to describe the n^{th} Fibonacci number, then

$$F_n = F_{n-1} + F_{n-2}$$
We proved a theorem about the sum of the first few Fibonacci numbers:

Theorem

For any positive integer \(n \), the Fibonacci numbers satisfy:

\[
F_1 + F_2 + F_3 + \cdots + F_n = F_{n+2} - 1
\]
What about the first few Fibonacci numbers with even index:

\[F_2, F_4, F_6, \ldots, F_{2n}, \ldots \]

Let’s call them “even” Fibonaccis, since their index is even, although the numbers themselves aren’t always even!!
The “even” Fibonacci Numbers

Some notation: The first “even” Fibonacci number is $F_2 = 1$.

The second “even” Fibonacci number is $F_4 = 3$.

The third “even” Fibonacci number is $F_6 = 8$.

The tenth “even” Fibonacci number is $F_{20} = ??$.

The n^{th} “even” Fibonacci number is F_{2n}.
Tonight, try to come up with a formula for the sum of the first few “even” Fibonacci numbers.
Let's look at the first few:

\[F_2 + F_4 = 1 + 3 = 4 \]

\[F_2 + F_4 + F_6 = 1 + 3 + 8 = 12 \]

\[F_2 + F_4 + F_6 + F_8 = 1 + 3 + 8 + 21 = 33 \]

\[F_2 + F_4 + F_6 + F_8 + F_{10} = 1 + 3 + 8 + 21 + 55 = 88 \]

See a pattern?
It looks like the sum of the first few “even” Fibonacci numbers is one less than another Fibonacci number.

But which one?

\[F_2 + F_4 = 1 + 3 = 4 = F_5 - 1 \]

\[F_2 + F_4 + F_6 = 1 + 3 + 8 = 12 = F_7 - 1 \]

\[F_2 + F_4 + F_6 + F_8 = 1 + 3 + 8 + 21 = 33 = F_9 - 1 \]

\[F_2 + F_4 + F_6 + F_8 + F_{10} = 1 + 3 + 8 + 21 + 55 = 88 = F_{11} - 1 \]

Can we come up with a formula for the sum of the first few “even” Fibonacci numbers?
Let’s look at the last one we figured out:

\[F_2 + F_4 + F_6 + F_8 + F_{10} = 1 + 3 + 8 + 21 + 55 = 88 = F_{11} - 1 \]

The sum of the first 5 even Fibonacci numbers (up to \(F_{10} \)) is the 11th Fibonacci number less one.

Maybe it’s true that the sum of the first \(n \) “even” Fibonacci’s is one less than the next Fibonacci number. That is,

Conjecture

For any positive integer \(n \), the Fibonacci numbers satisfy:

\[F_2 + F_4 + F_6 + \cdots + F_{2n} = F_{2n+1} - 1 \]
Trying to prove: \[F_2 + F_4 + \cdots F_{2n} = F_{2n+1} - 1 \]

Let's try to prove this!!

We’re trying to find out what

\[F_2 + F_4 + \cdots F_{2n} \]

is equal to.

Well, let’s proceed like the last theorem.
Trying to prove: \(F_2 + F_4 + \cdots + F_{2n} = F_{2n+1} - 1 \)

We know \(F_3 = F_2 + F_1 \).

So, rewriting this a little:

\[F_2 = F_3 - F_1 \]

Also: we know \(F_5 = F_4 + F_3 \).

So:

\[F_4 = F_5 - F_3 \]

In general:

\[F_{\text{even}} = F_{\text{next odd}} - F_{\text{previous odd}} \]

Let's put these together:
Trying to prove: \(F_2 + F_4 + \cdots + F_{2n} = F_{2n+1} - 1 \)

\[
\begin{align*}
F_2 &= F_3 - F_1 \\
F_4 &= F_5 - F_3 \\
F_6 &= F_7 - F_5 \\
F_8 &= F_9 - F_7 \\
& \vdots \\
F_{2n-2} &= F_{2n-1} - F_{2n-3} \\
F_{2n} &= F_{2n+1} - F_{2n-1}
\end{align*}
\]

Adding up all the terms on the left sides will give us something equal to the sum of the terms on the right sides.
Trying to prove: \(F_2 + F_4 + \cdots + F_{2n} = F_{2n+1} - 1 \)

\[
F_2 = F_3 - F_1 \\
F_4 = F_5 - F_3 \\
F_6 = F_7 - F_5 \\
F_8 = F_9 - F_7 \\
\vdots \\
F_{2n-2} = F_{2n-1} - F_{2n-3} \\
+ F_{2n} = F_{2n+1} - F_{2n-1}
\]
Trying to prove: \(F_2 + F_4 + \cdots + F_{2n} = F_{2n+1} - 1 \)

\[
F_2 = F_3 - F_1 \\
F_4 = F_5 - F_3 \\
F_6 = F_7 - F_5 \\
F_8 = F_9 - F_7 \\
\vdots \quad \vdots \\
F_{2n-2} = F_{2n-1} - F_{2n-3} \\
F_{2n} = F_{2n+1} - F_{2n-1}
\]
Trying to prove: $F_2 + F_4 + \cdots + F_{2n} = F_{2n+1} - 1$

\[
\begin{align*}
F_2 &= F_3' - F_1 \\
F_4 &= F_3' - F_3 \\
F_6 &= F_4' - F_3 \\
F_8 &= F_5' - F_4 \\
& \quad \vdots \\
F_{2n-2} &= F_{2n-1} - F_{2n-3} \\
+ F_{2n} &= F_{2n+1} - F_{2n-1}
\end{align*}
\]
Trying to prove: \(F_2 + F_4 + \cdots + F_{2n} = F_{2n+1} - 1 \)

\[
F_2 = F_3 - F_1 \\
F_4 = F_5 - F_3 \\
F_6 = F_7 - F_5 \\
F_8 = F_9 - F_7 \\
\vdots \\
F_{2n-2} = F_{2n-1} - F_{2n-3} \\
+ F_{2n} = F_{2n+1} - F_{2n-1}
\]
Trying to prove: \[F_2 + F_4 + \cdots + F_{2n} = F_{2n+1} - 1 \]

\[
F_2 = F_3 - F_1 \\
F_4 = F_5 - F_3 \\
F_6 = F_7 - F_5 \\
F_8 = F_9 - F_7 \\
\vdots \quad \vdots \\
F_{2n-2} = F_{2n+1} - F_{2n+3} \\
+ \quad F_{2n} = F_{2n+1} - F_{2n+3}
\]
Trying to prove: \(F_2 + F_4 + \cdots + F_{2n} = F_{2n+1} - 1 \)

\[
F_2 = F_3 - F_1 \\
F_4 = F_5 - F_3 \\
F_6 = F_7 - F_5 \\
F_8 = F_9 - F_7 \\
\vdots \quad \vdots \\
F_{2n-2} = F_{2n-1} + F_{2n-3} - F_{2n-1} \\
\]

\[
F_2 + F_4 + F_6 + \cdots + F_{2n} = F_{2n+1} - F_1
\]
Trying to prove: \(F_2 + F_4 + \cdots + F_{2n} = F_{2n+1} - 1 \)

\[
F_2 = F_3 - F_1 \\
F_4 = F_5 - F_3 \\
F_6 = F_7 - F_5 \\
F_8 = F_9 - F_7 \\
\vdots \quad \vdots \quad \vdots \\
F_{2n-2} = F_{2n+1} - F_{2n+3} \\
+ \quad F_{2n} = F_{2n+1} - F_{2n+3}
\]

\[
F_2 + F_4 + F_6 + \cdots + F_{2n} = F_{2n+1} - 1
\]
Trying to prove: \[F_2 + F_4 + \cdots + F_{2n} = F_{2n+1} - 1 \]

This proves our second theorem!!

Theorem

For any positive integer \(n \), the even Fibonacci numbers satisfy:

\[F_2 + F_4 + F_6 + \cdots + F_{2n} = F_{2n+1} - 1 \]
The “odd” Fibonacci Numbers

What about the first few Fibonacci numbers with odd index:

\[F_1, F_3, F_5, \ldots, F_{2n-1}, \ldots \]

Let’s call them “odd” Fibonaccis, since their index is odd, although the numbers themselves aren’t always odd!!
Some notation: The first “odd” Fibonacci number is $F_1 = 1$.

The second “odd” Fibonacci number is $F_3 = 2$.

The third “odd” Fibonacci number is $F_5 = 5$.

The tenth “odd” Fibonacci number is $F_{19} = ??$.

The n^{th} “odd” Fibonacci number is F_{2n-1}.
Let's look at the first few:

\[F_1 + F_3 = 1 + 2 = 3 \]

\[F_1 + F_3 + F_5 = 1 + 2 + 5 = 8 \]

\[F_1 + F_3 + F_5 + F_7 = 1 + 2 + 5 + 13 = 21 \]

\[F_1 + F_3 + F_5 + F_7 + F_9 = 1 + 2 + 5 + 13 + 34 = 55 \]

See a pattern?
It looks like the sum of the first few “odd” Fibonacci numbers is another Fibonacci number.

But which one?

\[F_1 + F_3 = 1 + 2 = 3 = F_4 \]

\[F_1 + F_3 + F_5 = 1 + 2 + 5 = 8 = F_6 \]

\[F_1 + F_3 + F_5 + F_7 = 1 + 2 + 5 + 13 = 21 = F_8 \]

\[F_1 + F_3 + F_5 + F_7 + F_9 = 1 + 2 + 5 + 13 + 34 = 55 = F_{10} \]

Can we come up with a formula for the sum of the first few “even” Fibonacci numbers?
Maybe it’s true that the sum of the first n “odd” Fibonacci’s is the next Fibonacci number. That is,

Conjecture

For any positive integer n, the Fibonacci numbers satisfy:

$$F_1 + F_3 + F_5 + \cdots + F_{2n-1} = F_{2n}$$
Let’s try to prove this!!

We know $F_2 = F_1$.

So, rewriting this a little:

$$F_1 = F_2$$

Also: we know $F_4 = F_3 + F_2$.

So:

$$F_3 = F_4 - F_2$$

In general:

$$F_{\text{odd}} = F_{\text{next even}} - F_{\text{previous even}}$$
Trying to prove: \(F_1 + F_3 + \cdots + F_{2n-1} = F_{2n} \)

\[
F_1 = F_2 \\
F_3 = F_4 - F_2 \\
F_5 = F_6 - F_4 \\
F_7 = F_8 - F_6 \\
\vdots \\
F_{2n-3} = F_{2n-2} - F_{2n-4} \\
+ F_{2n-1} = F_{2n} - F_{2n-2}
\]

Adding up all the terms on the left sides will give us something equal to the sum of the terms on the right sides.
Trying to prove: \(F_1 + F_3 + \cdots + F_{2n-1} = F_{2n} \)

\[
F_1 = F_{1/2}
\]

\[
F_3 = F_4 - F_{1/2}
\]

\[
F_5 = F_6 - F_4
\]

\[
F_7 = F_8 - F_6
\]

\[
\vdots \quad \vdots
\]

\[
F_{2n-3} = F_{2n-2} - F_{2n-4}
\]

\[
+ \quad F_{2n-1} = F_{2n} - F_{2n-2}
\]

\[
\text{-------------} \quad \text{-------------}
\]
Trying to prove: \(F_1 + F_3 + \cdots + F_{2n-1} = F_{2n} \)

\[
\begin{align*}
F_1 &= \mathbb{F}_2 \\
F_3 &= \mathbb{F}_4 - \mathbb{F}_2 \\
F_5 &= F_6 - \mathbb{F}_4 \\
F_7 &= F_8 - F_6 \\
&\quad\vdots \\
F_{2n-3} &= F_{2n-2} - F_{2n-4} \\
+\quad F_{2n-1} &= F_{2n} - F_{2n-2}
\end{align*}
\]
Trying to prove: \(F_1 + F_3 + \cdots + F_{2n-1} = F_{2n} \)

\[
F_1 = F_2 \\
F_3 = F_4 - F_2 \\
F_5 = F_6 - F_4 \\
F_7 = F_8 - F_6 \\
\vdots \quad \vdots \\
F_{2n-3} = F_{2n-2} - F_{2n-4} \\
+ \quad F_{2n-1} = F_{2n} - F_{2n-2}
\]
Trying to prove: \[F_1 + F_3 + \cdots + F_{2n-1} = F_{2n} \]

\[
F_1 = \mathbb{F}_2
\]

\[
F_3 = \mathbb{F}_4 - \mathbb{F}_2
\]

\[
F_5 = \mathbb{F}_6 - \mathbb{F}_4
\]

\[
F_7 = \mathbb{F}_8 - \mathbb{F}_6
\]

\[
\vdots \quad \vdots
\]

\[
F_{2n-3} = F_{2n-2} - \mathbb{F}_{2n-4}
\]

\[
+ \quad F_{2n-1} = F_{2n} - F_{2n-2}
\]
Trying to prove: \[F_1 + F_3 + \cdots + F_{2n-1} = F_{2n} \]

\[
F_1 = F_2
\]

\[
F_3 = F_4 - F_2
\]

\[
F_5 = F_6 - F_4
\]

\[
F_7 = F_8 - F_6
\]

\[\vdots \quad \vdots \]

\[
F_{2n-3} = F_{2n-1} - F_{2n-3}
\]

\[+ F_{2n-1} = F_{2n} - F_{2n-1} \]

\[
F_1 + F_3 + \cdots + F_{2n-1} = F_{2n}
\]
Trying to prove: \[F_1 + F_3 + \cdots + F_{2n-1} = F_{2n} \]

This proves our third theorem!!

Theorem

For any positive integer \(n \), the Fibonacci numbers satisfy:

\[F_1 + F_3 + F_5 + \cdots + F_{2n-1} = F_{2n} \]
So far:

Theorem (Sum of first few Fibonacci numbers.)

For any positive integer \(n \), the Fibonacci numbers satisfy:

\[
F_1 + F_2 + F_3 + \cdots + F_n = F_{n+2} - 1
\]

Theorem (Sum of first few EVEN Fibonacci numbers.)

For any positive integer \(n \), the Fibonacci numbers satisfy:

\[
F_2 + F_4 + F_6 + \cdots + F_{2n} = F_{2n+1} - 1
\]

Theorem (Sum of first few ODD Fibonacci numbers.)

For any positive integer \(n \), the Fibonacci numbers satisfy:

\[
F_1 + F_3 + F_5 + \cdots + F_{2n-1} = F_{2n}
\]
One more theorem about sums:

Theorem (Sum of first few SQUARES of Fibonacci numbers.)

For any positive integer n, the Fibonacci numbers satisfy:

$$F_1^2 + F_2^2 + F_3^2 + \cdots + F_n^2 = F_n \cdot F_{n+1}$$
Trying to prove: \[F_1^2 + F_2^2 + F_3^2 + \cdots + F_n^2 = F_n \cdot F_{n+1} \]

We’ll take advantage of the following fact:

For each Fibonacci number \(F_n \)

\[F_{n+1} = F_n + F_{n-1} \]

\[F_n = F_{n+1} - F_{n-1} \]

\[F_n^2 = F_n \cdot F_n = F_n \cdot (F_{n+1} - F_{n-1}) \]

\[F_n^2 = F_n \cdot F_{n+1} - F_n \cdot F_{n-1} \]
Trying to prove: \[F_1^2 + F_2^2 + F_3^2 + \cdots + F_n^2 = F_n \cdot F_{n+1} \]

Let’s check this formula for a few different values of \(n \):

\[F_n^2 = F_n \cdot F_{n+1} - F_n \cdot F_{n-1} \]

\(n = 4 \):

\[F_4^2 = F_4 \cdot F_5 - F_4 \cdot F_3 \]

\[3^2 = 3 \cdot 5 - 3 \cdot 2 \]

\[9 = 15 - 6 \]

It works for \(n = 4 \)!
Trying to prove: \(F_1^2 + F_2^2 + F_3^2 + \cdots + F_n^2 = F_n \cdot F_{n+1} \)

Let’s check this formula for a few different values of \(n \):

\[
F_n^2 = F_n \cdot F_{n+1} - F_n \cdot F_{n-1}
\]

\(n = 8 \):

\[
F_8^2 = F_8 \cdot F_{9} - F_8 \cdot F_7
\]

\[
21^2 = 21 \cdot 34 - 21 \cdot 13
\]

\[
441 = 714 - 273 = 441
\]

It works for \(n = 8 \)!
Trying to prove: \[F_1^2 + F_2^2 + F_3^2 + \cdots + F_n^2 = F_n \cdot F_{n+1} \]

Let's use this formula:

\[F_n^2 = F_n \cdot F_{n+1} - F_n \cdot F_{n-1} \]

To find out what the sum of the first few SQUARES of Fibonacci numbers is:

\[F_1^2 + F_2^2 + F_3^2 + \cdots + F_n^2 = \text{???} \]
Trying to prove: \[F_1^2 + F_2^2 + F_3^2 + \cdots + F_n^2 = F_n \cdot F_{n+1} \]

We’re using:

\[F_n^2 = F_n \cdot F_{n+1} - F_n \cdot F_{n-1} \]

\[F_1^2 = F_1 \cdot F_2 \]
\[F_2^2 = F_2 \cdot F_3 - F_2 \cdot F_1 \]
\[F_3^2 = F_3 \cdot F_4 - F_3 \cdot F_2 \]
\[F_4^2 = F_4 \cdot F_5 - F_4 \cdot F_3 \]
\[\vdots \]
\[F_{n-1}^2 = F_{n-1} \cdot F_n - F_{n-1} \cdot F_{n-2} \]
\[+ \quad F_n^2 = F_n \cdot F_{n+1} - F_n \cdot F_{n-1} \]
Trying to prove: \(F_1^2 + F_2^2 + F_3^2 + \cdots + F_n^2 = F_n \cdot F_{n+1} \)

\[
\begin{align*}
F_1^2 &= F_1^2 = F_1 \\
F_2^2 &= F_2 \cdot F_3 - F_1^2 = F_2 \\
F_3^2 &= F_3 \cdot F_4 - F_2^2 = F_3 \\
F_4^2 &= F_4 \cdot F_5 - F_3^2 = F_4 \\
&\vdots \\
F_{n-1}^2 &= F_{n-1} \cdot F_n - F_{n-2}^2 \quad F_n^2 = F_n \cdot F_{n+1} - F_{n-1} \cdot F_{n-2} \\
\end{align*}
\]
Trying to prove: \[F_1^2 + F_2^2 + F_3^2 + \cdots + F_n^2 = F_n \cdot F_{n+1} \]
Trying to prove: \[F_1^2 + F_2^2 + F_3^2 + \cdots + F_n^2 = F_n \cdot F_{n+1} \]

\[
F_1^2 = F_1 \cdot F_2
\]

\[
F_2^2 = F_2 \cdot F_3 - F_1 \cdot F_4
\]

\[
F_3^2 = F_3 \cdot F_4 - F_2 \cdot F_5
\]

\[
F_4^2 = F_4 \cdot F_5 - F_3 \cdot F_6
\]

\[
\vdots
\]

\[
F_{n-1}^2 = F_{n-1} \cdot F_n - F_{n-2} \cdot F_n
\]

\[
+ \quad F_n^2 = F_n \cdot F_{n+1} - F_{n-1} \cdot F_{n-1}
\]
Trying to prove: \(F_1^2 + F_2^2 + F_3^2 + \cdots + F_n^2 = F_n \cdot F_{n+1} \)

\[
F_1^2 = F_1 \cdot F_2 \\
F_2^2 = F_2 \cdot F_3 - F_1^2 \\
F_3^2 = F_3 \cdot F_4 - F_2^2 \\
F_4^2 = F_4 \cdot F_5 - F_3^2 \\
\vdots \quad \vdots \\
F_{n-1}^2 = F_{n-1} \cdot F_n - F_{n-2}^2 \\
+ \quad F_n^2 = F_n \cdot F_{n+1} - F_{n-1} \cdot F_n
\]
Trying to prove: \[F_1^2 + F_2^2 + F_3^2 + \cdots + F_n^2 = F_n \cdot F_{n+1} \]

\[
F_1^2 = F_1 \cdot F_2 \\
F_2^2 = F_2 \cdot F_3 - F_1^2 \\
F_3^2 = F_3 \cdot F_4 - F_2^2 \\
F_4^2 = F_4 \cdot F_5 - F_3^2 \\
\vdots \\
F_{n-1}^2 = F_{n-1} \cdot F_n - F_{n-2}^2 \\
+ F_n^2 = F_n \cdot F_{n+1} - F_{n-1} \cdot F_{n+1}
\]

\[
F_1^2 + F_2^2 + F_3^2 + \cdots + F_n^2 = F_n \cdot F_{n+1}
\]
Our fourth theorem:

Theorem (Sum of first few SQUARES of Fibonacci numbers.)

For any positive integer n, the Fibonacci numbers satisfy:

$$F_1^2 + F_2^2 + F_3^2 + \cdots + F_n^2 = F_n \cdot F_{n+1}$$
So far:

<table>
<thead>
<tr>
<th>Theorem (Sum of first few Fibonacci numbers.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[F_1 + F_2 + F_3 + \cdots + F_n = F_{n+2} - 1]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Sum of first few EVEN Fibonacci numbers.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[F_2 + F_4 + F_6 + \cdots + F_{2n} = F_{2n+1} - 1]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Sum of first few ODD Fibonacci numbers.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[F_1 + F_3 + F_5 + \cdots + F_{2n-1} = F_{2n}]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Sum of first few SQUARES of Fibonacci numbers.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[F_1^2 + F_2^2 + F_3^2 + \cdots + F_n^2 = F_n \cdot F_{n+1}]</td>
</tr>
</tbody>
</table>
Examples

\[1 + 2 + 5 + 13 + 34 + 89 + 233 + 610 + 1597 + 4181 = 6765 \]

\[1 + 1 + 4 + 9 + 25 + 64 + 169 + 441 + 1156 + 3025 + 7921 = 89 \times 144 = 12816 \]

Now, complete this worksheet