Delta Sets of Numerical Monoids: A Progress Report

Scott Chapman

Sam Houston State University

February 4, 2010

Papers This Talk is Based on

Delta Sets of Numerical Monoids

Introduction

Background

Initial Results

Delta Sets and Arithmetic Sequences of Integers

A Theorem on Singleton Delta Sets

Baginski’s Conjecture

Kaplan’s Conjecture

Questions

Papers This Talk is Based on

Let M be a commutative cancellative atomic monoid.
Let M be a commutative cancellative atomic monoid. Let $\mathcal{I}(M)$ be the set of irreducible elements of M. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m. Let $\mathcal{L}(m)$ be the set of lengths of m. The set $\mathcal{L}(m)$ is called the set of lengths of m.
Definitions

Let M be a commutative cancellative atomic monoid. Let $\mathcal{I}(M)$ be the set of irreducible elements of M and M^\times its set of units.
Let M be a commutative cancellative atomic monoid. Let $\mathcal{I}(M)$ be the set of irreducible elements of M and M^\times its set of units. For $m \in M \setminus M^\times$, set

$$\mathcal{L}(m) = \{ t \in \mathbb{N} \mid \exists x_1, \ldots, x_t \in \mathcal{I}(M) \text{ with } m = x_1 \cdots x_t \}.$$
Let M be a commutative cancellative atomic monoid. Let $\mathcal{I}(M)$ be the set of irreducible elements of M and M^\times its set of units. For $m \in M \setminus M^\times$, set

$$\mathcal{L}(m) = \{ t \in \mathbb{N} \mid \exists x_1, \ldots, x_t \in \mathcal{I}(M) \text{ with } m = x_1 \cdots x_t \}.$$

The set $\mathcal{L}(m)$ is called the set of lengths of m.

Definitions
Definitions

If \(m \in M \setminus M^\times \) and

\[\mathcal{L}(m) = \{x_1, \ldots, x_n\} \]

with \(x_1 < x_2 < \cdots < x_n \), then
Definitions

If \(m \in M \setminus M^\times \) and

\[
\mathcal{L}(m) = \{x_1, \ldots, x_n\}
\]

with \(x_1 < x_2 < \cdots < x_n \), then

the \textit{delta set} of \(m \) is

\[
\Delta(m) = \{x_i - x_{i-1}|2 \leq i \leq n\}
\]
Definitions

If \(m \in M \setminus M^\times \) and

\[
\mathcal{L}(m) = \{x_1, \ldots, x_n\}
\]

with \(x_1 < x_2 < \cdots < x_n \), then

the *delta set* of \(m \) is

\[
\Delta(m) = \{x_i - x_{i-1} | 2 \leq i \leq n\}
\]

and the *delta set* of \(M \) is

\[
\Delta(M) = \bigcup_{m \in M \setminus M^\times} \Delta(m).
\]
Some Known Results

If \(M \) is a Krull monoid with finite divisor class group \(\text{Cl}(M) = G \) where \(|G| \geq 3 \), then

\[\Delta(M) \subseteq \{1, \ldots, D(G) - 2\} \]

where \(D(G) \) represents Davenport’s constant of \(G \).
Some Known Results

If M is a Krull monoid with finite divisor class group $\text{Cl}(M) = G$ where $|G| \geq 3$, then

$$\Delta(M) \subseteq \{1, \ldots, D(G) - 2\}$$

where $D(G)$ represents Davenport's constant of G.

If $\text{Cl}(M) = \mathbb{Z}_n$ and each divisor class of $\text{Cl}(M)$ contains a prime divisor, then $\Delta(M) = \{1, \ldots, n - 2\}$.
Some Known Results

If M is a Krull monoid with finite divisor class group $\text{Cl}(M) = G$ where $|G| \geq 3$, then

$$\Delta(M) \subseteq \{1, \ldots, D(G) - 2\}$$

where $D(G)$ represents Davenport’s constant of G.

If $\text{Cl}(M) = \mathbb{Z}_n$ and each divisor class of $\text{Cl}(M)$ contains a prime divisor, then $\Delta(M) = \{1, \ldots, n - 2\}$.

On the other hand, the exact delta set of a Krull monoid is known in very few other instances, regardless of the knowledge of the distribution of the prime divisors in $\text{Cl}(M)$.
Of fundamental importance in our study of delta sets, will be the following result of Geroldinger:
Of fundamental importance in our study of delta sets, will be the following result of Geroldinger:

Proposition

Let M be a commutative cancellative reduced atomic monoid (i.e., $M^\times = \{0\}$). Then

$$\min \Delta(M) = \gcd \Delta(M).$$
Of fundamental importance in our study of delta sets, will be the following result of Geroldinger:

Proposition

Let M be a commutative cancellative reduced atomic monoid (i.e., $M^\times = \{0\}$). Then

$$\min \Delta(M) = \gcd \Delta(M).$$

Hence, if $d = \gcd \Delta(M)$ and $|\Delta(M)| < \infty$, then

$$\Delta(M) \subseteq \{d, 2d, \ldots, kd\}$$

for some $k \in \mathbb{N}$.
Goal

Given a numerical monoid $S = \langle n_1, n_2, \ldots, n_k \rangle$ describe as best we can the set $\Delta(S)$.
Goal

Given a numerical monoid $S = \langle n_1, n_2, \ldots, n_k \rangle$ describe as best we can the set $\Delta(S)$.

Is this interesting?
Goal

Given a numerical monoid $S = \langle n_1, n_2, \ldots, n_k \rangle$ describe as best we can the set $\Delta(S)$.

Is this interesting?

Example: $\Delta(\langle 7, 9, 12 \rangle) = \{1\}$
Goal

Given a numerical monoid $S = \langle n_1, n_2, \ldots, n_k \rangle$ describe as best we can the set $\Delta(S)$.

Is this interesting?

Example: $\Delta(\langle 7, 9, 12 \rangle) = \{1\}$

$\Delta(\langle 7, 10, 12 \rangle) = \{1, 2\}$.
Basic results can be determined using techniques developed by Rosales and García-Sánchez.
Basic results can be determined using techniques developed by Rosales and García-Sáchez.

Let S be an affine monoid (commutative, finitely generated, torsion free, cancellative and reduced) which is minimally generated by $\{s_1, \ldots, s_t\}$.
Basic results can be determined using techniques developed by Rosales and García-Sáchez.

Let S be a affine monoid (commutative, finitely generated, torsion free, cancellative and reduced) which is minimally generated by $\{s_1, \ldots, s_t\}$.

It is well-known that S is atomic and $\mathcal{I}(S) = \{s_1, \ldots, s_t\}$.
Basic results can be determined using techniques developed by Rosales and García-Sánchez.

Let S be a affine monoid (commutative, finitely generated, torsion free, cancellative and reduced) which is minimally generated by $\{s_1, \ldots, s_t\}$.

It is well-known that S is atomic and $\mathcal{I}(S) = \{s_1, \ldots, s_t\}$.

Consider the monoid

$$\sim s := \{(x_1, \ldots, x_t, y_1, \ldots, y_t) \in \mathbb{N}^t_0 \mid \sum_{j=1}^{t} x_j s_j = \sum_{j=1}^{t} y_j s_j \}. $$
Since S can be viewed as a submonoid of \mathbb{N}^k_0 for some $k \in \mathbb{N}$, the monoid \sim_S is itself atomic and finitely generated.
Since S can be viewed as a submonoid of \mathbb{N}_0^k for some $k \in \mathbb{N}$, the monoid \sim_S is itself atomic and finitely generated.

Assume that $\mathcal{I}(\sim_S) = \{v_1, \cdots, v_r\}$.

$$\delta(\tau) = x_1 + \cdots + x_t - y_1 - \cdots - y_t$$

δ is a monoid homomorphism from $(\sim_S, +)$ to $(\mathbb{Z}, +)$.
Since S can be viewed as a submonoid of \mathbb{N}_0^k for some $k \in \mathbb{N}$, the monoid \sim_S is itself atomic and finitely generated.

Assume that $\mathcal{I}(\sim_S) = \{v_1, \ldots, v_r\}$.

Let $\tau = (x_1, \ldots, x_t, y_1, \ldots, y_t)$ be any element of \sim_S and define $\delta : \sim_S \to \mathbb{Z}$ by

$$\delta(\tau) = x_1 + \cdots + x_t - y_1 - \cdots - y_t.$$
Since S can be viewed as a submonoid of \mathbb{N}_0^k for some $k \in \mathbb{N}$, the monoid $\sim S$ is itself atomic and finitely generated.

Assume that $\mathcal{I}(\sim S) = \{v_1, \ldots, v_r\}$.

Let $\tau = (x_1, \ldots, x_t, y_1, \ldots, y_t)$ be any element of $\sim S$ and define $\delta : \sim S \rightarrow \mathbb{Z}$ by

$$\delta(\tau) = x_1 + \cdots + x_t - y_1 - \cdots - y_t.$$

δ is a monoid homomorphism from $(\sim S, +)$ to $(\mathbb{Z}, +)$.
More Tools

Set

$$P(\sim S) = \{\delta(v_i) | v_i \in I(\sim S)\} \cap \mathbb{N}$$
More Tools

Set

\[P(\sim S) = \{ \delta(v_i) \mid v_i \in I(\sim S) \} \cap \mathbb{N} \]

For each \(1 \leq i \leq r \) set \(v_i = (v_{i1}, \ldots, v_{it}, w_{i1}, \ldots, w_{it}) \) and define
More Tools

Set

\[P(\sim S) = \{ \delta(v_i) \mid v_i \in \mathcal{I}(\sim S) \} \cap \mathbb{N} \]

For each \(1 \leq i \leq r \) set \(v_i = (v_{i1}, \ldots, v_{it}, w_{i1}, \ldots, w_{it}) \) and define

\[\alpha(v_i) = \sum_{j=1}^{t} v_{ij}s_j. \]
More Tools

Set

\[P(\sim S) = \{ \delta(v_i) \mid v_i \in I(\sim S) \} \cap \mathbb{N} \]

For each \(1 \leq i \leq r \) set \(v_i = (v_{i1}, \ldots, v_{it}, w_{i1}, \ldots, w_{it}) \) and define

\[\alpha(v_i) = \sum_{j=1}^{t} v_{ij}s_j. \]

Set

\[H(S) = \bigcup_{i=1}^{r} \Delta(\alpha(v_i)). \]
First Result

Proposition

Let S be an affine monoid.

1. $\max \Delta(S) = \max H(S)$
First Result

Proposition

Let S be an affine monoid.

1. $\max \Delta(S) = \max H(S)$

2. $\min \Delta(S) \geq \gcd P(\sim s)$
First Result

Proposition

Let S be an affine monoid.

1. $\max \Delta(S) = \max H(S)$
2. $\min \Delta(S) \geq \gcd P(\sim S)$
3. $\{\gcd P(\sim S)\} \cup H(S) \subseteq \Delta(S) \subseteq [\gcd P(\sim S), \max H(S)]$.
Proposition

Let $S = \langle n_1, n_2, \ldots, n_t \rangle$ where $\{n_1, n_2, \ldots, n_t\}$ is the minimal set of generators. Then

$$\min \Delta(S) = \gcd \{n_i - n_{i-1} \mid i \in \{2, 3, \ldots, t\}\}.$$

Hence, if $d = \gcd \{n_i - n_{i-1} \mid i \in \{2, 3, \ldots, t\}\}$, then $\Delta(S) \subseteq \{d, 2d, \cdots, qd\}$ for some $q \in \mathbb{N}$.
Two Interesting Examples

Proposition

Let $d \geq 1$ and set $D_t = \{d, 2d, \ldots, td\}$ for some $t \geq 1$. There exists a three generated numerical monoid S_t so that $\Delta(S_t) = D_t$.
Proposition

1. Let $d \geq 1$ and set $D_t = \{d, 2d, \ldots, td\}$ for some $t \geq 1$. There exists a three generated numerical monoid S_t so that $\Delta(S_t) = D_t$.

2. If $S = \langle n, n + 1, n^2 - n - 1 \rangle$ with $n \geq 3$, then

$$\Delta(S) = [1, n - 2] \cup \{2n - 5\}.$$
Let $S = \langle n, n + k, \ldots, n + tk, n + (t + 1)k \rangle$ where $n, t, k \geq 1$. Then $\Delta(S) = \{k\}$.
Alternate to Original Argument

A simpler than first published proof of the last result can be had as follows.
A simpler than first published proof of the last result can be had as follows.

Proposition

Let $S = \langle a, a + k, \ldots, a + wk \rangle$, with $0 \leq w < a$ and $\gcd(a, k) = 1$,
A simpler than first published proof of the last result can be had as follows.

Proposition

Let \(S = \langle a, a + k, \ldots, a + wk \rangle \), with \(0 \leq w < a \) and \(\gcd(a, k) = 1 \),

1. If \(n \in S \), then \(n = c_1 a + c_2 k \) with \(c_1, c_2 \in \mathbb{N} \) and \(0 \leq c_2 < a \).
Alternate to Original Argument

A simpler than first published proof of the last result can be had as follows.

Proposition

Let $S = \langle a, a + k, \ldots, a + wk \rangle$, with $0 \leq w < a$ and $\gcd(a, k) = 1$,

1. If $n \in S$, then $n = c_1a + c_2k$ with $c_1, c_2 \in \mathbb{N}$ and $0 \leq c_2 < a$.

2. Suppose $n = c_1a + c_2k \in S$ with $0 \leq c_2 < a$. Then

$$L(n) = \left\{ c_1 + kd \mid \left\lfloor \frac{c_2 - c_1w}{a + wk} \right\rfloor \leq d \leq 0 \right\}.$$
Singleton Delta Sets

Proposition

Let $S = \langle n_1, n_2, n_3 \rangle$ be a numerical monoid with n_1, n_2, n_3 a minimal set of generators. If $d = \gcd(n_2 - n_1, n_3 - n_2)$, then the following conditions are equivalent:

1. $\Delta(S)$ is a singleton.
Singleton Delta Sets

Proposition

Let \(S = \langle n_1, n_2, n_3 \rangle \) be a numerical monoid with \(n_1, n_2, n_3 \) a minimal set of generators. If \(d = \gcd(n_2 - n_1, n_3 - n_2) \), then the following conditions are equivalent:

1. \(\Delta(S) \) is a singleton.
2. \(n_1 \in \left\langle \frac{n_2 - n_1}{d}, \frac{n_3 - n_1}{d} \right\rangle \) and \(n_3 \in \left\langle \frac{n_3 - n_2}{d}, \frac{n_3 - n_1}{d} \right\rangle \).
Theorem

If $M = \langle n_1, \ldots, n_k \rangle$ is a primitive numerical monoid, with $n_1 < n_2 < \cdots < n_k$, then for all $x \geq 2kn_2n_k^2$ we have $\Delta(x) = \Delta(x + n_1n_k)$. Hence, Delta sets of numerical monoids are eventually periodic.
Baginski’s Conjecture

Theorem

If $M = \langle n_1, \ldots, n_k \rangle$ is a primitive numerical monoid, with $n_1 < n_2 < \cdots < n_k$, then for all $x \geq 2kn_2n_k^2$ we have $\Delta(x) = \Delta(x + n_1n_k)$. Hence, Delta sets of numerical monoids are eventually periodic.

Corollary

Let $M = \langle n_1, \ldots, n_k \rangle$ be a primitive numerical monoid, then if we set $N = 2kn_2n_k^2 + n_1n_k$, we have:

$$\Delta(M) = \bigcup_{x \in M, x < N} \Delta(x)$$
By earlier results, if \(S = \langle s, s + 1, 2s - 1 \rangle \) for \(s \geq 3 \) then \(\Delta(S) = \{1, 2, \ldots, \left\lfloor \frac{s}{3} \right\rfloor \} \).
By earlier results, if $S = \langle s, s + 1, 2s - 1 \rangle$ for $s \geq 3$ then
$\Delta(S) = \{1, 2, \ldots, \lfloor \frac{s}{3} \rfloor \}$.

Now, fix the successive differences between the generators and set $M_n = \langle n, n + 1, n + (s - 1) \rangle$. Computer observations indicate that increasing n will cause the size of the delta set to diminish.
An Observation

By earlier results, if $S = \langle s, s + 1, 2s - 1 \rangle$ for $s \geq 3$ then $
abla(S) = \{1, 2, \ldots, \left\lfloor \frac{s}{3} \right\rfloor \}$.

Now, fix the successive differences between the generators and set $M_n = \langle n, n + 1, n + (s - 1) \rangle$. Computer observations indicate that increasing n will cause the size of the delta set to diminish.

For instance, if $s = 21$ we obtain the following.

<table>
<thead>
<tr>
<th>n</th>
<th>M_n</th>
<th>$\Delta(M_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>$\langle 21, 22, 41 \rangle$</td>
<td>${1, 2, 3, 4, 5, 6, 7}$</td>
</tr>
<tr>
<td>22</td>
<td>$\langle 22, 23, 42 \rangle$</td>
<td>${1, 2, 3, 4, 5}$</td>
</tr>
<tr>
<td>53</td>
<td>$\langle 53, 54, 73 \rangle$</td>
<td>${1, 2, 3}$</td>
</tr>
<tr>
<td>321</td>
<td>$\langle 321, 322, 341 \rangle$</td>
<td>${1, 2}$</td>
</tr>
<tr>
<td>$n \geq 322$</td>
<td>$\langle n, n + 1, n + 20 \rangle$</td>
<td>${1}$</td>
</tr>
</tbody>
</table>
Kaplan’s Conjecture

Theorem

Let $M_n = \langle n, n + r_1, \ldots, n + r_t \rangle$, where $\gcd(r_1, \ldots, r_t) = z$. Then there exists $N \in \mathbb{N}$ such that for all $n > N$,

$\Delta(M_n) = \left\{ \frac{z}{\gcd(n, z)} \right\}$. Specifically, the statement is true for

$N = r_t(r_t - 1)(t - 1) - 1$.

Kaplan’s Conjecture

Theorem

Let \(M_n = \langle n, n + r_1, \ldots, n + r_t \rangle \), where \(\gcd(r_1, \ldots, r_t) = z \). Then there exists \(N \in \mathbb{N} \) such that for all \(n > N \),
\[
\Delta(M_n) = \left\{ \frac{z}{\gcd(n, z)} \right\}.
\]
Specifically, the statement is true for \(N = r_t(r_t - 1)(t - 1) - 1 \).

Proposition

Suppose \(r, s \in \mathbb{N} \), \(\gcd(r, s) = 1 \), and \(0 < r < s \). Set \(M_n = \langle n, n + r, n + s \rangle \) and
\[
N = \max\{rs - r - s, s^2 - rs + r - 3s\}.
\]
Then \(\Delta(M_n) = \{1\} \) for \(n > N \) but \(\Delta(M_N) \neq \{1\} \).
Questions

1. How do the results change when an arithmetic sequence of integers is replaced by a generalized arithmetic sequence of integers (i.e., $S = \langle a, ha + d, ha + 2d, \ldots, ha + xd \rangle$ with $\gcd(a, d) = 1$).
Questions

1. How do the results change when an arithmetic sequence of integers is replaced by a generalized arithmetic sequence of integers (i.e., $S = \langle a, ha + d, ha + 2d, \ldots, ha + xd \rangle$ with $\gcd(a, d) = 1$).

2. Are the catenary degree and tame degree functions also eventually periodic on a numerical monoid?
Questions

1. How do the results change when an arithmetic sequence of integers is replaced by a *generalized arithmetic sequence of integers* (i.e., $S = \langle a, ha + d, ha + 2d, \ldots, ha + xd \rangle$ with $\gcd(a, d) = 1$).

2. Are the catenary degree and tame degree functions also eventually periodic on a numerical monoid?

3. Does Kaplan’s Conjecture work if the *entire* numerical monoid S (and not just the generators) is shifted to the right n units?
Questions

1. How do the results change when an arithmetic sequence of integers is replaced by a generalized arithmetic sequence of integers (i.e., \(S = \langle a, ha + d, ha + 2d, \ldots, ha + xd \rangle \) with \(\gcd(a, d) = 1 \)).

2. Are the catenary degree and tame degree functions also eventually periodic on a numerical monoid?

3. Does Kaplan’s Conjecture work if the entire numerical monoid \(S \) (and not just the generators) is shifted to the right \(n \) units?

4. What are necessary and sufficient conditions on \(n_1, n_2 \) and \(n_3 \) so that

\[
\Delta(S) = [d, \max \Delta(S)] \cap d\mathbb{N}.
\]