This talk is based on a recent paper of the same title (currently under review) by Bill Smith and myself. This paper is based on a 1990 paper of Erdős and Zaks (Journal of Number Theory 36, 89–94).
Definitions of the Erdős-Zaks Paper

Let $a_1, \ldots, a_k, n_1, \ldots, n_k$ be positive integers and set $s = \sum_{i=1}^{k} \frac{a_i}{n_i}$.

Call s' a subsum of s if $s' = \sum_{i=1}^{k} \frac{a'_i}{n_i}$ where the a_i's are integers such that $0 \leq a'_i \leq a_i$ for $i = 1, \ldots, k$.

A sum s is admissible if for some positive integers b_1, \ldots, b_k with $\frac{b_i}{n_i} < 1$ for each i, then the sum $\sum_{i=1}^{k} \frac{b_i}{n_i}$ is an integer.

The sum s is reducible if a proper subsum s' exists for which $s' = 1$. The sum s is otherwise irreducible.

The set $\{n_1, \ldots, n_k\}$ is splittable if and only if whenever $s > 1$ and s is an integer, then s is reducible.
Let $a_1, \ldots, a_k, n_1, \ldots, n_k$ be positive integers and set $s = \sum_{i=1}^{k} \frac{a_i}{n_i}$.

Call s' a *subsum* of s if $s' = \sum_{i=1}^{k} \frac{a'_i}{n_i}$ where the a_i's are integers such that $0 \leq a'_i \leq a_i$ for $i = 1, \ldots, k$.

A sum s is *admissible* if for some positive integers b_1, \ldots, b_k with $\frac{b_i}{n_i} < 1$ for each i, then the sum $\sum_{i=1}^{k} \frac{b_i}{n_i}$ is an integer.

The sum s is *reducible* if a proper subsum s' exists for which $s' = 1$. The sum s is otherwise *irreducible*.

The set $\{n_1, \ldots, n_k\}$ is *splittable* if and only if whenever $s > 1$ and s is an integer, then s is reducible.
Definitions of the Erdős-Zaks Paper

Let \(a_1, \ldots, a_k, n_1, \ldots, n_k \) be positive integers and set \(s = \sum_{i=1}^{k} \frac{a_i}{n_i} \).

Call \(s' \) a subsum of \(s \) if \(s' = \sum_{i=1}^{k} \frac{a'_i}{n_i} \) where the \(a_i \)'s are integers such that \(0 \leq a'_i \leq a_i \) for \(i = 1, \ldots, k \).

A sum \(s \) is admissible if for some positive integers \(b_1, \ldots, b_k \) with \(\frac{b_i}{n_i} < 1 \) for each \(i \), then the sum \(\sum_{i=1}^{k} \frac{b_i}{n_i} \) is an integer.

The sum \(s \) is reducible if a proper subsum \(s' \) exists for which \(s' = 1 \). The sum \(s \) is otherwise irreducible.

The set \(\{n_1, \ldots, n_k\} \) is splittable if and only if whenever \(s > 1 \) and \(s \) is an integer, then \(s \) is reducible.
Let $a_1, \ldots, a_k, n_1, \ldots, n_k$ be positive integers and set $s = \sum_{i=1}^{k} \frac{a_i}{n_i}$.

Call s' a subsum of s if $s' = \sum_{i=1}^{k} \frac{a'_i}{n_i}$ where the a_i's are integers such that $0 \leq a'_i \leq a_i$ for $i = 1, \ldots, k$.

A sum s is admissible if for some positive integers b_1, \ldots, b_k with $\frac{b_i}{n_i} < 1$ for each i, then the sum $\sum_{i=1}^{k} \frac{b_i}{n_i}$ is an integer.

The sum s is reducible if a proper subsum s' exists for which $s' = 1$. The sum s is otherwise irreducible.

The set $\{n_1, \ldots, n_k\}$ is splittable if and only if whenever $s > 1$ and s is an integer, then s is reducible.
Definitions of the Erdős-Zaks Paper

Let \(a_1, \ldots, a_k, n_1, \ldots, n_k \) be positive integers and set \(s = \sum_{i=1}^{k} \frac{a_i}{n_i} \).

Call \(s' \) a subsum of \(s \) if \(s' = \sum_{i=1}^{k} \frac{a'_i}{n_i} \) where the \(a_i \)'s are integers such that \(0 \leq a'_i \leq a_i \) for \(i = 1, \ldots, k \).

A sum \(s \) is admissible if for some positive integers \(b_1, \ldots, b_k \) with \(\frac{b_i}{n_i} < 1 \) for each \(i \), then the sum \(\sum_{i=1}^{k} \frac{b_i}{n_i} \) is an integer.

The sum \(s \) is reducible if a proper subsum \(s' \) exists for which \(s' = 1 \). The sum \(s \) is otherwise irreducible.

The set \(\{n_1, \ldots, n_k\} \) is splittable if and only if whenever \(s > 1 \) and \(s \) is an integer, then \(s \) is reducible.
Example

The set \(\{2, 3, 5, 30\} \) is not splittable. The sum

\[
s = \frac{1}{2} + \frac{2}{3} + \frac{4}{5} + \frac{1}{30} = 2,
\]

but no subsum of \(s \) equals 1.

Example

The set \(\{2, 5, 10\} \) is splittable. This is easily seen by considering the inequality

\[
\frac{x}{10} + \frac{y}{5} + \frac{z}{2} > 1.
\]

Hence \(x + 2y + 5z > 10 \) and we need only consider the finitely many cases where \(0 \leq x \leq 9, \ 0 \leq y \leq 4 \) and \(0 \leq z \leq 1 \).
The set \(\{2, 3, 5, 30\} \) is not splittable. The sum

\[
s = \frac{1}{2} + \frac{2}{3} + \frac{4}{5} + \frac{1}{30} = 2,
\]

but no subsum of \(s \) equals 1.

The set \(\{2, 5, 10\} \) is splittable. This is easily seen by considering the inequality

\[
\frac{x}{10} + \frac{y}{5} + \frac{z}{2} > 1.
\]

Hence \(x + 2y + 5z > 10 \) and we need only consider the finitely many cases where \(0 \leq x \leq 9 \), \(0 \leq y \leq 4 \) and \(0 \leq z \leq 1 \).
Theorem 1

For every integer N, $N > 1$, there exists a non-splittable set $\{n_1, \ldots, n_k\}$ such that $s = \sum_{i=1}^{k} \frac{a_i}{n_i}$ is an integer, $s \geq N$ and s is irreducible.

Problem A

For a given α (not necessarily an integer) what is the smallest possible k for which an irreducible sum s exists whose length is k?

Problem B

For a given k, what is the smallest α that will imply that every sum of length k, for which $s \geq \alpha$ is reducible?
Theorem 1

For every integer N, $N > 1$, there exists a non-splittable set $\{n_1, \ldots, n_k\}$ such that $s = \sum_{i=1}^{k} \frac{a_i}{n_i}$ is an integer, $s \geq N$ and s is irreducible.

Problem A

For a given α (not necessarily an integer) what is the smallest possible k for which an irreducible sum s exists whose length is k?

Problem B

For a given k, what is the smallest α that will imply that every sum of length k, for which $s \geq \alpha$ is reducible?
Theorem 1
For every integer N, $N > 1$, there exists a non-splittable set $\{n_1, \ldots, n_k\}$ such that $s = \sum_{i=1}^{k} \frac{a_i}{n_i}$ is an integer, $s \geq N$ and s is irreducible.

Problem A
For a given α (not necessarily an integer) what is the smallest possible k for which an irreducible sum s exists whose length is k?

Problem B
For a given k, what is the smallest α that will imply that every sum of length k, for which $s \geq \alpha$ is reducible?
Theorem 2

An admissible sum s of length k is reducible whenever

$$s \geq (k - 1) + \frac{1}{p_{k-1}}$$

where p_{k-1} is the $(k - 1)$th prime number.

Theorem 3

For every i, $2 \leq i \leq k - 2$, an admissible sum s of length k exists which is irreducible and for which $s = i$.
Theorem 2

An admissible sum s of length k is reducible whenever

$$s \geq (k - 1) + \frac{1}{p_{k-1}}$$

where p_{k-1} is the $(k - 1)$st prime number.

Theorem 3

For every i, $2 \leq i \leq k - 2$, an admissible sum s of length k exists which is irreducible and for which $s = i$.
Motivation?

Question

What is the motivation for studying admissible sums and splittable sets?

Answer

The connection between these sums and the theory of non-unique factorizations in algebraic number rings and more general Dedekind domains.
Motivation?

Question
What is the motivation for studying admissible sums and splittable sets?

Answer
The connection between these sums and the theory of non-unique factorizations in algebraic number rings and more general Dedekind domains.
Let D be a Krull (or Dedekind) domain with divisor class group $\text{Cl}(D) = G$.

Let S be the set of divisor classes of D which contain height-one prime ideals of D.

Set $\mathcal{F}(G)$ be the free abelian monoid on G whose elements we represent as $\prod_{g \in G} g^{x_g}$.

Set $\mathcal{B}(G, S) = \{ \prod_{g \in G} g^{x_g} \mid \sum x_g g = 0 \text{ and } x_g = 0 \text{ if } g \notin S \}$.
Definitions and Notation

Let D be a Krull (or Dedekind) domain with divisor class group $\text{Cl}(D) = G$.

Let S be the set of divisor classes of D which contain height-one prime ideals of D.

Set $\mathcal{F}(G)$ be the free abelian monoid on G whose elements we represent as $\prod_{g \in G} g^{x_g}$.

Set $\mathcal{B}(G, S) = \{ \prod_{g \in G} g^{x_g} \mid \sum x_g g = 0 \text{ and } x_g = 0 \text{ if } g \not\in S \}$.
Let \(D \) be a Krull (or Dedekind) domain with divisor class group \(\text{Cl}(D) = G \).

Let \(S \) be the set of divisor classes of \(D \) which contain height-one prime ideals of \(D \).

Set \(\mathcal{F}(G) \) be the free abelian monoid on \(G \) whose elements we represent as \(\prod_{g \in G} g^{x_g} \).

Set \(\mathcal{B}(G, S) = \{ \prod_{g \in G} g^{x_g} \mid \sum x_g g = 0 \text{ and } x_g = 0 \text{ if } g \notin S \} \).
Let D be a Krull (or Dedekind) domain with divisor class group $\text{Cl}(D) = G$.

Let S be the set of divisor classes of D which contain height-one prime ideals of D.

Set $\mathcal{F}(G)$ be the free abelian monoid on G whose elements we represent as $\prod_{g \in G} g^{x_g}$.

Set $\mathcal{B}(G, S) = \{ \prod_{g \in G} g^{x_g} \mid \sum x_g g = 0 \text{ and } x_g = 0 \text{ if } g \notin S \}$.
Motivating Fact

Let D^\bullet represent the multiplicative monoid of D.

In D suppose $x \in D^\bullet$ is represented uniquely as $(x) = (P_1 \cdots P_k)_v$ where P_1, \ldots, P_k are not necessarily distinct height-one prime ideals of D.

The map

$$\varphi : D^\bullet \to B(G, S)$$

defined by

$$\varphi(x) = [P_1] \cdots [P_k]$$

is a monoid homomorphism which preserves lengths of factorizations.
Motivating Fact

Let D^\bullet represent the multiplicative monoid of D.

In D suppose $x \in D^\bullet$ is represented uniquely as $(x) = (P_1 \cdots P_k)_v$ where P_1, \ldots, P_k are not necessarily distinct height-one prime ideals of D.

The map

$$\varphi : D^\bullet \rightarrow B(G, S)$$

defined by

$$\varphi(x) = [P_1] \cdots [P_k]$$

is a monoid homomorphism which preserves lengths of factorizations.
Let D^\bullet represent the multiplicative monoid of D.

In D suppose $x \in D^\bullet$ is represented uniquely as $(x) = (P_1 \cdots P_k)_v$ where P_1, \ldots, P_k are not necessarily distinct height-one prime ideals of D.

The map

$$\varphi : D^\bullet \to \mathcal{B}(G, S)$$

defined by

$$\varphi(x) = [P_1] \cdots [P_k]$$

is a monoid homomorphism which preserves lengths of factorizations.
To study the factorization properties of D, we can consider the factorization properties of the Block Monoid $\mathcal{B}(G, S)$.

Example

Let D be an algebraic ring of integers with class number 2. The map from the previous slide is of the form

$$
\varphi : D^* \rightarrow \mathcal{B}(\mathbb{Z}_2, \mathbb{Z}_2).
$$

If $B = 0^{x_0}1^{x_1}$ is in $\mathcal{B}(\mathbb{Z}_2, \mathbb{Z}_2)$ then its factorization into irreducible blocks is of the form $B = (0)^{x_0}(1^2)^{x_1/2}$. Hence, given $x \in D$, every irreducible factorization of x contains the same number of irreducible factors. An integral domain with this property is called a half-factorial domain.
To study the factorization properties of D, we can consider the factorization properties of the Block Monoid $\mathcal{B}(G, S)$.

Example

Let D be an algebraic ring of integers with class number 2. The map from the previous slide is of the form

$$\varphi : D^* \to \mathcal{B}(\mathbb{Z}_2, \mathbb{Z}_2).$$

If $B = 0^{x_0}1^{x_1}$ is in $\mathcal{B}(\mathbb{Z}_2, \mathbb{Z}_2)$ then its factorization into irreducible blocks is of the form $B = (0)^{x_0}(1^2)^{x_1/2}$. Hence, given $x \in D$, every irreducible factorization of x contains the same number of irreducible factors. An integral domain with this property is called a half-factorial domain.
What about the Irreducibles?

Set $\mathcal{B}(\mathbb{Z}_n, \mathbb{Z}_n) = \mathcal{B}(\mathbb{Z}_n)$.

If n is very small, then the irreducibles (or atoms) of $\mathcal{B}(\mathbb{Z}_n)$ can be written out and closely studied.

Even if n is relatively small, the atomic structure of $\mathcal{B}(\mathbb{Z}_n)$ can be chaotic.

Nick Baeth (Central Missouri State) and his group has shown that $\mathcal{B}(\mathbb{Z}_{99})$ has over 30,000,000,000 atoms!
What about the Irreducibles?

Set $B(\mathbb{Z}_n, \mathbb{Z}_n) = B(\mathbb{Z}_n)$.

If n is very small, then the irreducibles (or atoms) of $B(\mathbb{Z}_n)$ can be written out and closely studied.

Even if n is relatively small, the atomic structure of $B(\mathbb{Z}_n)$ can be chaotic.

Nick Baeth (Central Missouri State) and his group has shown that $B(\mathbb{Z}_{99})$ has over $30,000,000,000$ atoms!
What about the Irreducibles?

Set \(\mathcal{B}(\mathbb{Z}_n, \mathbb{Z}_n) = \mathcal{B}(\mathbb{Z}_n) \).

If \(n \) is very small, then the irreducibles (or atoms) of \(\mathcal{B}(\mathbb{Z}_n) \) can be written out and closely studied.

Even if \(n \) is relatively small, the atomic structure of \(\mathcal{B}(\mathbb{Z}_n) \) can be chaotic.

Nick Baeth (Central Missouri State) and his group has shown that \(\mathcal{B}(\mathbb{Z}_{99}) \) has over

\[30,000,000,000 \text{ atoms!} \]
What about the Irreducibles?

Set $\mathcal{B}(\mathbb{Z}_n, \mathbb{Z}_n) = \mathcal{B}(\mathbb{Z}_n)$.

If n is very small, then the irreducibles (or atoms) of $\mathcal{B}(\mathbb{Z}_n)$ can be written out and closely studied.

Even if n is relatively small, the atomic structure of $\mathcal{B}(\mathbb{Z}_n)$ can be chaotic.

Nick Baeth (Central Missouri State) and his group has shown that $\mathcal{B}(\mathbb{Z}_{99})$ has over $30,000,000,000$ atoms!
Can we find sets S in \mathbb{Z}_n for which the atomic structure of $B(\mathbb{Z}_n, S)$ is “nice”?

Answer

YES, using the proof of Theorem 1 in the Erdős-Zaks paper.
Question

Can we find sets S in \mathbb{Z}_n for which the atomic structure of $B(\mathbb{Z}_n, S)$ is “nice”?

Answer

YES, using the proof of Theorem 1 in the Erdős-Zaks paper.
Nice Atomic Structure

Question

Can we find sets S in \mathbb{Z}_n for which the atomic structure of $B(\mathbb{Z}_n, S)$ is “nice”?

Answer

YES, using the proof of Theorem 1 in the Erdős-Zaks paper.
The EZADS Method

We choose \(\{a_1, \ldots, a_k\} \), a set of pairwise relatively prime positive integers greater than or equal to 2 with \(a_i < a_{i+1} \) for \(1 \leq i \leq k - 1 \). We shall refer to such a set as an EZADS input.

Set

\[
q = \prod_{1}^{k} a_i
\]

and for each \(1 \leq i \leq k \) set

\[
q_i = \frac{q}{a_i}.
\]

Note by our construction that \(q_1 > q_2 > \cdots > q_k > 1 \) and for each \(i \) we have \(\gcd(q_i, a_i) = 1 \). We finally set

\[
S = \{q_1, \ldots, q_k, 1\} \subseteq \mathbb{Z}_q.
\]
The EZADS Method

We choose \(\{a_1, \ldots, a_k\} \), a set of pairwise relatively prime positive integers greater than or equal to 2 with \(a_i < a_{i+1} \) for \(1 \leq i \leq k - 1 \). We shall refer to such a set as an EZADS input.

Set

\[
q = \prod_{1}^{k} a_i
\]

and for each \(1 \leq i \leq k \) set

\[
q_i = \frac{q}{a_i}.
\]

Note by our construction that \(q_1 > q_2 > \cdots > q_k > 1 \) and for each \(i \) we have \(\gcd(q_i, a_i) = 1 \). We finally set

\[
S = \{q_1, \ldots, q_k, 1\} \subseteq \mathbb{Z}_q.
\]
The EZADS Method

We choose \(\{a_1, \ldots, a_k\} \), a set of pairwise relatively prime positive integers greater than or equal to 2 with \(a_i < a_{i+1} \) for \(1 \leq i \leq k - 1 \). We shall refer to such a set as an **EZADS input**.

Set

\[
q = \prod_{1}^{k} a_i
\]

and for each \(1 \leq i \leq k \) set

\[
q_i = \frac{q}{a_i}.
\]

Note by our construction that \(q_1 > q_2 > \cdots > q_k > 1 \) and for each \(i \) we have \(\gcd(q_i, a_i) = 1 \). We finally set

\[
S = \{q_1, \ldots, q_k, 1\} \subseteq \mathbb{Z}_q.
\]
What Do the Atoms Look Like?

We describe all the atoms of $B(\mathbb{Z}_q, S)$.

To begin, there are $k + 1$ primary irreducible blocks of the form $q_i^{a_i}$ and 1^q.

To find the remaining irreducible Blocks, we note from basic Number Theory, for any integer y, that the equation

$$q_1 x_1 + \cdots + q_k x_k \equiv y \pmod{q} \quad (*)$$

has a solution.
What Do the Atoms Look Like?

We describe all the atoms of $B(\mathbb{Z}_q, S)$.

To begin, there are $k + 1$ primary irreducible blocks of the form $q_i^{a_i}$ and 1^q.

To find the remaining irreducible Blocks, we note from basic Number Theory, for any integer y, that the equation

$$q_1 x_1 + \cdots + q_k x_k \equiv y \pmod{q} \quad (*)$$

has a solution.
We describe all the atoms of $\mathcal{B}(\mathbb{Z}_q, S)$.

To begin, there are $k + 1$ primary irreducible blocks of the form $q_i^{a_i}$ and 1^q.

To find the remaining irreducible Blocks, we note from basic Number Theory, for any integer y, that the equation

$$q_1x_1 + \cdots + q_kx_k \equiv y \pmod{q} \quad (*)$$

has a solution.
A solution to (*) of the form

\[q_1 x_1 + \cdots + q_k x_k \equiv -d \pmod{q} \]

with all \(x_i \geq 0 \) corresponds to

\[q_1^{x_1} \cdots q_k^{x_k} 1^d \]

(*)

being an element of \(B(\mathbb{Z}_q, S) \).

A necessary (but not sufficient) condition that (**) be irreducible in \(B(\mathbb{Z}_q, S) \) is that \(0 \leq x_i < a_i \) (we later show that this condition is not sufficient).
A solution to (§) of the form

\[q_1 x_1 + \cdots + q_k x_k \equiv -d \pmod{q} \]

with all \(x_i \geq 0 \) corresponds to

\[q_1^{x_1} \cdots q_k^{x_k} 1^d \]

being an element of \(B(\mathbb{Z}_q, S) \).

A necessary (but not sufficient) condition that (**) be irreducible in \(B(\mathbb{Z}_q, S) \) is that \(0 \leq x_i < a_i \) (we later show that this condition is not sufficient).
Thus, the non-primary irreducible blocks come from solving (*) for each d, $1 \leq d \leq q - 1$ under the constraint $0 \leq x_i < a_i$ and then determining which are reducible.

The solution method, using the Chinese Remainder Theorem, is well known. Moreover, under our constraints it produces a unique solution.
Thus, the non-primary irreducible blocks come from solving (*) for each d, $1 \leq d \leq q - 1$ under the constraint $0 \leq x_i < a_i$ and then determining which are reducible.

The solution method, using the Chinese Remainder Theorem, is well known. Moreover, under our constraints it produces a unique solution.
The Definition

Definition

Let x_1, \ldots, x_k be the unique solutions described above. For each d with $1 \leq d \leq q - 1$, set

$$M_d = q_1^{x_1} \cdots q_k^{x_k} 1^d.$$

Hence, M_d is the unique block in $B(\mathbb{Z}_q, S)$ where the exponents x_i satisfy the constraint $0 \leq x_i < a_i$ for each $1 \leq i \leq k$.

Thus, there are at most $q - 1$ non-primary irreducible blocks of $B(\mathbb{Z}_q, S)$. Hence, the atomic structure of $B(\mathbb{Z}_q, S)$ is simple when compared to that of $B(\mathbb{Z}_q)$.
Let x_1, \ldots, x_k be the unique solutions described above. For each d with $1 \leq d \leq q - 1$, set

$$M_d = q_1^{x_1} \cdots q_k^{x_k} 1^d.$$

Hence, M_d is the unique block in $B(\mathbb{Z}_q, S)$ where the exponents x_i satisfy the constraint $0 \leq x_i < a_i$ for each $1 \leq i \leq k$.

Thus, there are at most $q - 1$ non-primary irreducible blocks of $B(\mathbb{Z}_q, S)$. Hence, the atomic structure of $B(\mathbb{Z}_q, S)$ is simple when compared to that of $B(\mathbb{Z}_q)$.
For the EZADS input \(\{2, 3, 5\} \) we obtain the following sequence of Blocks \(M_d \) in the Block Monoid \(B(\mathbb{Z}_{30}, \{15, 10, 6, 1\}) \).
<table>
<thead>
<tr>
<th>M_1</th>
<th>M_2</th>
<th>M_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$15^110^26^41^1$</td>
<td>$15^010^16^31^2$</td>
<td>$15^110^06^21^3$</td>
</tr>
<tr>
<td>M_4</td>
<td>M_5</td>
<td>M_6</td>
</tr>
<tr>
<td>$15^010^26^11^4$</td>
<td>$15^110^16^01^5$</td>
<td>$15^010^06^41^6$</td>
</tr>
<tr>
<td>M_7</td>
<td>M_8</td>
<td>M_9</td>
</tr>
<tr>
<td>$15^110^26^31^7$</td>
<td>$15^010^16^21^8$</td>
<td>$15^110^06^11^9$</td>
</tr>
<tr>
<td>M_{10}</td>
<td>M_{11}</td>
<td>M_{12}</td>
</tr>
<tr>
<td>$15^010^26^01^{10}$</td>
<td>$15^110^16^41^{11}$</td>
<td>$15^010^06^31^{12}$</td>
</tr>
<tr>
<td>M_{13}</td>
<td>M_{14}</td>
<td>M_{15}</td>
</tr>
<tr>
<td>$15^110^26^21^{13}$</td>
<td>$15^010^16^11^{14}$</td>
<td>$15^110^06^01^{15}$</td>
</tr>
<tr>
<td>M_{16}</td>
<td>M_{17}</td>
<td>M_{18}</td>
</tr>
<tr>
<td>$15^010^26^41^{16}$</td>
<td>$15^110^16^31^{17}$</td>
<td>$15^010^06^21^{18}$</td>
</tr>
<tr>
<td>M_{19}</td>
<td>M_{20}</td>
<td>M_{21}</td>
</tr>
<tr>
<td>$15^110^26^11^{19}$</td>
<td>$15^010^16^01^{20}$</td>
<td>$15^110^06^41^{21}$</td>
</tr>
<tr>
<td>M_{22}</td>
<td>M_{23}</td>
<td>M_{24}</td>
</tr>
<tr>
<td>$15^010^26^31^{22}$</td>
<td>$15^110^16^21^{23}$</td>
<td>$15^010^06^11^{24}$</td>
</tr>
<tr>
<td>M_{25}</td>
<td>M_{26}</td>
<td>M_{27}</td>
</tr>
<tr>
<td>$15^110^26^01^{25}$</td>
<td>$15^010^16^41^{26}$</td>
<td>$15^110^06^31^{27}$</td>
</tr>
<tr>
<td>M_{28}</td>
<td>M_{29}</td>
<td></td>
</tr>
<tr>
<td>$15^010^26^21^{28}$</td>
<td>$15^110^16^11^{29}$</td>
<td></td>
</tr>
</tbody>
</table>
A Nice Theorem

Theorem

Let $B(\mathbb{Z}_q, S)$ be the Block Monoid obtained from an EZADS input $\{a_1, \ldots, a_k\}$. For each $1 \leq d \leq q-1$, M_d is reducible if and only if $M_d = M_r M_s$ where $r + s = d$. Hence, M_d is irreducible if and only if $M_{d'} \nmid M_d$ for each $1 \leq d' < d$.
Using the Lemma, the following Blocks are irreducible: $M_1, M_2, M_3, M_4, M_5, M_6, M_8, M_9, M_{10}, M_{12}, M_{14}, M_{15}, M_{18}, M_{20}$ and M_{24}. The remaining Blocks in the table are reducible (for instance, $M_{11} = M_6 \cdot M_5$). Note that since $\kappa(M_1) = 2$, the Block Monoid $B(\mathbb{Z}_q, S)$ is not half-factorial. Moreover, $\kappa(M_d) = 1$ for all irreducibles M_d with $d \neq 1$.
Hence, the block $B = q_1^{y_1} \cdots q_k^{y_k} 1^z$ of $B(\mathbb{Z}_q, S)$ produced by the EZADS input $\{a_1, \ldots, a_k\}$ yields a sum of the form

$$s = \sum_{1}^{n} \frac{y_i}{a_i} + \frac{z}{q}$$

where $q = \prod_{1}^{n} a_i$ and $s = \kappa(B)$ is the cross number of B.

Lemma

Let $I = \{a_1, \ldots, a_k\}$ be an EZADS input and $B = q_1^{y_1} \cdots q_k^{y_k} 1^z$ be as above.

1. The sum $s = \sum_{1}^{n} \frac{y_i}{a_i} + \frac{z}{q}$ associated to B is admissible.
2. If the set $\{a_1, \ldots, a_k, q\}$ is splittable, then $B(\mathbb{Z}_q, S)$ is half-factorial.
Hence, the block $B = q_1^{y_1} \cdots q_k^{y_k} 1^z$ of $\mathcal{B}(\mathbb{Z}_q, S)$ produced by the EZADS input $\{a_1, \ldots, a_k\}$ yields a sum of the form

$$s = \sum_{1}^{n} \frac{y_i}{a_i} + \frac{z}{q}$$

where $q = \prod_{1}^{n} a_i$ and $s = \kappa(B)$ is the cross number of B.

Lemma

Let $I = \{a_1, \ldots, a_k\}$ be an EZADS input and $B = q_1^{y_1} \cdots q_k^{y_k} 1^z$ be as above.

1. The sum $s = \sum_{1}^{n} \frac{y_i}{a_i} + \frac{z}{q}$ associated to B is admissible.

2. If the set $\{a_1, \ldots, a_k, q\}$ is splittable, then $\mathcal{B}(\mathbb{Z}_q, S)$ is half-factorial.
The Results

Theorem

If \(B = q_1^{y_1} \cdots q_k^{y_k} 1^z \) is an atom of \(B(\mathbb{Z}_q, S) \) then its admissible sum is irreducible in the Erdős-Zaks sense, but NOT conversely.

The smallest counterexample we could find lies in the EZADS input \{3, 5, 11, 13, 17, 19, 127\} where \(q = 87,990,045 \).

We have

\[
s = \frac{2}{3} + \frac{2}{5} + \frac{4}{11} + \frac{12}{13} + \frac{12}{17} + \frac{8}{19} + \frac{66}{127} + \frac{2}{q} = 4
\]

and \(s = t + t \) where

\[
t = \frac{1}{3} + \frac{1}{5} + \frac{2}{11} + \frac{6}{13} + \frac{6}{17} + \frac{4}{19} + \frac{33}{121} + \frac{1}{q} = 2
\]

but \(s \) is not divisible by a sum of value 1. Here we also have that \(M_1M_1 = M_2 \).
The Results

Theorem

If $B = q_1^{y_1} \cdots q_k^{y_k} 1^z$ is an atom of $\mathcal{B}(\mathbb{Z}_q, S)$ then its admissible sum is irreducible in the Erdős-Zaks sense, but NOT conversely.

The smallest counterexample we could find lies in the EZADS input \{3, 5, 11, 13, 17, 19, 127\} where $q = 87, 990, 045$.

We have

\[
\frac{2}{3} + \frac{2}{5} + \frac{4}{11} + \frac{12}{13} + \frac{12}{17} + \frac{8}{19} + \frac{66}{127} + \frac{2}{q} = 4
\]

and $s = t + t$ where

\[
t = \frac{1}{3} + \frac{1}{5} + \frac{2}{11} + \frac{6}{13} + \frac{6}{17} + \frac{4}{19} + \frac{33}{121} + \frac{1}{q} = 2
\]

but s is not divisible by a sum of value 1. Here we also have that $m_1 m_1 = m_2$.
The Results

Theorem

If \(B = q_1^{y_1} \cdots q_k^{y_k} 1^z \) is an atom of \(B(\mathbb{Z}_q, S) \) then its admissible sum is irreducible in the Erdős-Zaks sense, but NOT conversely.

The smallest counterexample we could find lies in the EZADS input \{3, 5, 11, 13, 17, 19, 127\} where \(q = 87,990,045 \).

We have

\[
s = \frac{2}{3} + \frac{2}{5} + \frac{4}{11} + \frac{12}{13} + \frac{12}{17} + \frac{8}{19} + \frac{66}{127} + \frac{2}{q} = 4
\]

and \(s = t + t \) where

\[
t = \frac{1}{3} + \frac{1}{5} + \frac{2}{11} + \frac{6}{13} + \frac{6}{17} + \frac{4}{19} + \frac{33}{121} + \frac{1}{q} = 2
\]

but \(s \) is not divisible by a sum of value 1. Here we also have that \(M_1 M_1 = M_2 \).
Theorem

The EZADs input \(I = \{a_1, \ldots, a_n\} \) for \(n \geq 2 \) yields \(\mathcal{M}_1 = q_1^{1} \cdots q_n^{1} \) if and only if \(a_1, \ldots, a_n \) is the sequence \(a_1 = 2 \) and \(a_k = \prod_{i=1}^{k-1} a_i + 1 \) for \(k \geq 2 \).

Theorem

For every \(n \), there exists an EZADS input \(I = \{a_1, \ldots, a_n\} \) for which \(\mathcal{M}_1 = q_1^{a_1-1} q_2^{a_2-1} \cdots q_n^{a_n-1} \).

Note: The last Theorem leads to shorter proofs of Theorems 1 and 3 in the Erdős-Zaks paper.
More Results

Theorem

The EZADs input $I = \{a_1, \ldots, a_n\}$ for $n \geq 2$ yields $M_1 = q_1^{a_1} \cdots q_n^{a_n}1^1$ if and only if a_1, \ldots, a_n is the sequence $a_1 = 2$ and $a_k = \prod_{i=1}^{k-1} a_i + 1$ for $k \geq 2$.

Theorem

For every n, there exists an EZADS input $I = \{a_1, \ldots, a_n\}$ for which $M_1 = q_1^{a_1-1}q_2^{a_2-1} \cdots q_n^{a_n-1}1^1$.

Note: The last Theorem leads to shorter proofs of Theorems 1 and 3 in the Erdős-Zaks paper.
The EZADs input $I = \{a_1, \ldots, a_n\}$ for $n \geq 2$ yields $M_1 = q_1^{1} \cdots q_n^{1} 1^1$ if and only if a_1, \ldots, a_n is the sequence $a_1 = 2$ and $a_k = \prod_{i=1}^{k-1} a_i + 1$ for $k \geq 2$.

Note: The last Theorem leads to shorter proofs of Theorems 1 and 3 in the Erdős-Zaks paper.