Elastic Properties of Some Semirings

Scott Chapman

Sam Houston State University

October 31, 2009
Happy Halloween

BOO!
Authors Involved

This talk is based on the work of one of the 2008 Trinity REU Algebra Groups.
Authors Involved

This talk is based on the work of one of the 2008 Trinity REU Algebra Groups.

Student: Patrick Cesarz (Villanova/UC-San Diego)
This talk is based on the work of one of the 2008 Trinity REU Algebra Groups.

Student: Patrick Cesarz (Villanova/UC-San Diego)

Graduate Assistant: George Schaeffer (Berkeley)
This talk is based on the work of one of the 2008 Trinity REU Algebra Groups.

Student: Patrick Cesarz (Villanova/UC-San Diego)

Graduate Assistant: George Schaeffer (Berkeley)

With the More than Valuable Input: Stephen McAdam (UT-Austin)
Motivation

Let

\[\mathbb{Z} = \text{the ring of integers}, \]
Let

\[\mathbb{Z} = \text{the ring of integers}, \]
\[\mathbb{N} = \text{the set of positive integers}, \]
Let

\[\mathbb{Z} = \text{the ring of integers}, \]

\[\mathbb{N} = \text{the set of positive integers}, \]

and

\[\mathbb{N}_0 = \text{the set of nonnegative integers}. \]
Motivation

At a recent Conference on the theory of non-unique factorization, Ulrich Krause posed several questions which were motivated by his familiarity with the theory of positive systems in control theory.
Motivation

At a recent Conference on the theory of non-unique factorization, Ulrich Krause posed several questions which were motivated by his familiarity with the theory of positive systems in control theory.

1. If

$$\mathbb{R}^+[X] = \{ f(X) \mid f(X) = \sum_{i=0}^{t} a_i x^i \in \mathbb{R}[X] \text{ with } a_i \geq 0 \text{ for every } i \}$$

then what are the relative factorization properties of this multiplicative monoid?
2. Let $d > 0$ be a squarefree integer. If

$$\mathbb{N}_0[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{N}_0\}$$

then what factorization properties does this multiplicative monoid inherit from the regular ring of integers in $\mathbb{Q}(\sqrt{d})$?
So, let

\[M = \text{commutative cancellative monoid} \]

written multiplicatively with identity element 1 and associated group of units \(M^\times \). Set \(M^* = M \setminus M^\times \).
Definitions

So, let

\[M = \text{commutative cancellative monoid} \]

written multiplicatively with identity element 1 and associated group of units \(M^\times \). Set \(M^* = M \setminus M^\times \).

We use the usual conventions involving divisibility:

\[x \mid y \text{ in } M \iff xz = y \text{ for some } z \in M. \]
Basic Factorization Notation

Set

\[\mathcal{A}(M) = \text{the set of irreducibles (or atoms) of } M \]
Basic Factorization Notation

Set

\[\mathcal{A}(M) = \text{the set of irreducibles (or atoms) of } M \]

For \(x \in M^* \), the set

\[\mathcal{L}(x) = \{ n \mid x = x_1, \ldots, x_n \text{ with each } x_i \in \mathcal{A}(M) \} \]

is called the set of lengths of factorizations of \(x \).
Define for \(x \in M^* \)

\[
L(x) = \sup \mathcal{L}(x) \quad \text{and} \quad l(x) = \inf \mathcal{L}(x),
\]

and

\[
\rho(x) = \frac{L(x)}{l(x)}
\]

to be their quotient. \(\rho(x) \) is called the *elasticity* of \(x \).
On the Elasticity

Define for $x \in M^*$

$$L(x) = \sup L(x) \text{ and } l(x) = \inf L(x),$$

and

$$\rho(x) = \frac{L(x)}{l(x)}$$

to be their quotient. $\rho(x)$ is called the \textit{elasticity} of x.

We also define

$$\rho(M) = \sup\{\rho(x) \mid x \in M^*\}.$$

$\rho(M)$ is called the \textit{elasticity} of M.

$L(x) = \sup L(x)$ and $l(x) = \inf L(x)$,
On the Delta Set

Given $x \in M \setminus M^\times$, write its length set in the form

$$\mathcal{L}(x) = \{n_1, n_2, \ldots, n_k\}$$

where $n_i < n_{i+1}$ for $1 \leq i \leq k - 1$.

The Δ-set of x is defined by

$$\Delta(x) = \{n_i - n_{i-1} \mid 2 \leq i \leq k\}$$

and the delta set of M by

$$\Delta(M) = \bigcup_{x \in M \setminus M^\times} \Delta(x).$$
On the Delta Set

- Given $x \in M \setminus M^\times$, write its length set in the form

 \[\mathcal{L}(x) = \{ n_1, n_2, \ldots, n_k \} \]

 where $n_i < n_{i+1}$ for $1 \leq i \leq k - 1$. The Δ-set of x is defined by

 \[\Delta(x) = \{ n_i - n_{i-1} \mid 2 \leq i \leq k \} \]
Given \(x \in M \setminus M^\times \), write its length set in the form
\[
\mathcal{L}(x) = \{n_1, n_2, \ldots, n_k\}
\]
where \(n_i < n_{i+1} \) for \(1 \leq i \leq k - 1 \). The \(\Delta\)-set of \(x \) is defined by
\[
\Delta(x) = \{n_i - n_{i-1} \mid 2 \leq i \leq k\}
\]
and the delta set of \(M \) by
\[
\Delta(M) = \bigcup_{x \in M \setminus M^\times} \Delta(x).
\]
Examples

If M *is a finitely generated atomic monoid then* $\rho(M)$ *is rational and* $\rho(M) = \rho(x)$ *for some* $x \in M^*$.
Examples

If M *is a finitely generated atomic monoid then* $\rho(M)$ *is rational and* $\rho(M) = \rho(x)$ *for some* $x \in M^*$.

Corollary

If D *is a Krull domain with finite divisor class group, then* $\rho(D^\bullet)$ *is rational and* $\rho(D^\bullet) = \rho(x)$ *for some* $x \in D^\bullet$.

Examples

Proposition (Geroldinger *Math. Zeit.* 1988)

If D is a Krull domain with divisor class group \(\mathbb{Z}_n \), then

\[
\Delta(D^\bullet) \subseteq \{1, 2, ..., n - 2\}.
\]

If each divisor class of the class group contains a height-one prime ideal, then

\[
\Delta(D^\bullet) = \{1, 2, ..., n - 2\}.
\]
Definition

Let A be any subring of \mathbb{R}.
Definition

Let A be any subring of \mathbb{R}.

Since $1 \in A$, we have by necessity that $\mathbb{Z} \subseteq A \subseteq \mathbb{R}$.
Definition

Let A be any subring of \mathbb{R}.

Since $1 \in A$, we have by necessity that $\mathbb{Z} \subseteq A \subseteq \mathbb{R}$.

Set

$$A^+[X] = \{ f(x) \in A[x] \mid f(x) = \sum_{i=0}^{t} a_i x^i \text{ with } a_i \geq 0 \text{ for every } i \}.$$
Elastic Properties of Some Semirings

Chapman

Introduction

Background

The Language of Non-Unique Factorizations

What is Known?

Solution to Problem # 1

Definition

Clearly

\[\mathbb{Z}^+[X] \subseteq A^+[X] \subseteq \mathbb{R}^+[X]. \]
Definition

Clearly

\[\mathbb{Z}^+[X] \subseteq A^+[X] \subseteq \mathbb{R}^+[X]. \]

We note that if \(f(X) \) is a monic nonconstant polynomial in \(A^+[X] \) which is irreducible in \(\mathbb{R}^+[X] \), then \(f(X) \) is irreducible in \(A^+[X] \).
Elastic Properties of Some Semirings

The Language of Non-Unique Factorizations

What is Known?

Solution to Problem # 1

Theorem

*The monoid $A^+[x]^\bullet$ has infinite, full elasticity, and $\Delta(A^+[x]^\bullet) = \mathbb{N}$.***
Sketch of Proof for Problem #1

Lemma (McAdam’s Lemma)

Let \(n > 1 \) be an integer, and let \(c \geq n \). Then \((x + c)^n(x^2 - x + b) \in A^+[X] \) if and only if \(nb \geq c \).
Sketch of Proof for Problem #1

Lemma (McAdam’s Lemma)

Let \(n > 1 \) be an integer, and let \(c \geq n \). Then
\[
(x + c)^n(x^2 - x + b) \in A^+[X] \text{ if and only if } nb \geq c.
\]

Corollary

If \(b > 1/4 \) and \(nb \geq c \), but \((n - 1)b < c \), then
\[
(x + c)^n(x^2 - x + b) \text{ is irreducible in } \mathbb{R}^+[x] \text{ and hence in } A^+[X].
\]
Problem #1 Answer

Consider

\[f(x) = (x + n)^n(x^2 - x + 1)(x + 1)^a, \text{ where } n, a \geq 2. \]
Problem #1 Answer

Consider

\[f(x) = (x + n)^n(x^2 - x + 1)(x + 1)^a, \text{ where } n, a \geq 2. \]

Then \((x^2 - x + 1)\) must be multiplied by some other linear factors so that the product is in \(A^+[x]\).
Consider

\[f(x) = (x + n)^n(x^2 - x + 1)(x + 1)^a, \text{ where } n, a \geq 2. \]

Then \((x^2 - x + 1)\) must be multiplied by some other linear factors so that the product is in \(A^+[x]\).

This can be done in only two ways:
Consider

\[f(x) = (x + n)^n(x^2 - x + 1)(x + 1)^a, \text{ where } n, a \geq 2. \]

Then \((x^2 - x + 1)\) must be multiplied by some other linear factors so that the product is in \(A^+[x]\).

This can be done in only two ways:

1. \(f(x) = [(x + n)^n(x^2 - x + 1)](x + 1)^a\), which has length \(1 + a\)
Consider

\[f(x) = (x + n)^n(x^2 - x + 1)(x + 1)^a \], where \(n, a \geq 2 \).

Then \((x^2 - x + 1)\) must be multiplied by some other linear factors so that the product is in \(A^+[x] \).

This can be done in only two ways:

1. \(f(x) = [(x + n)^n(x^2 - x + 1)](x + 1)^a \), which has length \(1 + a \)

2. \(f(x) = (x + n)^n [(x^2 - x + 1)(x + 1)](x + 1)^{a-1} \) which has length \(n + a \)
The polynomials in brackets are irreducible in $\mathbb{R}[x]$ because of the Corollary or direct computation.
The polynomials in brackets are irreducible in $\mathbb{R}[x]$ because of the Corollary or direct computation.

Thus in $A^+[X]$ we have,

- $\mathcal{L}(f) = \{1 + a, n + a\}$
Problem # 1 Answer

The polynomials in brackets are irreducible in $\mathbb{R}[x]$ because of the Corollary or direct computation.

Thus in $A^+[X]$ we have,

- $\mathcal{L}(f) = \{1 + a, n + a\}$
- $\Delta(f) = \{n - 1\}$
The polynomials in brackets are irreducible in $\mathbb{R}[x]$ because of the Corollary or direct computation.

Thus in $A^+[X]$ we have,

- $\mathcal{L}(f) = \{1 + a, n + a\}$
- $\Delta(f) = \{n - 1\}$
- $\rho(f) = \frac{n+a}{1+a}$
The polynomials in brackets are irreducible in \(\mathbb{R}[x] \) because of the Corollary or direct computation.

Thus in \(A^+[X] \) we have,

- \(\mathcal{L}(f) = \{1 + a, n + a\} \)
- \(\Delta(f) = \{n - 1\} \)
- \(\rho(f) = \frac{n+a}{1+a} \)

For appropriate choices of \(n \) and \(a \), all rational elasticities are possible, and all possible \(\Delta \) set values are attained.
Let α be an algebraic integer of degree 2 in a real quadratic field. The set

$$\mathbb{N}_0[\alpha] = \{ \beta \in \mathbb{Z}[\alpha] \mid \beta = \sum_{i=0}^{1} u_i \alpha^i \}$$

with $u_i \in \mathbb{N}_0$ for every i}

forms a semiring under the usual operations if and only if $\alpha^2 \in \mathbb{N}_0[\alpha]$. One can reduce this to $\alpha = q + r \sqrt{d}$ where $q, r \geq 0$.
We find a similar result to that of Problem # 1.

Theorem

With notation as above, \(\mathbb{N}_0[\alpha]^\bullet \) has infinite elasticity, full elasticity, and \(\Delta(\mathbb{N}_0[\alpha])^\bullet = \mathbb{N} \).
Argue that $\mathbb{N}_0[\alpha]^\bullet$ is atomic.
Sketch of Proof

- Argue that $\mathbb{N}_0[\alpha]^\bullet$ is atomic.
- The *fundamental unit* η of $\mathbb{Z}[\tau]$, is actually irreducible in $\mathbb{N}_0[\tau]$.
Sketch of Proof

- Argue that $\mathbb{N}_0[\alpha]^*$ is atomic.
- The fundamental unit η of $\mathbb{Z}[\tau]$, is actually irreducible in $\mathbb{N}_0[\tau]$.
- Using a theorem of Hans Rademacher, we show that for any positive integer k there is a prime π of the ring $\mathbb{Z}[\tau]$ such that $\pi \in \mathbb{N}_0[\tau]$ and k is least with $\eta \mid \pi^k$ in $\mathbb{N}_0[\tau]$.
Sketch of Proof

- Argue that $\mathbb{N}_0[\alpha]^\bullet$ is atomic.
- The *fundamental unit* η of $\mathbb{Z}[\tau]$, is actually irreducible in $\mathbb{N}_0[\tau]$.
- Using a theorem of Hans Rademacher, we show that for any positive integer k there is a prime π of the ring $\mathbb{Z}[\tau]$ such that $\pi \in \mathbb{N}_0[\tau]$ and k is least with $\eta \mid \pi^k$ in $\mathbb{N}_0[\tau]$.
- Exploiting the unique factorization of π^k in $\mathbb{Z}[\tau]$, we will show that the length set of π^k is either $\{2, k\}$ or $\{3, k\}$ (with the latter occurring when $\tau = \eta$). Along with the existence of a prime element of $\mathbb{N}_0[\tau]$ this is adequate to prove the theorem.