An Introduction to the Theory of Non-Unique Factorization in Integral Domains and Monoids

Scott Chapman

Sam Houston State University

November 21, 2008
Let $D = \mathbb{Z}[^5]$. In D:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

represents a nonunique factorization into products of irreducible elements.
Let \(D = \mathbb{Z} [\sqrt{-5}] \). In \(D \)

\[
6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})
\]

represents a nonunique factorization into products of irreducible elements.

Let’s consider this situation more closely.
Ideal Theory Behind the Example

In \(\mathbb{Z}[\sqrt{-5}] \) we have the following ideal decompositions:
In \(\mathbb{Z}[\sqrt{-5}] \) we have the following ideal decompositions:

\[
\langle 2 \rangle = \langle 2, 1 + \sqrt{-5} \rangle^2 \\
\langle 3 \rangle = \langle 3, 1 - \sqrt{-5} \rangle \langle 3, 1 + \sqrt{-5} \rangle \\
\langle 1 + \sqrt{-5} \rangle = \langle 2, 1 + \sqrt{-5} \rangle \langle 3, 1 + \sqrt{-5} \rangle \\
\langle 1 - \sqrt{-5} \rangle = \langle 2, 1 + \sqrt{-5} \rangle \langle 3, 1 - \sqrt{-5} \rangle
\]
Ideal Theory Behind the Example

And so

\langle 6 \rangle = \langle 2 \rangle \langle 3 \rangle =
Ideal Theory Behind the Example

And so

\[\langle 6 \rangle = \langle 2 \rangle \langle 3 \rangle = \]

\[\langle 2, 1 + \sqrt{-5} \rangle^2 \langle 3, 1 - \sqrt{-5} \rangle \langle 3, 1 + \sqrt{-5} \rangle = \]
And so

\[\langle 6 \rangle = \langle 2 \rangle \langle 3 \rangle = \]

\[\langle 2, 1 + \sqrt{-5} \rangle^2 \langle 3, 1 - \sqrt{-5} \rangle \langle 3, 1 + \sqrt{-5} \rangle = \]

\[\langle 2, 1 + \sqrt{-5} \rangle \langle 3, 1 + \sqrt{-5} \rangle \langle 2, 1 + \sqrt{-5} \rangle \langle 3, 1 - \sqrt{-5} \rangle = \]
Ideal Theory Behind the Example

And so

\[\langle 6 \rangle = \langle 2 \rangle \langle 3 \rangle = \]

\[\langle 2, 1 + \sqrt{-5} \rangle^2 \langle 3, 1 - \sqrt{-5} \rangle \langle 3, 1 + \sqrt{-5} \rangle = \]

\[\langle 2, 1 + \sqrt{-5} \rangle \langle 3, 1 + \sqrt{-5} \rangle \langle 2, 1 + \sqrt{-5} \rangle \langle 3, 1 - \sqrt{-5} \rangle = \]

\[\langle 1 + \sqrt{-5} \rangle \langle 1 - \sqrt{-5} \rangle \]
What is Happening in General?

Let $K = \mathbb{Q}(\alpha)$ be an algebraic extension of \mathbb{Q} and \mathcal{O}_K its ring of integers.
Let $K = \mathbb{Q}(\alpha)$ be an algebraic extension of \mathbb{Q} and \mathcal{O}_K its ring of integers.

\mathcal{O}_K is a Dedekind domain and hence each fractional idea of \mathcal{O}_K factors uniquely into a product of prime ideals.
Let $K = \mathbb{Q}(\alpha)$ be an algebraic extension of \mathbb{Q} and \mathcal{O}_K its ring of integers.

\mathcal{O}_K is a Dedekind domain and hence each fractional idea of \mathcal{O}_K factors uniquely into a product of prime ideals.

Let $\text{Cl}(\mathcal{O}_K)$ represent the ideal class group of \mathcal{O}_K.
Let $K = \mathbb{Q}(\alpha)$ be an algebraic extension of \mathbb{Q} and \mathfrak{O}_K its ring of integers.

\mathfrak{O}_K is a Dedekind domain and hence each fractional idea of \mathfrak{O}_K factors uniquely into a product of prime ideals.

Let $\text{Cl}(\mathfrak{O}_K)$ represent the ideal class group of \mathfrak{O}_K.

Hence, the class number of $\mathbb{Q}(\alpha)$ is $|\text{Cl}(\mathfrak{O}_K)|$.
Proposition

\mathcal{O}_K has unique factorization of elements into products of irreducibles (i.e., \mathcal{O}_K is a UFD) if and only if $|\text{Cl}(\mathcal{O}_K)| \leq 1$.
Famous Result of Carlitz (PAMS 1960)

Do higher order class numbers have an arithmetic interpretation?
Famous Result of Carlitz (PAMS 1960)

Do higher order class numbers have an arithmetic interpretation?

Theorem

The algebraic number field \(K = \mathbb{Q}(\alpha) \) has class number \(\leq 2 \) if and only if for every nonzero integer \(x \in \mathcal{O}_K \) the number of primes \(\pi_j \) in every factorization

\[
x = \pi_1 \pi_2 \cdots \pi_k
\]

only depends on \(x \).
Famous Result of Carlitz (PAMS 1960)

Do higher order class numbers have an arithmetic interpretation?

Theorem

The algebraic number field $K = \mathbb{Q}(\alpha)$ has class number ≤ 2 if and only if for every nonzero integer $x \in \mathcal{O}_K$ the number of primes π_j in every factorization

$$x = \pi_1\pi_2 \cdots \pi_k$$

only depends on x.

In general, an integral domain with this property (i.e., every irreducible factorization of a given element has the same length) is known as a half-factorial domain.
Some Notation

Let

\[M = \text{commutative cancellative monoid} \]

written multiplicatively with identity element 1 and associated group of units \(M^\times \). Set \(M^* = M \setminus M^\times \).
Some Notation

Let

\[M = \text{commutative cancellative monoid} \]

written multiplicatively with identity element 1 and associated group of units \(M^\times \). Set \(M^* = M \setminus M^\times \).

We use the usual conventions involving divisibility:

\[x \mid y \text{ in } M \iff xz = y \text{ for some } z \in M. \]

If \(x \mid y \) and \(y \mid x \) in \(M \), then \(x \) and \(y \) are associates.
Some Notation

Call $x \in M^*$

1. *prime* if whenever $x \mid yz$ for x, y, and z in M, then either $x \mid y$ or $x \mid z$.

2. *irreducible* (or an *atom*) if whenever $x = yz$ for x, y, and z in M, then either $y \in M^\times$ or $z \in M^\times$.

As usual, x prime in M implies x irreducible in M but not conversely.
Some Notation

Call \(x \in M^* \)

(1) \textit{prime} if whenever \(x \mid yz \) for \(x, y, \) and \(z \) in \(M \), then either \(x \mid y \) or \(x \mid z \).

(2) \textit{irreducible (or an atom)} if whenever \(x = yz \) for \(x, y, \) and \(z \) in \(M \), then either \(y \in M^\times \) or \(z \in M^\times \).

As usual,

\[x \text{ prime in } M \implies x \text{ irreducible in } M \]

but not conversely.
Some Notation

Set

\[\mathcal{A}(M) = \text{the set of irreducibles of } M \]

and

\[\mathcal{P}(M) = \text{the set of prime elements of } M. \]
Some Notation

Set
\[\mathcal{A}(M) = \text{the set of irreducibles of } M \]
and
\[\mathcal{P}(M) = \text{the set of prime elements of } M. \]

If \(M^* = \langle \mathcal{A}(M) \rangle \), then \(M \) is called *atomic*.
Set
\[\mathcal{A}(M) = \text{the set of irreducibles of } M \]
and
\[\mathcal{P}(M) = \text{the set of prime elements of } M. \]

If \(M^* = \langle \mathcal{A}(M) \rangle \), then \(M \) is called \textit{atomic}.

If \(D \) is an integral domain, then we can apply these conventions to \(D \) by setting \(M = D^\bullet \).
Sets of Lengths

For $x \in M^*$, the set

$$\mathcal{L}(x) = \{ n \mid x = x_1, \ldots, x_n \text{ with each } x_i \in A(M) \}$$

is called \textit{the set of lengths of factorizations of} x and

$$\mathcal{L}(M) = \{ \mathcal{L}(x) \mid x \in M^* \}$$

is called the set of lengths of M.
Sets of Lengths

For $x \in M^*$, the set

$$\mathcal{L}(x) = \{n \mid x = x_1, \ldots, x_n \text{ with each } x_i \in A(M)\}$$

is called the set of lengths of factorizations of x and

$$\mathcal{L}(M) = \{\mathcal{L}(x) \mid x \in M^*\}$$

is called the set of lengths of M.

Theorem (Geroldinger 1988)

If R is a ring of integers in a finite extension K of \mathbb{Q} and $x \in R^$, then $\mathcal{L}(x)$ is an almost arithmetic multipropgression.*
Sets of Lengths

What this essentially means is that for $x \in R^\bullet$ there exists a set of finite arithmetic sequences A_1, \ldots, A_t and positive integers $x_1 < x_2 < \ldots < x_s$ and $z_1 < z_2 < \ldots < z_r$ such that

$$L(x) = \{x_1, \ldots, x_s\} \cup \bigcup_{i=1}^{t} A_t \cup \{z_1, \ldots, z_r\}.$$

with $x_s < \min \bigcup_{i=1}^{t} A_t$ and $\max \bigcup_{i=1}^{t} A_t < z_1$.
Let M be an atomic monoid. Define for $x \in M^*$

$$L(x) = \sup \mathcal{L}(x) \quad \text{and} \quad l(x) = \inf \mathcal{L}(x),$$

and

$$\rho(x) = \frac{L(x)}{l(x)}$$

to be their quotient. $\rho(x)$ is called the *elasticity* of x.

On the Elasticity

Let M be an atomic monoid. Define for $x \in M^*$

$$L(x) = \sup \mathcal{L}(x) \text{ and } l(x) = \inf \mathcal{L}(x),$$

and

$$\rho(x) = \frac{L(x)}{l(x)}$$

to be their quotient. $\rho(x)$ is called the *elasticity* of x.

We also define

$$\rho(M) = \sup \{ \rho(x) \mid x \in M^* \}.$$

$\rho(M)$ is called the *elasticity* of M.
Variations on the Elasticity

If

$$\{ \rho(x) \mid x \in M^* \} = [1, \rho(M)] \cap \mathbb{Q},$$

then M is called fully elastic.
Variations on the Elasticity

If

$$\{ \rho(x) \mid x \in M^* \} = [1, \rho(M)] \cap \mathbb{Q},$$

then M is called *fully elastic*.

If there exists an $x \in M^*$ such that

$$\rho(M) = \rho(x)$$

then the elasticity of M is said to be *accepted*.
Elasticity and Rings of Integers

Theorem (Valenza, *J. Number Theory* 1990 and others)

If R is the ring of integers in a finite extension of \mathbb{Q}, then

$$\rho(R) = \frac{D(C1(R))}{2}$$

and this elasticity is accepted. Moreover, R is fully elastic.
Theorem (Valenza, *J. Number Theory* 1990 and others)

If R is the ring of integers in a finite extension of \mathbb{Q}, then

$$\rho(R) = \frac{D(\text{Cl}(R))}{2}$$

and this elasticity is accepted. Moreover, R is fully elastic.

If G is a finite abelian group, then $D(G)$ represents the *Davenport Constant* of G.
Theorem (Anderson-Anderson-Chapman-Smith *PAMS* 1993)

Let M be a finitely generated commutative cancellative atomic monoid. Then $\rho(M)$ is both rational and accepted.
A Note on Accepted Elasticity

All monoids in the remainder of this talk will have accepted elasticity. Here is an example of a monoid that does not.
A Note on Accepted Elasticity

All monoids in the remainder of this talk will have accepted elasticity. Here is an example of a monoid that does not.

Let $M = \{4, 10, 16, 22, 28, \ldots\} \cup \{1\} = 4 + 6\mathbb{N}_0$.

Facts:
(proofs are homework for your algebra/number theory classes)

$\rho(M) = 2$.

For each $x > 1$ in M, $\rho(x) < 2$.

Hint: The atoms of M come in two forms, those exactly divisible by 2 or those exactly divisible by 4.
A Note on Accepted Elasticity

All monoids in the remainder of this talk will have accepted elasticity. Here is an example of a monoid that does not.

Let $M = \{4, 10, 16, 22, 28, \ldots\} \cup \{1\} = 4 + 6\mathbb{N}_0$.

Facts: (proofs are homework for your algebra/number theory classes)

- $\rho(M) = 2$.
- For each $x > 1$ in M, $\rho(x) < 2$.
All monoids in the remainder of this talk will have accepted elasticity. Here is an example of a monoid that does not.

Let \(M = \{4, 10, 16, 22, 28, \ldots\} \cup \{1\} = 4 + 6\mathbb{N}_0. \)

Facts: (proofs are homework for your algebra/number theory classes)

- \(\rho(M) = 2. \)
- For each \(x > 1 \) in \(M \), \(\rho(x) < 2. \)

Hint: The atoms of \(M \) come in two forms, those exactly divisible by 2 or those exactly divisible by 4.
Let M be an atomic monoid and $x \in M^*$. Suppose

$$\mathcal{L}(x) = \{x_1, x_2, \ldots, x_t\}$$

with $x_1 < x_2 < \ldots < x_t$. Set

$$\Delta(x) = \{x_i - x_{i-1} \mid 2 \leq i \leq t\}.$$

We call $\Delta(x)$ the difference set of x.
The Difference Set

Let M be an atomic monoid and $x \in M^*$. Suppose

$$\mathcal{L}(x) = \{x_1, x_2, \ldots, x_t\}$$

with $x_1 < x_2 < \ldots < x_t$. Set

$$\Delta(x) = \{x_i - x_{i-1} \mid 2 \leq i \leq t\}.$$

We call $\Delta(x)$ the *difference set of* x.

Set

$$\Delta(M) = \bigcup_{x \in M^*} \Delta(x).$$

We call $\Delta(M)$ the *difference set of* M.
Basic Difference Set Result

Theorem (Geroldinger 1991)

If M is a reduced atomic monoid, then

$$\min \Delta(M) = \gcd \Delta(M).$$
Theorem (Geroldinger 1991)

If M is a reduced atomic monoid, then

$$\min \Delta(M) = \gcd \Delta(M).$$

Hence, if $d = \gcd \Delta(M)$, then

$$\{d\} \subseteq \Delta(M) \subseteq \{d, 2d, \ldots, td\}$$

for some nonnegative integer t.
The Delta Set of a Ring of Integers

Theorem (Geroldinger ≈ 1992)

Let \(R \) be the ring of integers in a finite extension of \(\mathbb{Q} \). Then

\[
\Delta(R) \subseteq \{1, 2, \ldots, D(\text{Cl}(R)) - 2\}.
\]

If the class number of \(R \) is a prime \(p \), then

\[
\Delta(R) = \{1, 2, \ldots, p - 2\}.
\]
Definition of a Block Monoid

Let G be an abelian group and

$$\mathcal{F}(G) = \left\{ \prod_{g_i \in G} g_i^{n_i} \mid \text{only finitely many } n_i \neq 0 \right\}$$

be the free abelian monoid on G.
Definition of a Block Monoid

Let G be an abelian group and

$$\mathcal{F}(G) = \left\{ \prod_{g_i \in G} g_i^{n_i} \mid \text{only finitely many } n_i \neq 0 \right\}$$

be the free abelian monoid on G.

Let

$$\mathcal{B}(G) = \left\{ \prod_{g_i \in G} g_i^{n_i} \mid \sum_{g_i \in G} n_i g_i = 0 \right\}$$

be the submonoid of $\mathcal{F}(G)$ consisting of zero-sum sequences. $\mathcal{B}(G)$ is known as the block monoid on G.
An Example

Let $\mathbb{Z}_3 = \{0, 1, 2\}$. Then

$$\mathcal{B}(\mathbb{Z}_3) = \{0^{n_0}1^{n_1}2^{n_2} \mid n_1 + 2n_2 \equiv 0 \pmod{3}\}.$$
An Example

Let $\mathbb{Z}_3 = \{\overline{0}, \overline{1}, \overline{2}\}$. Then

$$B(\mathbb{Z}_3) = \left\{ \overline{0}^{n_0} \overline{1}^{n_1} \overline{2}^{n_2} \mid n_1 + 2n_2 \equiv 0 \pmod{3} \right\}.$$

Notice that the irreducible elements of $B(\mathbb{Z}_3)$ are

- $\overline{0}$,
- $\overline{1}^3$,
- $\overline{2}^3$, and
- $\overline{12}$.
Let R be a ring of integers in a finite extension of \mathbb{Q} and $\alpha \in R^\times$. Suppose

$$\langle \alpha \rangle = P_1 \cdots P_k$$

for not necessarily distinct prime ideals of R. Let $[P_i]$ represent the image of the ideal P_i in $\text{Cl}(R)$.
The Connection with Rings of Integers

Let R be a ring of integers in a finite extension of \mathbb{Q} and $\alpha \in R^\bullet$. Suppose

$$\langle \alpha \rangle = P_1 \cdots P_k$$

for not necessarily distinct prime ideals of R. Let $[P_i]$ represent the image of the ideal P_i in $\text{Cl}(R)$.

Define

$$\varphi : R^\bullet \rightarrow B(\text{Cl}(R))$$

by

$$\varphi(\alpha) = [P_1] \cdots [P_k].$$
The Connection with Rings of Integers

Facts:

- φ is a monoid homomorphism from R^\bullet to $B(\Cl(R))$.
- $\mathcal{L}(\alpha) = \mathcal{L}([P_1] \cdots [P_k])$.
- Moreover, $\{\mathcal{L}(\alpha) \mid \alpha \in R^\bullet\} = \{\mathcal{L}(B) \mid B \in B(\Cl(R))\}$.
The Connection with Rings of Integers

Facts:
- \(\varphi \) is a monoid homomorphism from \(R^\bullet \) to \(B(\text{Cl}(R)) \).
- \(L(\alpha) = L([P_1] \cdots [P_k]) \).
- Moreover, \(\{L(\alpha) \mid \alpha \in R^\bullet \} = \{L(B) \mid B \in B(\text{Cl}(R))\} \).

Moral: All the results so far for rings of integers are specializations of more general results on Block Monoids.
Question: If G_1 and G_2 are finite abelian groups and

$$\mathcal{L}(\mathcal{B}(G_1)) = \mathcal{L}(\mathcal{B}(G_2))$$

then must $G_1 \cong G_2$.

Answer: NO, but very few exceptional cases are known (e.g., $\mathcal{L}(\mathbb{Z}_3) = \mathcal{L}(\mathbb{Z}_2 \oplus \mathbb{Z}_2)$ is one).
Question: If G_1 and G_2 are finite abelian groups and
\[
\mathcal{L}(\mathcal{B}(G_1)) = \mathcal{L}(\mathcal{B}(G_2))
\]
then must $G_1 \cong G_2$.

Answer: NO, but very few exceptional cases are known ($\mathcal{L}(\mathbb{Z}_3) = \mathcal{L}(\mathbb{Z}_2 \oplus \mathbb{Z}_2)$ is one).
Types of Monoids Examined in the Literature

- Block Monoids (*Israel Math. J.* 1990)
- Semigroup Rings (*Archiv Math.* 1993)
- Congruence Monoids (*Colloq. Math.* 2007)
- The Ring of Integer-Valued Polynomials (*J. Algebra* 2005)
- Numerical Monoids (rest of talk)
Definition of a Numerical Monoid

If $n_1 < n_2 < \cdots < n_t$ are natural numbers, then set

$$\langle n_1, n_2, \ldots, n_t \rangle = \{x_1 n_1 + x_2 n_2 + \cdots + x_t n_t \mid \text{each } x_i \in \mathbb{N}_0\}.$$

$\langle n_1, n_2, \ldots, n_t \rangle$ is an additive submonoid of \mathbb{N}_0.
Definition of a Numerical Monoid

If \(n_1 < n_2 < \cdots < n_t \) are natural numbers, then set

\[
\langle n_1, n_2, \ldots, n_t \rangle = \{ x_1 n_1 + x_2 n_2 + \cdots + x_t n_t \mid \text{each } x_i \in \mathbb{N}_0 \}.
\]

\(\langle n_1, n_2, \ldots, n_t \rangle \) is an additive submonoid of \(\mathbb{N}_0 \).

Such a submonoid is known as a *numerical monoid*. The integers \(n_1, \ldots, n_t \) are called the *generators* of \(\langle n_1, n_2, \ldots, n_t \rangle \) and if they are relatively prime, then \(\langle n_1, n_2, \ldots, n_t \rangle \) is called a *primitive numerical monoid*.
Definition of a Numerical Monoid

If \(n_1 < n_2 < \cdots < n_t \) are natural numbers, then set

\[
\langle n_1, n_2, \ldots, n_t \rangle = \{ x_1 n_1 + x_2 n_2 + \cdots + x_t n_t \mid \text{each } x_i \in \mathbb{N}_0 \}.
\]

\(\langle n_1, n_2, \ldots, n_t \rangle \) is an additive submonoid of \(\mathbb{N}_0 \).

Such a submonoid is known as a *numerical monoid*. The integers \(n_1, \ldots, n_t \) are called the *generators* of \(\langle n_1, n_2, \ldots, n_t \rangle \) and if they are relatively prime, then \(\langle n_1, n_2, \ldots, n_t \rangle \) is called a *primitive numerical monoid*.

Simple Fact: Every numerical monoid is isomorphic to a primitive numerical monoid.
Let $S = \langle n_1, \ldots, n_t \rangle$ be a primitive numerical monoid. The largest $n \in \mathbb{N}$ such that $n \notin S$ is called the *Frobenius Number of S* and denoted $F(S)$.

\begin{align*}
\text{Theorem (Sylvester 1884)} \\
F(S) &= (n_1 - 1)(n_2 - 1) - 1 = n_1 n_2 - n_1 - n_2.
\end{align*}
Let $S = \langle n_1, \ldots, n_t \rangle$ be a primitive numerical monoid. The largest $n \in \mathbb{N}$ such that $n \not\in S$ is called the *Frobenius Number* of S and denoted $\mathcal{F}(S)$.

Theorem (Sylvester 1884)

Let $S = \langle n_1, n_2 \rangle$ be a primitive numerical monoid. Then

$$\mathcal{F}(S) = (n_1 - 1)(n_2 - 1) - 1 = n_1 n_2 - n_1 - n_2.$$

Let $S = \langle n_1, n_2, \ldots, n_t \rangle$ be a primitive numerical monoid whose given generating set is minimal with $t \geq 2$.

- $\rho(S) = \frac{n_t}{n_1}$.
- There exists a rational number q with $1 < q < \frac{n_t}{n_1}$ such that $\rho(s) \neq q$ for all $s \in S$ (i.e., S is not fully elastic).

- If $S = \langle n_1, \ldots, n_k \rangle$ then
 $\min \Delta(S) = \gcd\{n_i - n_{i-1} \mid 2 \leq i \leq k\}$.
- If $S = \langle n, n + k, n + 2k, \ldots, n + tk \rangle$, then $\Delta(S) = \{k\}$.
- For any positive integers k and t, there exists a three generated numerical monoid S such that
 $\Delta(S) = \{k, 2k, \ldots, tk\}$.
- For $n \geq 3$,
 $\Delta(\langle n, n + 1, n^2 - n - 1 \rangle) = \{1, 2, \ldots, n - 2\} \cup \{2n - 5\}$.
Theorem (Trinity REU 2006 - *Integers* 2007)

Let S and S' be numerical monoids requiring at least two generators. Then $\mathcal{L}(S) = \mathcal{L}(S')$ does not imply that $S = S'$. In fact, set

$$S = \langle a, a + k, \ldots, a + wk \rangle,$$

with $0 \leq w < a$ and $\gcd(a, k) = 1$, and also

$$S' = \langle c, c + t, \ldots, c + vt \rangle,$$

where $v < c$, $\gcd(c, t) = 1$. If $S \neq S'$, then the following statements are equivalent:

- $\mathcal{L}(S) = \mathcal{L}(S')$
- $k = t$, $\frac{c}{a} = \frac{v}{w}$, $\gcd(a, w) \geq 2$, and $\gcd(c, v) \geq 2$.
Theorem (Trinity REU 2007 - to appear in *Aequationes Math*)

Given a primitive numerical monoid $M = \langle n_1, \ldots, n_k \rangle$, we have for all $x \geq 2kn_2n_k^2$ that $\Delta(x) = \Delta(x + n_1n_k)$.
Theorem (Trinity REU 2007 - to appear in Aequationes Math)

Given a primitive numerical monoid \(M = \langle n_1, \ldots, n_k \rangle \), we have for all \(x \geq 2kn_2n_k^2 \) that \(\Delta(x) = \Delta(x + n_1n_k) \).

Corollary

Let \(M = \langle n_1, \ldots, n_k \rangle \) be a primitive numerical monoid, then if we set \(N = 2kn_2n_k^2 + n_1n_k \), we have:

\[
\Delta(M) = \bigcup_{x \in M, x < N} \Delta(x)
\]