Chapter 9
Social Cognitive Theory
Overview

• The Triadic Reciprocal Causation Model
• Self-Control, Self-Regulation, and Self-Efficacy
• Helping Students Become Self-Regulated Learners
• Research on Social Cognitive Theory
• Using Technology to Promote Self-Regulated Learning
Triadic Reciprocal Causation Model

- Learning results from the interactions among:
 - Personal Characteristics
 - Mental and emotional factors such as goals, anxiety, metacognition, and self-efficacy
 - Behavioral Patterns
 - Include self-observation, self-evaluation, making changes in behavior to overcome or reduce perceptions, and creating productive study environments
 - Environmental Factors
 - An individual’s social and physical environment
Self Control, Self-Regulation, and Self-Efficacy

• Self-Control
 • Ability to control one’s actions in the absence of external reinforcement or punishment

• Self-Regulation
 • The consistent and appropriate application of self-control skills to new situations

• Self-Efficacy
 • How capable or prepared we believe we are for handling particular kinds of tasks
Self-Control, Self-Regulation, and Self-Efficacy

• The Role of Self-Efficacy in Self-Regulation
 • Self-efficacy beliefs affect many aspects of self-regulation
 – Optimistic or pessimistic thoughts
 – Approach or avoid tasks
 – High or low motivation
 – Persevere for long or short periods when tasks are difficult
 – Use of more effective or less effective learning skills
 – Motivated or demoralized by failure
 • Self-efficacy more influential that expected rewards, punishments, or actual skill level
Self-Control, Self-Regulation, and Self-Efficacy

• The Role of Self-Efficacy in Self-Regulation
• Factors That Affect Self-Efficacy
 – Performance Accomplishments
 – Verbal Persuasion
 – Emotional Arousal
 – Vicarious Experience
Self-Control, Self-Regulation, and Self-Efficacy

• The Role of Self-Efficacy in Self-Regulation
 • Types of Behaviors Affected by Self-Efficacy
 – Selection Processes
 – Cognitive Processes
 – Motivational Processes
 – Affective Processes
Self-Control, Self-Regulation, and Self-Efficacy

- The Components of a Self-Regulatory System
- Forethought Phase
 - Task analysis
 - set a long-term goal and then a series of near-term achievable sub-goals
 - formulate a plan to achieve those goals
 - Self-motivational beliefs
 - self-efficacy beliefs
 - outcome expectations
 - intrinsic interest
 - goal orientation
 - epistemological beliefs
Self-Control, Self-Regulation, and Self-Efficacy

• The Components of a Self-Regulatory System
• Performance Phase
 – Self-control
 ✓ focus on task, ignore distractions
 ✓ think about the steps involved in completing a task
 – Self-observation
 ✓ use journals and logs to maintain awareness of performance
 ✓ try different approaches to learning
The Components of a Self-Regulatory System

- The Components of a Self-Regulatory System
 - Self-Reflection Phase
 - Self-judgment
 ✓ evaluate own performance using one of four standards
 ✓ attribute outcomes to effort, ability, task difficulty, luck
 - Self-reaction
 ✓ reinforce self
 ✓ make improvements in self-regulation skills
Helping Students Become Self-Regulated Learners

• What is Self-Regulated Learning?
 • Thoughts, feelings, or actions purposely generated and controlled by student to maximize learning of knowledge and skills for a given task and set of conditions
 • Self-regulated learners also referred to as self-directed, autonomous, or strategic learners
Helping Students Become Self-Regulated Learners

• How Well Prepared Are Students to Be Self-Regulated Learners?
 • Many, perhaps most, do not self-regulate systematically or consistently
 • Rote rehearsal, simple organizational schemes, and various cueing devices account for tactics most use
 • Most students will require several years of systematic instruction to become proficient self-regulated learners
Helping Students Become Self-Regulated Learners

• The Nature of Learning Tactics and Strategies
 • Learning Strategy
 – A general plan that a learner formulates for achieving a somewhat distant academic goal
 • Learning Tactic
 – A specific technique that a learner uses to accomplish an immediate learning objective
Helping Students Become Self-Regulated Learners

• Types of Tactics
 • Memory-Directed Tactics
 – Techniques that help produce accurate storage and retrieval of information
 • Comprehension-Directed Tactics
 – Techniques that aid in understanding the meaning of ideas and their interrelationships
Helping Students Become Self-Regulated Learners

• Memory-Directed Tactics
 • Rehearsal
 – Rote rehearsal
 – Cumulative rehearsal
 • Mnemonic Devices
 – Rhyme
 – Acronym
 – Acrostic
 – Method of Loci
 – Keyword
Helping Students Become Self-Regulated Learners

• Why Mnemonic Devices are Effective
 • They make information easier to encode and retrieve because they...
 – provide a context in which items can be organized
 – allow familiar and more meaningful items to be associated with new items
 – provide retrieval cues
 – force the learner to be an active participant
Helping Students Become Self-Regulated Learners

• Why You Should Teach Students How to Use Mnemonic Devices
 • They reduce the amount of time spent looking up facts
 • Effective problem solving requires ready access to an organized and meaningful knowledge base
 • Students learn that the ability to store and recall large amounts of information is an acquired capability that anyone can acquire
Helping Students Become Self-Regulated Learners

• Comprehension-Directed Tactics
 • Self-Questioning and Peer-Questioning
 – Question stems help students ask appropriate questions about ideas and their interrelationships.
 • Notetaking
 – Benefits retention and comprehension when students take notes and review notes
• Concept Mapping
 – A technique for identifying, visually organizing, and representing the relationships among a set of ideas
Self-Questioning Stems

- What is a new example of ...?
- How would you use ... to ...?
- What would happen if ...?
- What are the strengths and weaknesses of ...?
- What do we already know about ...?
- How does ... tie in with what we learned before?
- Explain why...
- Explain how...
- How does ... affect ...?
- What is the meaning of ...?
- Why is ... important?
- What is the difference between ... and ...?
- How are ... and ... similar?
- What is the best ..., and why?
- What are some possible solutions to the problem of ...?
- Compare ... and ... with regard to ...?
- How does ... cause ...?
- What do you think causes ...?
Helping Students Become Self-Regulated Learners

• Conclusions Regarding Learning Tactics
 • Students will not learn about tactics and become skilled at using them on their own---they need to be systematically taught.
 • Tactics should not be taught in isolation, but as part of a broad learning strategy.
Video: Metacognition: Helping Students Become Strategic Learners
Helping Students Become Self-Regulated Learners

• Supporting Students’ Strategy Use
 • Remind students to formulate new strategies whenever the task situation changes (for example, type of information, teaching method, exams, and motivation level)
 • Give students feedback about the nature of the strategies they create and how well they work
 • Tell students that they are capable of becoming self-regulated learners
 • Give students all the task information they need to become strategic learners
Modeling and Self-Regulated Learning

<table>
<thead>
<tr>
<th>Level</th>
<th>Main Requirement of the Learner</th>
<th>Source of Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation</td>
<td>Attend to actions and verbalizations of the model and discriminate relevant from irrelevant behaviors</td>
<td>Vicarious: note rewards received by the model and anticipate receiving similar rewards for exhibiting similar behavior</td>
</tr>
<tr>
<td>Emulation</td>
<td>Exhibit the general form of the modeled behavior</td>
<td>Direct: feedback from the model and/or others</td>
</tr>
<tr>
<td>Self-control</td>
<td>Learn to exhibit the modeled behavior automatically through self-directed practice (focus on the underlying rule or process that produces the behavior and compare the behavior with personal standards)</td>
<td>Self-satisfaction from matching the standards and behavior of the model</td>
</tr>
<tr>
<td>Self-regulation</td>
<td>Learn to adapt the behavior to changes in internal and external conditions (such as the reactions of others)</td>
<td>Self-efficacy beliefs; degree of intrinsic interest in the skill</td>
</tr>
</tbody>
</table>

Research on Social Cognitive Theory

- Relationships Among Self-Efficacy, Epistemological Beliefs, Self-Regulation Processes, and Achievement
 - Higher levels of self-efficacy related to strategy use, lower anxiety for math and science (for boys), lower anxiety for writing (for girls), and higher levels of achievement
 - Sophistication of epistemological beliefs predicts grade-point average
Research on Social Cognitive Theory

- Effects of Modeling on Self-Efficacy, Self-Regulation, and Achievement
 - Students’ mathematical problem solving skills improve when watching a peer model, particularly one of similar ability
 - Students’ writing skills improve when they observe a model using a self-regulated strategy
 - Observing a model produces better quality writing than just practicing writing
Research on Social Cognitive Theory

• Effects of Instruction on Self-Regulated Learning Skills
 • Reciprocal teaching is an effective way to teach students how to model self-regulated reading comprehension skills to each other
 • The think before reading, while reading, after reading (TWA) program also improves reading comprehension
 • Benchmark School illustrates integration of self-regulated strategy instruction into school curriculum
Using Technology to Promote Self-Regulated Learning

- Modeling
- Providing Cognitive and Metacognitive Feedback
- Providing Scaffolded Instruction
- The Effect of Self-Regulated Learning Skills on Computer-Based Instruction
- The Effect of Self-Efficacy on Computer-Based Instruction