Minutes of April 8 meeting of Integrated Science Committee

1. Members Present: Paul Loeffler, Brian Loft, Solomon Schneider, Todd Primm, Marcus Gillespie, Doug Constance, Matt Rowe, Bobby Lane

2. Meeting convened at 3:35 and ended at approximately 4:40

3. Edited the objectives from previous meeting (see below) and changes were approved by a majority: 7 in favor, 1 abstention

4. Discussed the logistics of offering the course:
 a. Discussed the difficulty of offering team-taught sections given that the course topics must be taught sequentially. This led to discussion of offering large sections that are individually taught
 b. Proposed idea that individual departments would appoint faculty to teach the IS course based on enthusiasm for teaching it
 c. Possibility of phasing in the integrated science course
 d. Possibility of large lecture sections (200-300) coupled with small labs (30-40), with a mixture of “dry”/discussion and “wet” lab activities
 e. Possible trial for first semester consisting of 1000 students divided among:
 - 5 large lecture sections of 150 each, linked labs of 30 each
 - 5 small lecture sections of 50 each, linked labs of 25 each
 f. Pay grad TAs to sit in on lecture
 g. Will need a lab coordinator for the labs

5. Questions:
 a. Will university count large sections as a double teaching load?
 b. How many faculty members can teach the course individually?

Objectives

* I am a bit unsure regarding the wording of objective #2, but I think it captures the intent. If not, please let me know.

1. Increase students’ understanding of the applicability and reliability of important scientific principles and the collective approach that led to their establishment.

2. Engender a more positive appreciation of science by enhancing students’ understanding of the role of science in their daily lives.

3. Enhance students’ appreciation of the need for science literacy in our technologically advanced societies.

4. Strengthen students’ critical thinking skills through illustrations and applications of scientific reasoning and the role of these skills in scientific discovery.