Banner

 

HomeCoursesResearchStudentsPublicationsAwardsphoto galleryLinks

Welcome!

Dr. Choudhary

Research Interest

Microbial Genetics, Genomics, and Bioinformatics

My research interests are in bacterial cell-cycle regulation, role of gene duplication in metabolic innovations, and evolution of genomic complexity in prokaryotes. Rhodobacter sphaeroides, a member of alpha-3 Proteobacteria, is a model organism for these investigations in my laboratory. R. sphaeroides possesses a complex genome structure, including multiple chromosomes and abundance of duplicated genes, and it also exhibits a great repertoire of metabolic capabilities.

Bacterial cell cycle involves DNA replication, chromosome segregation, and septum formation (cytokinesis). These molecular and cellular processes are coordinated and controlled by regulatory networks. Since prokaryotic cells lack mitosis-like apparatus, multiple chromosomes in bacteria pose a considerable problem for the coordinated replication and the accurate segregation of the chromosomes. To understand the behavior of two chromosomes throughout cell cycle in R. sphaeroides, cloned origins of replication from two chromosomes is being investigated for their replication and cellular localization. Different genetic, biochemical, and bioinformatic methods are employed for this investigation.

The genome of R. sphaeroides contains ~29% of gene duplications, and its roles have been implicated in evolutionary novelties for genome and organismic evolution. We are interested how do different structural and functional constraints of duplicate copies of each gene-pair affect their mRNA expression. This study utilizes both bioinformatic and molecular approaches, such as Ka/Ks estimates, phylogenetic tree construction, and microarray expression analysis.   

We are also interested in origin and evolution of genome complexity in bacteria. We performed genome analyses on bacterial species, which possess multiple chromosomes, and have conclusively demonstrated the ancient origin of second chromosome. Since the second chromosome rapidly evolved, we want to investigate further whether second chromosome has specialized role or has evolved to a level where it has become important for the organism in all growth conditions.

Current Research Projects:

  • Bacterial cell-cycle regulation
  • Genetic and evolutionary analyses of duplicate genes
  • Analysis of chromosomal origin of replication
  • Analysis of genome complexity: Evolution of complex bacterial genomes

 

Download CV - .pdf Download Current Lab Group - .pdf
 

Department of Biological Sciences - SAM Houston State University
Huntsville, Texas 77341, USA

Free Hit Counters
email