Lecture Notes on Filter Banks and Wavelets

Jianzhong Wang

Department of Mathematics and Statistics
Sam Houston State University
Huntsville, TX 77341

E-mail: mth_jxw@shsu.edu
Contents

1. Introduction 0
 1.1. Functions and Digital Signals (Images) 0
 1.2. Transforms 1
 1.3. Wavelet Transform and Wavelet Basis 2
 1.4. Purposes of The Course 5
2. Filters and Shannon Theorem 6
 2.1. Digital Filters 6
 2.2. Filter as Impulse Response 7
 2.3. Represent Filter in Time Domain and in Frequency Domain 7
 2.4. Lowpass Filters and Highpass Filters 8
 2.5. Magnitude and Phase 9
 2.6. Inverse Filters 9
 2.7. Ideal Filters and Shannon Sampling Theorem 10
3. Filter Bank 12
 3.1. Downsampling and Upsampling 12
 3.2. Filter Banks 15
 3.3. Analysis Filter Banks 15
 3.4. Synthesis Filter Banks 16
4. Perfect Reconstruction 16
 4.1. Conditions for Perfect Reconstruction 16
 4.2. Find Prefect Reconstruction Polynomials 17
 4.3. List of Perfect Reconstruction Product Filters 19
5. Orthonormal Filter Banks 20
 5.1. Conditions for Orthonormal Filter Banks 20
 5.2. Constructing Orthonormal Filter Banks 22
6. Polyphase Representations for Filter Banks 24
 6.1. Polyphases for Filter Banks 24
 6.2. Polyphases for Synthesis and Analysis Filter Banks 25
 6.3. Polyphase for Perfect Reconstruction 27
7. Multiresolution Analysis and Wavelet Bases 28
 7.1. The Haar Basis 28
 7.2. Decompose Functions into a Haar Wavelet Series 29
 7.3. Multiresolution Analysis 30
 7.4. Construct Wavelet Subspaces from MRA 31
8. Orthonormal Wavelet Bases 33
 8.1. Find Orthonormal Wavelet from an MRA 33
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2</td>
<td>Decompose and Recover Functions</td>
<td>34</td>
</tr>
<tr>
<td>8.3</td>
<td>Relation Between Filter Banks and Wavelets</td>
<td>35</td>
</tr>
<tr>
<td>8.4</td>
<td>Daubechies Scaling Functions and Wavelets.</td>
<td>35</td>
</tr>
<tr>
<td>9.</td>
<td>Computing Scaling Functions</td>
<td>37</td>
</tr>
<tr>
<td>9.1</td>
<td>Cascade Algorithm</td>
<td>37</td>
</tr>
<tr>
<td>9.2</td>
<td>Recursion Algorithm</td>
<td>37</td>
</tr>
<tr>
<td>10.</td>
<td>Biorthogonal Wavelet Bases</td>
<td>39</td>
</tr>
<tr>
<td>10.1</td>
<td>Construct Biorthogonal Wavelet Bases</td>
<td>39</td>
</tr>
<tr>
<td>10.2</td>
<td>Decompose and Recover Functions</td>
<td>40</td>
</tr>
<tr>
<td>11.</td>
<td>Infinite Product Formula</td>
<td>42</td>
</tr>
<tr>
<td>11.1</td>
<td>The Convergence of Infinite Product</td>
<td>42</td>
</tr>
<tr>
<td>11.2</td>
<td>The Support of Refinable Functions</td>
<td>44</td>
</tr>
<tr>
<td>11.3</td>
<td>The Symmetric of Refinable Functions</td>
<td>45</td>
</tr>
<tr>
<td>12.</td>
<td>Linear Independence and Stability</td>
<td>46</td>
</tr>
<tr>
<td>12.1</td>
<td>Linear Independence of a Refinable Function</td>
<td>47</td>
</tr>
<tr>
<td>12.2</td>
<td>The Root Criterion of Linear Independence</td>
<td>47</td>
</tr>
<tr>
<td>12.3</td>
<td>Linearly Independent Functions in Refinable Space</td>
<td>49</td>
</tr>
<tr>
<td>13.</td>
<td>Accuracy and Vanish Moments of Wavelets</td>
<td>50</td>
</tr>
<tr>
<td>13.1</td>
<td>A Criterion of Accuracy</td>
<td>50</td>
</tr>
<tr>
<td>13.2</td>
<td>Accuracy of a Refinable Function</td>
<td>51</td>
</tr>
<tr>
<td>13.3</td>
<td>Vanish Moments of Wavelets</td>
<td>52</td>
</tr>
<tr>
<td>14.</td>
<td>Smoothness of Wavelets</td>
<td>53</td>
</tr>
<tr>
<td>14.1</td>
<td>Smoothness of Refinable Functions</td>
<td>53</td>
</tr>
<tr>
<td>14.2</td>
<td>Smoothness of Daubechies Orthonormal Wavelets</td>
<td>56</td>
</tr>
<tr>
<td>15.</td>
<td>Multivariate Wavelet Bases</td>
<td>57</td>
</tr>
<tr>
<td>15.1</td>
<td>Tensor Product</td>
<td>57</td>
</tr>
<tr>
<td>15.2</td>
<td>Decompose and Recover Bivariate Functions</td>
<td>58</td>
</tr>
<tr>
<td>16.</td>
<td>Wavelet Packet</td>
<td>60</td>
</tr>
<tr>
<td>16.1</td>
<td>Construct Wavelet Packets</td>
<td>60</td>
</tr>
<tr>
<td>16.2</td>
<td>Construct Orthonormal Bases Using Wavelet Packets</td>
<td>61</td>
</tr>
<tr>
<td>1.</td>
<td>Orthonormal and Biorthonormal Wavelets</td>
<td>62</td>
</tr>
<tr>
<td>2.</td>
<td>1-D Discrete Wavelet Transform in MATLAB</td>
<td>66</td>
</tr>
<tr>
<td>3.</td>
<td>2-D Discrete Wavelet Function In MATLAB</td>
<td>71</td>
</tr>
<tr>
<td>4.</td>
<td>Function For Transfer Image (Sound) Forms</td>
<td>77</td>
</tr>
</tbody>
</table>
1. Introduction

1.1. Functions and Digital Signals (Images).

1.1.1. L^2 functions and their Fourier transforms. L^2 space is often used in the wavelet course. It is defined as follows.

$$L^2 = \left\{ f ; \quad \| f \|_2 := \left(\int_{\mathbb{R}} |f(x)|^2 \, dx \right)^{1/2} < \infty \right\},$$

where $\| f \|_2$ is called the norm (or the energy) of $f \in L^2$.

Sometimes other spaces, such as Lebesgue spaces L^p, $1 \leq p \leq \infty$, Sobolev spaces $W^{s,p}$, and distribution space \mathcal{D}, are also in use.

The Fourier Transform of a function $f \in L^2$ is defined by

$$\hat{f}(\omega) = \int_{\mathbb{R}} f(t) e^{-i\omega t} \, dt$$

The inverse Fourier transform is

$$f(t) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\omega) e^{i\omega t} \, d\omega$$

Example 1. Let

$$f(x) = \begin{cases} 1, & |x| < 1 \\ 0, & |x| \geq 1 \end{cases}$$

Then its Fourier transform is

$$\hat{f}(\omega) = \int_{\mathbb{R}} f(x) e^{-i\omega x} \, dx = \frac{2 \sin \omega}{\omega}$$

Let $< f, g >$ be the inner product of $f, g \in L^2$: $\int_{\mathbb{R}} f(x)g(x) \, dx$. We have the following Parseval Formula,

$$< f, \hat{g} > = < \hat{f}, g >.$$

By the inverse Fourier transform formula, we also have

$$< f, g > = 2\pi < \hat{f}, \hat{g} >.$$

Using Parseval Formula, we can extend Fourier transform on other spaces. For example, let S be the space of rapidly decreasing functions and S^* is the dual space of S, that is the space containing all slowly increasing distributions. Then for $f \in S^*$, we define \hat{f} by the following way. for each $g \in S$,

$$< \hat{f}, g > = < f, \hat{g} >.$$

Example 2. Delta function $\delta(x)$ is a linear and bounded functional on $C(\mathbb{R})$ defined by

$$\int_{\mathbb{R}} \delta(x)f(x) \, dx = f(0)$$

Then the Fourier transform of $\delta(x)$ is

$$\int_{\mathbb{R}} \delta(x)e^{-i\omega x} \, dx = 1.$$
1. INTRODUCTION

Generally, we have

\[(1.1) \int_{\mathbb{R}} \delta(x - x_0)e^{-ix\omega}dx = e^{-ix_0\omega}.\]

From (1.1), we get

\[
\frac{1}{2\pi} \int_{\mathbb{R}} \delta(\omega - \omega_0)e^{ix\omega}d\omega = \frac{1}{2\pi}e^{ix\omega_0}.
\]

Using the inverse Fourier transform, we get the Fourier transform of \(e^{ix\omega_0}\),

\[
\int_{\mathbb{R}} e^{ix\omega_0}e^{-ix\omega}dx = 2\pi\delta(\omega - \omega_0).
\]

1.1.2. Digital signals (Image). Sequence \(u = (u(n))_{-\infty}^{\infty}\) is called a signal. An image usually is represented by a two-dimensional sequence \(q = (q(n,m))_{n,m \in \mathbb{Z}}\). (or a vector of two-dimensional sequences for a color image.) For signals we introduce the sequence space

\[
l^2 = \{u; \|u\|_2 := \left(\sum |u(n)|^2\right)^{1/2} < \infty\},
\]

where \(\|u\|_2\) is the \(l^2\) norm (or energy) of signal \(u\).

Similarly, we can define spaces \(l^p\), \(1 \leq p \leq \infty\) by

\[
l^p = \{u; \|u\|_p := \left(\sum |u(n)|^p\right)^{1/p} < \infty\}.
\]

1.2. Transforms. A way to obtain new representations of functions or signals

1.2.1. Fourier series. Fourier series of a periodic function is a transform from periodic functions to sequences. Let \(\tilde{L}^2\) be the space of all square integrable \(2\pi\)-periodic functions. The norm of \(f \in \tilde{L}^2\) is

\[
\left(\frac{1}{2}\int_{-\pi}^{\pi} |f(x)|^2dx\right)^{1/2}.
\]

The (complex) Fourier series of \(f(x) \in \tilde{L}^2\) is

\[(1.2) f(x) = \sum_{k=-\infty}^{\infty} c_k e^{ikx},\]

where \(c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx}dx\). Note that the equality in (1.2) holds in the \(\tilde{L}^2\) sense, i.e.,

\[
\lim_{n,m \to \infty} \|f(x) - \sum_{k=-n}^{m} c_k e^{ikx}\|_{\tilde{L}^2} = 0.
\]

An important result for \(f(x) \in \tilde{L}^2\) is that \(f(x) \in \tilde{L}^2\) if and only if the coefficient sequence \((c_n) \in l^2\). Moreover, we have

\[
\|f\|_{\tilde{L}^2} = \|c\|_2.
\]
The Fourier series of a function defined on a finite interval can be obtained in a similar way.

Example 3. The Fourier series of function \(y = x, -l < x < l \) is

\[
y = \frac{2l}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1} n \pi x}{n} \sin \frac{n \pi x}{l}
\]

1.2.2. **Filter Bank Transform.** Filter bank transform is a transform from signals to signals. Haar Transform is the simplest 2-channel filter bank transform, which changes a sequence into a pair of sequences. For a signal \(x \), its Haar transform is

\[
\begin{align*}
y_0 &= H_0 x, & y_0(n) &= \frac{x((2n-1)+x(2n))}{2}, \\
y_1 &= H_1 x, & y_1(n) &= \frac{x(2n)-x(2n-1)}{2}.
\end{align*}
\]

Example 4. The Haar transform of a finite sequence

\[
x = (x(1), x(2), x(3), x(4))
\]

is

\[
\begin{align*}
y_0 &= (y_0(1), y_0(2)), & y_0(1) &= \frac{x(1)+x(2)}{2}, y_0(2) &= \frac{x(3)+x(4)}{2}, \\
y_1 &= (y_1(1), y_1(2)), & y_1(1) &= \frac{x(1)-x(2)}{2}, y_1(2) &= \frac{x(3)-x(4)}{2}.
\end{align*}
\]

There are two kinds of transforms. (a) Invertible (lossless) transforms. (b) Non-invertible (lossy) transforms. The purposes of transforms are the followings.

- To obtain good structure of functions or signals. (To find patterns.)
- To delete the redundancy in the original representation. (Image compression.)
- To create new signals and functions, that model the objects more precisely. (Signal processing, de-noising.)

1.3. **Wavelet Transform and Wavelet Basis.**

1.3.1. **Continuous wavelet transform.** Wavelet is used to represent a function in time-frequency domain locally.

Definition 1.1. A function \(h \in L^1 \cap L^2 \) is said to be a wavelet function if it satisfies the zero-moment condition

\[
\int_{\mathbb{R}} h(x) \, dx = 0.
\]
We can verify that the zero-moment condition implies

\[C_h = \int \frac{|\hat{h}(\omega)|^2}{|\omega|} d\omega < \infty. \]

A wavelet is expected to be “local” in both time domain and frequency domain. The locality can be defined in the following way.

Definition 1.2. Let \(h \) be a wavelet.

\[t_0 = \frac{\int t|h(t)|^2 dt}{\|h\|_2^2} \]

is called the time center of \(h \), while

\[\omega_0^\pm = \frac{\int_{0 \leq \omega \leq \infty} \omega |\hat{h}(\omega)|^2 d\omega}{\|\hat{h}\|_2^2} \]

is called the (positive and negative respectively) frequency center of \(h \); and

\[\triangle_h = \left(\frac{\int (t - t_0)^2|h(t)|^2 dt}{\|h\|_2^2} \right)^{1/2} \]

is called the time width of \(h \) while

\[\triangle_{\hat{h}}^\pm = \left(\frac{\int_{0 \leq \omega \leq \infty} (\omega - \omega_0^\pm)^2|\hat{h}(\omega)|^2 d\omega}{\|\hat{h}\|_2^2} \right)^{1/2} \]

is called the (positive and negative respectively) frequency width of \(h \).

Remark 1.1. For a function \(h(t) \in L^2 \) (not necessarily to be a wavelet), we usually assign it a single frequency center and therefore a single frequency width as follows.

\[\omega_0 = \frac{\int_{\mathbb{R}} \omega |\hat{h}(\omega)|^2 d\omega}{\|\hat{h}\|_2^2} \]

and

\[\triangle_{\hat{h}} = \left(\frac{\int_{\mathbb{R}} (\omega - \omega_0)^2|\hat{h}(\omega)|^2 d\omega}{\|\hat{h}\|_2^2} \right)^{1/2} \]

If \(h(t) \) and \(th(t) \) both are in \(L^2 \), then the time width and the frequency width both are finite. We call \(h \) a window function. A window wavelet function has finite time width and (positive and negative respectively) frequency width.

The time width and frequency width measure the locality of a function in time domain as well in frequency domain. The rectangle centered in \((t_0, \omega_0)\) and with the length and width \(\triangle_h, \triangle_{\hat{h}} \) is called the time-frequency window of \(h \). The size of any time-frequency window is restricted by Heisenberg Uncertainty Principle.
Theorem 1.1 (Heisenberg Uncertainty Principle). If \(g \) is a window function, then

\[
\Delta_g \Delta \hat{g} \leq \frac{1}{2},
\]

where the equality holds if and only if \(g \) is a Gaussian window, i.e.,

\[
g(x) = \frac{1}{(2\pi)\sigma^{1/2}} e^{-\frac{(t-t_0)^2}{4\sigma^2}}, \quad t_0 \in \mathbb{R}, \sigma \in \mathbb{R}^+.
\]

We now go back to discuss continuous wavelet transform. Write

\[
h_{ab}(x) = |a|^{-1/2} h\left(\frac{x-b}{a}\right).
\]

Definition 1.3. Let \(h \) be a wavelet function. The continuous wavelet transform of \(f \) with respect to wavelet \(h \) is defined by

\[
W_f(a, b) = \langle h_{ab}, f \rangle = |a|^{-1/2} \int f(x) h\left(\frac{x-b}{a}\right) dx.
\]

Continuous wavelet transform is a lossless transform. Its inverse wavelet transform is given by the following theorem.

Theorem 1.2. Let \(W_f(a, b) \) be the continuous wavelet transform of function \(f \in L^2 \) with respect to \(h \) and \(C_h \) is defined by (1.7). Then the inverse wavelet transform is given by

\[
f(x) = C_h^{-1} \int_{\mathbb{R}^2} W_f(a, b) h_{ab}(x) \frac{dadb}{a^2}.
\]

1.3.2. Wavelet basis.

Definition 1.4. Let \(\psi \) be a wavelet. If the sequence of functions

\[
\{\psi_{kj} := 2^{k/2}\psi(2^k x - j); \quad k, j \in \mathbb{Z}\}.
\]

forms an unconditional basis of \(L^2 \), then it is called a wavelet basis of \(L^2 \).

If we assume that \(\{\psi_{kj}\}_{k,j \in \mathbb{Z}} \) is an orthonormal basis of \(L^2 \), then for any function \(f \in L^2 \), we have

\[
f(x) = \sum_{k,j \in \mathbb{Z}} d_{kj} \psi_{kj}(x),
\]

where

\[
d_{kj} = 2^{k/2} \int f(x) \overline{\psi(2^k x - j)} dx.
\]
1.4. Purposes of The Course. In this course we shall discuss the following problems.

- How to transform a function to a signal (or to a image if the function is a two variable function).
- How to decompose a signal (image) using filter banks.
- The relation of the filter banks and the wavelets.
- How to expand a function into a wavelet series.
- How to predict the properties of a function from its wavelet expansion.
- How to judge a wavelet basis good or not good.
- How to construct a good wavelet basis.
- How to apply wavelets in signal and image procession.