MATH 142 — EXAM 2 FORM B

DEPARTMENT OF MATHEMATICS
Texas A & M University

October 26, 2005

NAME: ___________________________ SECTION: ___________________________

SIGNATURE: _______________________

Part 1. (Problems 1-10). Multiple choice. Clearly mark your answers on the ScanTron form using a #2 pencil. Record your answers on your exam for your own records. Remember to print your name on your ScanTron form along with 1) Exam 2 Form (A or B) and 2) Math 142 Section 501 or 508.

Part 2. (Problems 11-15). Work Out. Write solutions in the space provided. Clearly indicate final answers. Show the work done to obtain your answer.

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>
Part 1. Multiple Choice Circle the correct answer, and then mark the corresponding letter on your ScanTron form. No partial credit. Each problem is worth 5 points.

1. The function modeling car sales in College Station is \(S(t) \), where \(t \) is years after 2000, and the units are thousands of cars. Which of the following is the correct interpretation of \(S'(3) = 1.7 \)?

(a) Roughly 1,700 cars were sold in College Station in 2003.
(b) Sales of cars in College Station increased by 1,700 from 2002 to 2003.
(c) The number of cars sold in College Station increases by 1,700 cars each year after 2003.
(d) In 2003 the number of cars sold in College Station was increasing by roughly 1,700 cars per year.
(e) none of these

2. What is the absolute maximum value of \(f(x) = x + \frac{9}{x} \) on \((-\infty, 0)\).

(a) 3
(b) -6
(c) -3
(d) there is no absolute maximum
(e) none of these

Thus \(\max \quad \mathbf{2} \quad x = -3 \), max value \(f(-3) = -6 \)

3. Find \(\lim_{x \to -2} \frac{x^2 - 4}{x + 2} \)

(a) undefined
(b) -4
(c) \(\infty \)
(d) 0
(e) none of these

4. Find the average rate of change from \(x = 30 \) to \(x = 40 \) when \(f(x) = -5x^2 + 800x \).

(a) 450
(b) 400
(c) 500
(d) 100
(e) none of these
5. What is the absolute minimum value of \(f(x) = 2x^3 - 3x^2 - 12x + 24 \) on \([-2, 3]\).

(a) 2
(b) -2
(c) 4
(d) there is no absolute minimum
(e) none of these

\[
\begin{align*}
 f'(x) &= 6x^2 - 6x - 12 = 6(x-2)(x+1) \\
 f'(x) &= 0 \quad \text{iff} \quad x = 2, -1 \\

 \begin{array}{c|c}
 x & f(x) \\
 \hline
 -2 & 20 \\
 -1 & 31 \\
 2 & 4 \\
 3 & 15
 \end{array}
\]

so \(\min \) of \(f(x) \) is \(f(2) \)

6. Define \(f(x) \) by

\[
f(x) = \begin{cases}
 x^{1/3} & x \leq 1 \\
 1 & 1 < x \leq 2 \\
 x^3 & x > 2
\end{cases}
\]

This function is not continuous at

(a) \(x = 1, 2 \)
(b) \(x = 2 \)
(c) \(x = 1 \)
(d) \(x = 0, 1 \)
(e) none of these

\[x^{1/3}(1) = 1 \quad \text{so} \quad f(x) \text{ cont at } 1\]

\[x^3(2) = 2^3 = 8 \neq 1 \quad \text{so} \quad f(x) \text{ not cont at } 2\]

7. The function in Question 6 is not differentiable at

(a) \(x = 0, 2 \)
(b) \(x = 1, 2 \)
(c) \(x = 0, 1 \)
(d) \(x = 0, 1, 2 \)
(e) none of these

\[(x^{1/3})' = \frac{1}{3} x^{-2/3} \quad \text{not defined at } x = 0\]

8. Find \(\lim_{x \to 0} \frac{x^2 - 3x}{x + 6} \)

(a) 0
(b) \(\infty \)
(c) undefined
(d) -12
(e) none of these

\[
\frac{x^2 - 3x}{x + 6} (6) = \frac{0}{12} = 0
\]
9. Find \(\lim_{x \to \infty} \frac{4x^3 + 4x + 3}{3x^3 + 2x + 3} \)
 (a) \(\infty \)
 (b) 0
 (c) 1
 (d) 4/3
 (e) none of these

10. Let \(f(x) = x^2 - 5x + 3 \). The equation for the tangent line to the graph of \(f \) at \(x = 1 \) is
 (a) \(y = 2x - 1 \)
 \(f'(x) = 2x - 5 \)
 (b) \(y = -3x + 4 \)
 \(f'(1) = -3 \), \(f(1) = -1 \)
 (c) \(y = 3x - 4 \)
 (d) \(y = -3x + 2 \)
 \(y - 1 = -3x + 3 \)
 (e) none of these
Part 2. Work Out Circle final answers. Show the work done to obtain your answer

11. (10 points) Iggy is still doing business analysis for his company. His cost function is \(C(x) = 2000 + 0.3\sqrt{x} \), where \(x \) is the number of units produced, and \(C(x) \) is dollars. \(\text{Round to 3rd dec.} \)

(a) (2 point) What is the cost to produce 200 items?

\[
C(200) = 2000 + 0.3\sqrt{200} = 2004.243
\]

(b) (4 points) What is his marginal cost function? Compute \(MC(25) \).

\[
MC = C'(x) = \frac{0.3}{2\sqrt{x}}
\]

\[
MC(25) = \frac{0.15}{5} = 0.03
\]

\(MC = 0.15x^{-\frac{1}{2}} \)

(c) (4 points) What is his average cost function? Compute \(AC(25) \).

\[
AC = \frac{C(x)}{x} = \left(\frac{2000}{x} + \frac{0.3\sqrt{x}}{x} \right) = \frac{2000}{x} + \frac{0.3}{\sqrt{x}} = \frac{2000}{x} + 0.3x^{-\frac{1}{2}}
\]

\[
AC(25) = \frac{2000}{25} + \frac{0.3(5)}{25} = 80 + 0.06 = 80.06
\]
12. Compute the following derivatives. Do not simplify.

(a) (5 points)

\[f(x) = (9x^{-3} + 8x^{-2})^5 \]

\[f'(x) = 5 \left(9x^{-3} + 8x^{-2} \right)^4 \cdot (-27x^{-4} - 16x^{-3}) \]

(b) (5 points)

\[g(x) = \frac{8x^3 - 9x^2 + 5^4}{x^{5/2} + 3\sqrt{x} + 7} \]

\[\left(x^{5/2} + 3\sqrt{x} + 7 \right) \left(24x^2 - 18x \right) - \left(8x^3 - 9x^2 + 5^4 \right) \left(\frac{5}{2}x^{3/2} + \frac{3}{4}x^{-3/4} \right) \]

\[\left(x^{5/2} + 3\sqrt{x} + 7 \right)^2 \]
13.

(a) (10 points) If \(f(x) = -x^3 - 3x^2 + 45x - 5 \), find the critical values of \(f \), the intervals where the function is increasing/decreasing and the relative extrema.

\[f'(x) = -3x^2 - 6x + 45 \]

\[f''(x) = -6x - 6 = 0 \]

\[-3(x+5)(x-3) = 0 \]

Crit. value \(x = -5, x = 3 \)

\[\begin{array}{c|c|c|c}
 x & f & \text{dec} & \text{inc} & \text{dec} \\
-5 & - & + \\
3 & + & - & + \\
\end{array} \]

\[f'(-5) = -27 \]
\[f'(0) = 45 \]
\[f'(4) = -27 \]

Local extrema:
\[x = -5 \text{ local min} \]
\[x = 3 \text{ local max} \]

(b) (10 points) If \(f(x) = x^6 - 10x^4 - 5 \), find the intervals where the function is concave up/down and the inflection points.

\[f''(x) = 6x^5 - 40x^3 \]

\[f'''(x) = 30x^4 - 120x^2 \]

\[= 30x^2(x^2 - 4) \]

\[f''(x) = 0 \text{ when } x^2 = 0 \text{ or } x^2 = 4 \]

\[x = 0 \text{ or } x = \pm 2 \]

\[f \text{ c. up c. down c. down c. down} \]

\[\begin{array}{c|c|c|c}
 x & f'' & \text{c. up} & \text{c. down} \\
-2 & + & - & + \\
0 & - & - & + \\
2 & - & - & + \\
\end{array} \]

\[f'''(-3) = 1350 \]
\[f(1) = -90 \]
\[f''(-1) = -90 \]
\[f(3) = 1350 \]

\[0 \text{ is not an inflection point} \]
14. (10 points) Use the following information to sketch $f(x)$.

- $\lim_{x \to -\infty} f(x) = 8$
- $\lim_{x \to \infty} f(x) = -5$
- $f(1) = 3$ and $f(4) = 5$ and $f(0) = 0$ and $f(5) = 6$
- vertical asymptote at $x = 2$
- $f'(x) > 0$ on $(-\infty, 1) \cup (4, \infty)$
- $f'(x) < 0$ on $(1, 2) \cup (2, 4)$
- $f''(x) > 0$ on $(-\infty, 0) \cup (2, 5)$
- $f''(x) < 0$ on $(0, 2) \cup (5, \infty)$