Efficient Data Collection in Interference-Aware Wireless Sensor Networks
Min Kyung An and Hyuk Cho

Abstract—In this paper, we study the Minimum Latency Collection Scheduling (MLCS) problem in Wireless Sensor Networks (WSNs) adopting the two interference models: the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the MLCS problem is to compute the minimum latency schedule, that is, to compute a schedule with a minimum number of timeslots, such that all data from all nodes can be collected to a sink node without any collision or interference. First, we describe an approximation algorithm with $O(1)$-approximation ratio that works in both interference models by yielding a schedule whose latency is bounded by $O(n)$, where n is the number of nodes in the network. Then, we validate the latency performance of the proposed algorithm with various simulated networks and also discuss the effect of the interference models’ parameter values on the latency.

Index Terms—data collection, gathering, approximation algorithm, collision-free, interference-free, wireless sensor network

I. INTRODUCTION

Wireless Sensor Networks (WSNs) consist of a number of sensor nodes deployed in a plane. Each node monitors nearby environmental conditions periodically, and the gathered data from all nodes is collected to a designated destination called a sink node. This type of application is commonly known as data collection (or data gathering) in the literature, and it is one of the most crucial applications of WSNs. As the small-sized sensors collect and send data periodically using their limited energy, researchers have focused on the issue of prolonging the network lifetime by reducing energy consumption, which can be achieved by avoiding the unnecessary retransmission of the gathered data. An interesting approach is to assign timeslots to sensor nodes to obtain a good schedule by which all data can be collected without any collision or interference with other nodes on their way to the sink node. Since the data collection occurs periodically, reducing the latency of the schedule, that is, constructing a schedule with a minimum number of timeslots, has been a fundamental issue.

The data collection problem has been widely investigated by researchers in the two interference models: the graph model and the physical interference model. Furthermore, the graph model has two models: collision-free graph model and collision-interference-free graph model. While the collision-free model concerns collision only, the collision-interference-free concerns both collision and interference. In the graph model, given a transmission range $r(u)$ (i.e., the radius of the broadcasting disk covered by the signal sent by node u using its transmission power $p(u)$) for every node u, the interference range of u is defined as $\rho \cdot r(u)$, where $\rho \geq 1$ is the interference factor. Note that when $\rho = 1$, it is called a collision-free graph model, and when $\rho \geq 1$, it is called a collision-interference-free graph model.

In the graph model, assuming all nodes have the maximum transmission range equal to one unit (i.e., $r(u) = 1$ for every u), Florens et al. [1] proposed 3-approximation algorithm with $\rho = 1$ for tree networks. Later, Bermond et al. [2] proved the NP-hardness, and proposed a 4-approximation algorithm with any value of $\rho \geq 1$. Bonifaci et al. [3] also proposed a 4-approximation algorithm with $\rho > 1$, and 3-approximation algorithm with $\rho = 1$. Then, Coleri et al. [4] proved its NP-completeness and introduced two heuristic algorithms with $\rho = 1$. Recently, Bermond et al. [5] studied the problem in grid networks, and proposed a 3-approximation algorithm with $\rho = 1$. Their algorithm also yields an approximation ratio of 4 when $\rho = 2$. Bermond et al. [6] investigated the problem in tree networks with $\rho \geq 2$ and proposed a closed formula for the data collection of the optimal schedule. It also considered the problem of determining the computational complexity of data collection in general graphs and showed that the problem is NP-complete, and designed a $(1 + \frac{2}{3})$-approximation algorithm. Then, Bermond et al. [7] addressed the problem on the specific case where the network is a path with the sink at an end vertex of the path (i.e., linear topology), and proposed an algorithm which is optimal when $r(u) = 2, 3$, and 5. Kowalski et al. [8] studied the problem in linear topologies, and proposed a 2-approximation algorithm with $\rho = 1$. Note that the results in [1]–[8], however, apply to special topologies or general graphs only where the distance between two nodes on a given communication graph is defined as the length (i.e., the number of edges) of a shortest path connecting them.

Although the graph model has been used in many studies, it is not an adequate realistic model since cumulative interference caused by all other concurrently...
transmitting nodes is ignored. Therefore, researchers have started investigating problems of WSNs with the more realistic physical interference model, also known as the Signal-to-Interference-Noise-Ratio (SINR) model, since its introduction by Gupta et al. [9]. In the SINR model, Wan et al. [10] studied the data collection problem and proposed a $O(1)$-approximation algorithm.

In this paper, we continue the study of the data collection problem in both the graph and SINR models. We first introduce an approximation algorithm with $O(1)$-approximation ratio in the graph model with $\rho \geq 1$, and then use the result in [11] to show that the proposed algorithm works in the SINR model as well.

The rest of this paper is organized as follows. In Section II, we describe our network models, introduce the definitions used in this paper, and then define the Minimum Latency Collection Scheduling (MLCS) problem. In Section III, we propose a constant factor approximation algorithm for the MLCS problem that works in both graph and SINR models. In Section IV, we analyze the proposed algorithm, and in Section V we evaluate the latency performance of the algorithm with simulated networks. We conclude with some remarks in Section VI.

II. PRELIMINARIES

A. Network Models

In this paper, we consider that Wireless Sensor Network (WSNs) consist of a set V of sensor nodes deployed in a plane. Each node $u \in V$ is assigned a transmission power level $p(u)$, and the transmission range $r(u)$ of u is defined as the radius of the broadcasting disk covered by the signal sent by u using $p(u)$. Accordingly, a directed edge (u, v) exists from node u to node v, if v resides in $r(u)$, i.e., $d(u, v) \leq r(u)$, where $d(u, v)$ denotes the Euclidian distance between u and v.

1) Graph Model: In the graph model, let $R_{p(u)}^w = \{v \in V, d(u, v) \leq r(u)\}$ denote the set of nodes that reside in the transmission range $r(u)$ of u with $p(u)$. Then, two nodes u and v can communicate each other if $u \in R_{p(v)}^w$ and $v \in R_{p(u)}^w$. In addition, we consider the collision (or conflict) and interference as follows. Given a transmission power level $p(u)$ of u, let $I_{p(u)}^u = \{v \in V, d(u, v) \leq \rho \cdot r(u)\}$ denote the set of nodes that reside in the interference range $\rho \cdot r(u)$ of u, where $\rho \geq 1$ is the interference factor. Then, the collision is said to occur at node w if there exist other concurrently sending nodes u and v such that $w \in R_{p(u)}^w \cap I_{p(v)}^v$, where $\rho = 1$ (i.e., $I_{p(u)}^u = I_{p(v)}^v$). On the other hand, interference is said to occur at w if there exist other concurrently sending nodes u and v such that $w \in R_{p(u)}^w \cap I_{p(u)}^u$, where $\rho > 1$. In the literature, the graph model concerning only collision (i.e., when $\rho = 1$) is called the collision-free graph model, whereas the graph model concerning both collision and interference (i.e., when $\rho \geq 1$) is called the collision-interference-free graph model.

In the graph model, the communication graph can be modeled as a directional disk graph $G = (V, E)$, where

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>The path loss exponent ($\alpha > 2$)</td>
</tr>
<tr>
<td>γ</td>
<td>The SINR threshold ($\gamma > 1$)</td>
</tr>
<tr>
<td>C</td>
<td>The candidate set: A set of nodes having their own messages to send</td>
</tr>
<tr>
<td>$d(u,v)$</td>
<td>The Euclidian distance between nodes u and v</td>
</tr>
<tr>
<td>E</td>
<td>A set of edges</td>
</tr>
<tr>
<td>E_T</td>
<td>A set of edges in T</td>
</tr>
<tr>
<td>F</td>
<td>The forwarding set: A set of nodes having messages to relay</td>
</tr>
<tr>
<td>G</td>
<td>A directed graph (Section II)</td>
</tr>
<tr>
<td>G_{IT}</td>
<td>An interference graph</td>
</tr>
<tr>
<td>h_{IT}</td>
<td>The height of T_{IT}</td>
</tr>
<tr>
<td>$I_{p(u)}^I$</td>
<td>The set of nodes in u's interference range</td>
</tr>
<tr>
<td>$\ell(u)$</td>
<td>The level of u on T</td>
</tr>
<tr>
<td>$\ell_T(u)$</td>
<td>The level of u on T</td>
</tr>
<tr>
<td>L</td>
<td>A level set (the set of nodes at level ℓ on T)</td>
</tr>
<tr>
<td>M</td>
<td>The length of schedule T</td>
</tr>
<tr>
<td>n</td>
<td>The number of nodes (i.e., $</td>
</tr>
<tr>
<td>N</td>
<td>The background noise ($N > 0$)</td>
</tr>
<tr>
<td>$n_{\text{min}}(u)$</td>
<td>The number of messages which u has received from other nodes which u has to forward (i.e., relay)</td>
</tr>
<tr>
<td>$p(u)$</td>
<td>Uniform transmission power level</td>
</tr>
<tr>
<td>$\pi_L(u)$</td>
<td>A parent node of u on T</td>
</tr>
<tr>
<td>p</td>
<td>Interference factor</td>
</tr>
<tr>
<td>s</td>
<td>The sink node in G</td>
</tr>
<tr>
<td>$\text{SINR}(u,v)$</td>
<td>The SINR value at v over the link (u,v)</td>
</tr>
<tr>
<td>$\text{subtree}(u)$</td>
<td>A subtree of T rooted at u</td>
</tr>
<tr>
<td>$\text{subtree}(u)$</td>
<td>The root of the subtree to which u belongs</td>
</tr>
<tr>
<td>T</td>
<td>A timeslot</td>
</tr>
<tr>
<td>T_{IT}</td>
<td>An interference tree</td>
</tr>
<tr>
<td>T_{MST}</td>
<td>Minimum spanning tree</td>
</tr>
<tr>
<td>(u,v)</td>
<td>A directed edge (link) from sender u to receiver r (Section II)</td>
</tr>
<tr>
<td>(u,v)</td>
<td>An undirected edge between u and v (Sections III and IV)</td>
</tr>
<tr>
<td>V</td>
<td>A set of nodes</td>
</tr>
<tr>
<td>X</td>
<td>A set of concurrently sending nodes</td>
</tr>
</tbody>
</table>

$E = \{(u,v) \in V, d(u,v) \leq r(u) \text{ and } d(v,u) \leq r(v)\}$

2) SINR Model: In the SINR model, if a node u transmits with its power level $p(u)$, then the received power at a receiver v is $p(u) \cdot d(u,v)^{-\alpha}$, where $\alpha > 2$ is the path loss exponent. In order that the receiver v can receive the data transmitted by the sender u, the ratio of the received power at the receiver v to the interference caused by all the other concurrently transmitting nodes and background noise must be beyond an SINR threshold $\beta \geq 1$. Formally, node v can successfully receive data via the communication edge (u,v) only if

$$\text{SINR}_{(u,v)} = \frac{p(u)}{N + \sum_{w \in X \backslash \{(u,v)\}} \frac{p(w)}{d(w,v)^{\alpha}}} \geq \beta \geq 1 \quad (1)$$

where $N > 0$ is the background noise, and X is the set of other concurrently transmitting nodes.

As u can send its data to the nodes within the dis-
tance \((\frac{p(u)}{N})^{\frac{1}{2}} \) (i.e., \(r(u) = (\frac{p(u)}{N})^{\frac{1}{2}} \)), the communication graph can be modeled as a directional disk graph \(G = (V, E) \), where \(E = \{(u, v) | d(u, v) \leq (\frac{p(v)}{N})^{\frac{1}{2}} \} \) and \(d(v, u) \leq (\frac{p(v)}{N})^{\frac{1}{2}} \).

B. Problem Definition

We define the Minimum Latency Collection Scheduling (MLCS) problem as follows. Given a set of nodes for a network in a plane, we assign every node timeslots such that nodes assigned a same timeslot can send data to their receivers simultaneously without any collision or interference. A schedule is defined as a sequence of such timeslots. Formally, at each timeslot \(t \), we have an assignment set \(\pi_t = \{(s_t, r_t), \ldots, (s_m, r_m)\} \), where \((s_t, r_t) \), \(1 \leq i \leq m \), is an edge in the communication graph \(G \), and \(m \) denotes the number of nodes scheduled at timeslot \(t \). Therefore, in each \(\pi_t \), every \(s_t \) is assigned the same timeslot \(t \) to simultaneously send data with its power level \(p(s_t) \) to a receiver \(r_t \), and the following condition is satisfied:

- (Graph Model) Neither collision nor interference occurs at any receiver.
- (SNIR Model) The SINR Inequality (1) is satisfied for every receiver \(r \).

A schedule \(\Pi = (\pi_1, \pi_2, \ldots, \pi_M) \) has its latency \(M \), which is the length of the schedule. \(\Pi \) is successful if all data of every node \(v \in V \) is collected to a sink node \(s \in V \). The MLCS problem is formally defined as follows:

Input: A set \(V \) of nodes for a network, transmission power level \(p(u) \) for every node \(u \in V \), and a sink node \(s \in V \)

Output: A successful minimum latency schedule \(\Pi \)

III. CONSTANT FACTOR APPROXIMATION ALGORITHM

In this section, we describe a constant factor approximation algorithm called the Hop-Based Collection Scheduling (HBCS) algorithm for the MLCS problem that can be applicable to both the graph model and the SINR model. We assume the uniform power model where all nodes are initially assigned a uniform power level \(P \), i.e., \(p(v) = P \), for every \(v \in V \).

A. Graph Model

For the graph model, we set the maximum link length (i.e., the maximum transmission range) \(r \) to be the given \(P \), and assume that the communication graph, modeled as a undirected unit disk graph \(G = (V, E) \) whose \(E = \{(u, v) | d(u, v) \leq r \} \), is connected and its interference factor \(\rho \geq 1 \).

The HBCS algorithm (Algorithm 1) starts by constructing an interference graph \(G_I = (V, E_I) \), where \(E_I = \{(u, v) | d(u, v) \leq \rho \cdot r \} \). Then it assigns timeslots to nodes based on a collection tree \(T \), which is a breadth-first-search (BFS) tree (See [12]) on \(G \) rooted at the sink node \(s \), as well as an interference tree \(T_I \), which is a BFS

Algorithm 1 Hop-Based Collection Scheduling (HBCS)

Input: \(V \) (whose every \(u \) is assigned \(P \)) including \(s \)

Output: Schedule \(\Pi \)

1. Construct an interference graph \(G_I = (V, E_I) \) where \(E_I = \{(u, v) | d(u, v) \leq \rho \cdot r \} \).
2. Construct a collection tree \(T \) of \(G \), and an interference tree \(T_I \) of \(G_I \).
3. for each \(v \in V \setminus \{s\} \) do
 4. \(\ell(v) \leftarrow \) level of \(v \) on \(T \)
 5. \(\ell_I(v) \leftarrow \) level of \(v \) on \(T_I \)
 6. \(m(v) \leftarrow 1 \)
 7. \(f(v) \leftarrow 0 \)
 8. \(L_i \leftarrow L_i \cup \{v\} \) where \(i = \ell_I(v) \)
 end for
4. for each \(z \in L_i, 1 \leq i \leq h_I \) do
 5. Construct subtree(z).
 6. for each descendant \(w \) of \(z \) on subtree(z) do
 7. \(d(w) \leftarrow z \)
 end for
 end for
5. \(k \leftarrow 1 \)
6. repeat
 7. for \(j = 3 \) downto 1 do
 8. \(L \leftarrow \{L_i | i \% 3 = j \% 3, 1 \leq i \leq h_I \} \)
 9. \(t_{start} \leftarrow t \)
 10. \(t_{max} \leftarrow t \)
 11. for each non-empty \(L_i \in L \) do
 12. \(F \leftarrow \{w | n_f(w) \neq 0, w \in L_i\} \)
 13. if \(F = \emptyset \) then
 14. \(C \leftarrow \{w | n_m(w) \neq 0, w \in L_i\} \)
 end if
 15. if \(C \neq \emptyset \) then
 16. \(t \leftarrow t_{start} \)
 17. Pick \(w \in C \) whose \(\ell(w) \) is largest.
 18. \(\pi_t \leftarrow \pi_t \cup \{(w, parent(w))\} \)
 19. \(n_m(w) \leftarrow 0 \)
 20. \(n_f(parent(w)) \leftarrow n_f(parent(w)) + 1 \)
 21. \(t \leftarrow t + 1 \)
 end if
 else if \(F \neq \emptyset \) then
 22. \(t \leftarrow t_{start} \)
 23. Pick a node \(w \in F \) whose \(\ell(w) \) is largest.
 24. \(\pi_t \leftarrow \pi_t \cup \{(w, parent(w))\} \)
 25. \(n_f(w) \leftarrow n_f(w) + 1 \)
 26. \(n_f(parent(w)) \leftarrow n_f(parent(w)) + 1 \)
 27. \(t \leftarrow t + 1 \)
 end if
 if \(w \in L_i \) and \(parent(w) \in L_i \) then
 28. \(t \leftarrow \) Subtree-Scheduling(w, parent(w), t)
 end if
 if \(t_{max} < t \) then
 29. \(t_{max} \leftarrow t \)
 end if
 end for
 end for
 20. if \(n_m(v) = 0 \) for every \(v \in V \setminus \{s\} \) then
 21. \(M \leftarrow t - 1 \)
 end for
51. return \(\Pi \)
tree on G_1 rooted at s (Steps 1-2 in Algorithm 1). Figures 1, 2, 3 and 4 illustrate examples of G with $n = 50$, where $n = |V|$, and the corresponding G_1, T and T_1, when $\rho = 1, 2, 3, 4$ and 5, respectively. Note that the square-shaped node denotes the sink node s.

After T and T_1 are constructed, $\ell(v)$, $\ell_f(v)$, $n_m(v)$, and $n_f(v)$ are initialized for every node $v \in V$ (See Table I for notations). Then, nodes are grouped by each level as L_1, L_2, \ldots, L_9 (Steps 3-9 in Algorithm 1).

Next, the collection tree T is divided into several sub-threads such that each node $z \in L_i$ can have its subtree $\text{subtree}(z) = (V_z, E_z)$ rooted at z, where $V_z = \{w \mid w \text{ is } z \text{'s descendant on } T \text{ and } w \in L_{i+1}\}$, and E_z is the subset of edges on T connecting nodes in V_z. Here, for each descendant w of z on $\text{subtree}(z)$, $\text{subroot}(w)$ is defined to return the root node of $\text{subtree}(z)$ to which w belong, i.e., $\text{subroot}(w) = z$ (Steps 10-15 in Algorithm 1). For example, in Figure 5, $\text{subtree}(z_1)$’s root is z_1 and it has w_{11} and w_{12} as its descendants, and $\text{subtree}(z_2)$’s root is z_2 and it has w_{21}, w_{22} and w_{23} as its descendants.

![Figure 5](image-url)

Figure 5: The bold lines represent the edges of T_1, and the normal lines represent the edges of T. In this example, one node in L_3, say w_{12}, and one node in L_6, say w_{23}, are selected to be assigned the same timeslot. w_{12}’s message is forwarded to z_1 based on T, i.e., $w_{12} \rightarrow w_{11} \rightarrow z_1$. w_{23}’s message is also forwarded to z_2 based on T, i.e., $w_{23} \rightarrow w_{22} \rightarrow z_2$.

Next, a number of main iterations are performed to assign timeslots to nodes in order to collect all data from all the other nodes to s without any collision or interference (Steps 17-49 in Algorithm 1). Each main iteration consists of the three submain iterations (Steps 19-47 in Algorithm 1) as follows:

- The first submain iteration examines $L = \{L_3, L_6, L_9, \ldots\}$.
- The second submain iteration examines $L = \{L_2, L_5, L_8, \ldots\}$.

- The third submain iteration examines $L = \{L_1, L_4, L_7, \ldots\}$.

Each main iteration repeats the aforementioned three submain iteration steps until all the messages from all nodes are received at the sink s, i.e., $n_m(v) = 0$ for every $v \in V \setminus \{s\}$ (Steps 17-49 in Algorithm 1).

Lastly, the algorithm returns the schedule Π whose latency is M (Step 51 in Algorithm 1).

In what follows, we explain the details of the timeslot assignments at each of the submain iterations (Steps 19-47 in Algorithm 1): For each non-empty $L_i \in L$, the algorithm first computes a forwarding set F of nodes which have messages to forward (i.e., to relay) (Steps 22-23 in Algorithm 1).

1) If $F = \emptyset$ (i.e., all nodes in L_i do not have messages to forward), then it computes a candidate set C of nodes which do have their own messages to transmit (Steps 24-25 in Algorithm 1). After then, if $C = \emptyset$ (Step 26 in Algorithm 1), a node $w \in C$ whose $\ell(w)$ is largest is first selected and then scheduled to transmit its message to $\text{parent}(w)$ at timeslot t, and its $n_m(w)$ is set to be 0. Also, $\text{parent}(w)$’s $n_f(\text{parent}(w))$ and the timeslot t are incremented (Steps 28-32 in Algorithm 1).

Else if $F \neq \emptyset$ (i.e., there exist some nodes in L_i which have received messages to forward (Step 34 in Algorithm 1)), then a node w whose $\ell(w)$ is largest is first selected and then scheduled to forward the message to $\text{parent}(w)$ at timeslot t, and its $n_f(w)$ is decremented (Steps 36-38 in Algorithm 1). (Notice that in this case, w has been forwarded a message from its descendant in an earlier iteration, and its $n_f(w)$ has been incremented at that time (Step 4 in Algorithm 2). Also, $\text{parent}(w)$’s $n_f(\text{parent}(w))$ and the timeslot t are incremented (Steps 39-40 in Algorithm 1).

2) After then, during the Subtree-Scheduling (Algorithm 2) subroutine, $\text{parent}(w)$ forwards the message to $\text{parent}(\text{parent}(w))$ at the timeslot $t + 1$ that has been incremented at Step 32 in Algorithm 1 (or at Step 40 Algorithm 1). The subroutine repeats until the $\text{subroot}(w)$ finally receives the message from w. During the subroutine, whenever a node z forwards the message to $\text{parent}(z)$ at a timeslot t, $n_f(z)$ is decremented, and $n_f(\text{parent}(z))$ and t are incremented (Steps 2-5 in Algorithm 2).

For example, in Figure 5, the message of $w_{12} \in L_3$ is delivered to z_1 based on $\text{subtree}(z_1)$. If the starting timeslot is t for current iteration (Step 22 in Algorithm 1), w_{12} is scheduled to transmit its own data (or rely the forwarded data) to w_{11} at timeslot t at Step 29 (or at Step 31) in Algorithm 1, and w_{11} is scheduled to forward the message to z_1 at timeslot $t + 1$ at Step 2 in Algorithm 2. In parallel, nodes in L_6 are scheduled similarly as follows. In L_6, w_{23}’s message is delivered to z_2 based on $\text{subtree}(z_2)$. The starting timeslot is identical to the one used for L_3, i.e., t. So, w_{23} is scheduled to transmit its own data (or rely the forwarded data) to w_{22} at timeslot...
In Step 29 (or at Step 31) in Algorithm 1, and w_{22} is scheduled to forward the message to z_2 at timeslot $t+1$ at Step 2 in Algorithm 2. Like this, as we want to use the same starting timeslot t for each node selected first from each level set, t_{start} is used (Steps 20, 27 and 35 in Algorithm 1) to store the starting timeslot for the level sets examined during the iteration. Also, after every $L_i \in \mathcal{L}$ is examined at this iteration, t is set with the largest timeslot.
used for those level sets (Steps 21, 45 and 47 in Algorithm 1) for the next iteration.

B. SINR Model

From the SINR Inequality (1), we can compute the maximum link length as $r_{\text{max}} = \frac{\rho}{\gamma^\frac{1}{\alpha}}$. Notice that the links whose length is r_{max} are not considered, as only node u can be a sender to send its data to some node v over the link (u,v) whose $d(u,v) = r_{\text{max}}$, while other nodes cannot transmit concurrently. Therefore, we are interested in links (u,v) whose $d(u,v) \leq \frac{\rho}{\gamma^\frac{1}{\alpha}}$, for some constant $\gamma > 1$ as in [11]; thus, we set r to be $\frac{\rho}{\gamma^\alpha}$ for the SINR model. We also make the assumption that the undirected communication graph $G = (V,E)$, where $E = \{(u,v) | d(u,v) \leq r\}$, is connected and $\alpha > 2$ as suggested in [9].

Huang et al. [11] showed that the SINR model can be translated to the collision-free-interference model if ρ is set to be $\left(\frac{24\gamma^2}{\pi^2} (\frac{1}{\gamma^2} + \frac{1}{\alpha^2} + 3)\right)^\frac{1}{2}$. Accordingly, the HCBS algorithm works for the SINR model as well if one sets $\rho = \left(\frac{24\gamma^2}{\pi^2} (\frac{1}{\gamma^2} + \frac{1}{\alpha^2} + 3)\right)^\frac{1}{2}$.

IV. Analysis

In this section, we analyze the HBCS algorithm (Algorithm 1) and bound the latency of the data collection schedules produced by it.

Lemma 1: When $\rho = 1$, any two nodes u and v can send data simultaneously without interference if $|\ell(u) - \ell(v)| \geq 3$, where $\ell(u)$ and $\ell(v)$ are the levels of u and v on T, respectively.

Corollary 2: When $\rho \geq 1$, any two nodes u and v can send data simultaneously without interference if $|\ell(u) - \ell(v)| \geq 3$, where $\ell(u)$ and $\ell(v)$ are the levels of u and v on T_f, respectively.

Lemma 3: Consider $\text{subtree}(z)$ of $z \in V$. The maximum height of $\text{subtree}(z)$ is $[4\pi \rho (\rho + 1) - 4\pi + 1]$.

Proof: First, let $\text{sec}(z,\theta, r)$ denote a sector with an angle of θ radian of a circle centered at a node z with the radius of r. Then, the collision area and the interference area can be defined by $\text{sec}(z, 2\pi, r)$ and $\text{sec}(z, 2\pi, \rho \cdot r) - \text{sec}(z, 2\pi, r)$, respectively.

Next, let us partition the sectors,

- $\text{sec}(z, 0.5, r)$
- $\text{sec}(z, 0.5, 2r) - \text{sec}(z, 0.5, r)$

into smaller sectors, called cells, as follows (See Figure 6). Let us first consider $\text{sec}(z, 0.5, r)$. $\angle p_{31} p_{30} = 0.5$ radian, where p_k, $1 \leq k \leq 12$, represents a point. The sector $\text{sec}(z, 0.5, r)$ is partitioned into two cells such that $p_{31} p_{30} = 0.5\pi$ and $p_{30} p_{32} = p_{32} p_{33} = 0.5\pi$. Next, let us partition the sector $\text{sec}(z, 0.5, 2r) - \text{sec}(z, 0.5, r)$ (surrounded with points p_3, p_5, p_1, p_2, and p_0) into four cells such that $p_{31} p_{34} = p_{34} p_{35} = p_{30} p_{37} = p_{37} p_{38} = p_{38} p_{11} = p_{11} p_{12} = 0.5\pi$, $p_{30} p_{39} = p_{39} p_{12} = 0.5\pi$, $p_{33} p_{36} = 0.25\pi$. Let us keep partitioning sectors $\text{sec}(z, 0.5, q \cdot r) - \text{sec}(u, 0.5, (q - 1) r)$, where $3 \leq q \leq (\rho - 1)$, similarly. Then, the last sector $\text{sec}(z, 0.5, \rho r) - \text{sec}(z, 0.5, (\rho - 1) r)$ is partitioned into 2ρ cells such that the length of every line segment connecting two points is $\leq 0.5\pi$, and the length of every arc connecting two points is $\leq 0.5\pi$. After partitioning, the maximum distance in each cell is $\leq 0.5\pi$ [13].

Next, let us bound the number of hops on T from the root z to its one of descendants, whose level on $\text{subtree}(z)$ is largest. It is obvious that $\text{sec}(z, 2\pi, 0.5\pi)$ can contain at most one hop. The sector $S := \text{sec}(z, 2\pi, r) - \text{sec}(u, 2\pi, 0.5\pi)$ can contain at most $4\pi \cdot 1$ cells and thus, it can contain at most $4\pi \cdot 1$ hops, if the whole area of the sector S is partitioned as explained above. Similarly, $\text{sec}(z, 2\pi, 2r) - \text{sec}(u, 2\pi, r)$, $\text{sec}(z, 2\pi, 3r) - \text{sec}(u, 2\pi, 2r)$, \ldots, and $\text{sec}(z, 2\pi, \rho r) - \text{sec}(u, 2\pi, (\rho - 1)r)$ can contain at most $4\pi \cdot 4$ hops, $4\pi \cdot 6$ hops, \ldots, and $4\pi \cdot 2\rho$ hops, respectively.

Therefore, we can conclude that in the area in z’s interference range, there exist at most $1 + 4\pi + \sum_{i=2}^{\rho} 4\pi \cdot 2i = 4\pi \rho (\rho + 1) - 4\pi + 1$ hops. Hence, the maximum height of $\text{subtree}(z)$ is $[4\pi \rho (\rho + 1) - 4\pi + 1]$.

Figure 6: Partitioning areas in z’s collision and interference ranges into several cells such that the maximum distance in each cell is $\leq 0.5\pi$. Radius of the innermost circle (disk) having the smallest area is 0.5π, radius of the circle having the second smallest area is r, radius of the circle having the third smallest area is 1.5π, ..., and radius of the outermost circle having the largest area is 3π.

Lemma 4 (Lower Bound): Every data collection schedule has at least $n - 1$ timeslots, where n is the number of nodes.

Proof: As a sink s has to receive $n - 1$ distinct messages, any data collection schedule needs at least $n - 1$ timeslots.

Theorem 5 (Graph Model): The HBCS algorithm produces a successful schedule whose latency is bounded by $3 \cdot [4\pi \rho (\rho + 1) - 4\pi + 1](n - 1) = O(n)$, and it is therefore a constant-factor approximation with the factor of $3 \cdot [4\pi \rho (\rho + 1) - 4\pi + 1]$.

Proof: First note that there are $n - 1$ messages that the sink node s must receive. In the HBCS, s receives a message at most every 3 timeslots when $\rho = 1$ (Lemma 1), and $3 \cdot [4\pi \rho (\rho + 1) - 4\pi + 1]$ timeslots (Lemma 3) when $\rho > 1$ until it receives all messages from all the other nodes without any collision or interference (Lemma 1 and Corollary 2). Therefore, it takes at most $3 \cdot (n - 1)$ timeslots when $\rho = 1$, and $3 \cdot [4\pi \rho (\rho + 1) - 4\pi + 1](n - 1)$
timeslots when $\rho > 1$ for the sink node s to collect all data.

Therefore, by Lemma 4, the HBCS algorithm produces a data collection schedule, and it is an approximation algorithm with the constant factor of 3 when $\rho = 1$, and $3 \cdot [4\pi \rho (\rho + 1) - 4\pi + 1]$ when $\rho > 1$.

Corollary 6 (SINR Model): For SINR threshold $\beta \geq 1$, path loss exponent $\alpha > 2$, and some constant $\gamma > 1$, the HBCS algorithm produces a successful schedule whose latency is bounded by $[4\pi \rho (\rho + 1) - 4\pi + 1] \cdot (n - 1) = O(n)$, where $\rho = \left(\frac{4\pi \beta}{2\alpha - 1} + \frac{1}{\alpha - 1} + 3\right)^{\frac{1}{\gamma - 1}}$, and it is therefore a constant-factor approximation with the factor of $3 \cdot [4\pi \rho (\rho + 1) - 4\pi + 1]$.

V. Simulation

In this section, we examine the performance of our proposed algorithm, the HBCS (Algorithm 1). For our simulation, we generate a set $G = \{G_n \mid n = 50, 100, 150, 200, \cdots, 500\}$, where $G_n = \{G_i \mid 1 \leq i \leq 100\}$ consists of 100 different networks, G^1_n, G^2_n, \cdots, G^{100}_n, each of which has n nodes. All networks are generated randomly in the Euclidean plane of dimension 500×500. For each $G_n \in G$, we average the latencies produced by the HBCS algorithm over all the 100 networks.

A. Simulation Setup

1) **Graph Model:** For the initial power assignment of nodes in a network, we first compute a minimum spanning tree T_{MST} using edge weights defined as the distance between two nodes. Then, we set the maximum transmission range r to be the distance of the longest edge in T_{MST}, and the uniform power level P to be r. Notice that P is the minimally required power level to get a connected graph. Given the initial power assignment, we obtain the initial graph $G = (V, E)$, where $E = \{(u, v) \mid d(u, v) \leq r\}$.

We then set the interference factor ρ as follows:

- **Choice of ρ:** We use ρ to be in $\{1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0\}$. It is practically assumed that $\rho \in [3, 5]$ for the collision-interference-free graph model [11]. Given ρ, we obtain the interference graph $G_I = (V, E_I)$, where $E_I = \{(u, v) \mid d(u, v) \leq \rho \cdot r\}$.

2) **SINR Model:** For the initial power assignment of nodes in a network, if we set P to be r_{max}, defined as the distance of the longest edge in T_{MST}, then only node u can be a sender to send data to some node v over the link (u, v) with $d(u, v) = r_{max}$, while other nodes cannot transmit concurrently. Therefore, we set the maximum transmission range r to be $(\gamma N / \beta) \cdot (r_{max})^\alpha$ (See Section III-B) thereby setting $P = r$. Notice again that P guarantees the network connectivity and it is also the minimally required power level for at least two nodes to send data at the same time. Given the initial power assignment, we obtain the initial graph $G = (V, E)$, where $E = \{(u, v) \mid d(u, v) \leq r\}$. To apply the HBCS algorithm to the SINR model, we compute ρ as discussed in Section III-B:

$$\rho = \left(\frac{24\gamma \beta}{\gamma - 1} \left(\frac{2}{\alpha - 2} + \frac{1}{\alpha - 1} + 3\right)^{\frac{1}{\gamma - 1}}\right)^{\frac{1}{\gamma - 1}}. \tag{2}$$

Given the computed ρ, we obtain the interference graph $G_I = (V, E_I)$, where $E_I = \{(u, v) \mid d(u, v) \leq \rho \cdot r\}$.

The SINR parameters including the pass loss exponent α, the SINR threshold β, some constant γ, and the background noise N are set as follows:

- **Choice of α:** We use α to be in $\{2.1, 3.0, 4.0, 5.0, 5.9\}$ as it is typically assumed that $2 < \alpha < 6$ [14].
- **Choice of β:** We use $\beta = \{1.0, 1.5, 2.0, 2.5, 3.0\}$.
- **Choice of γ:** We use γ to be in $\{1.0, 2.0, 3.0, 4.0, 5.0\}$.
- **Choice of N:** Noticing that ρ is independent on N in the Equation (2), we simply set N to be 1.

B. Simulation Results

1) **Graph Model:** Figure 7(a) shows the uniform power level P values (dots) and the corresponding averages (lines) for each n, and we can observe that as n increases, the minimally required power for connectivity decreases. It is because as n increases, the distance of the longest edge in T_{MST} decreases. Figure 7(b) shows the interference factor ρ values that generate complete interference graph G_I, and we can observe that as n increases, ρ values also increase. This is because as n becomes larger (i.e., as P becomes smaller), ρ values need to become larger so that interference ranges (i.e., $\rho \cdot r = \rho \cdot P$) cover a whole network.

Next, Figure 7(c) shows the latency performance of the HBCS algorithm with various ρ values. As ρ increases, the latencies also increase because the interference ranges become larger. Also, we can observe that for each n, as ρ increases, the algorithm results in nearly the same performances. It is because the interference graphs started becoming nearly complete graphs in our simulation at some point with large ρ values. (See the results with some large ρ values, e.g., $\rho = 4.0, 4.5,$ and 5.0, in Figure 7(c).) Figures 1, 2, 3 and 4 illustrate the specified examples of this explanation. To be more specific, when $\rho = 4$ and 5, the interference graphs become complete graphs, and thus at each timeslot, only one node can send data without any interference. Even with $\rho = 3$, the interference graph becomes a nearly complete graph (See Figure 3(d)).

2) **SINR Model:** In order to evaluate the effect of α, we fixed $\beta = 1$ and $\gamma = 5$. Figure 8(a) shows the latency performance of the HBCS algorithm with the fixed β and γ, and various α to be in $\{2.1, 3.0, 4.0, 5.0, 5.9\}$. We can observe that as α increases, the latencies decrease. To understand the reason better, let us consider the SINR Inequality (1), and a sender node u and a receiver node v over the link (u, v) whose $d(u, v) = d_{max}$. This is the case that the $SINR(u, v)$ value of v is minimized (i.e., u suffers from maximum interference by all the other concurrently sending nodes when it sends its data to v).
Then, the SINR at the receiver v is

\[
SINR_{(u,v)} = \frac{p(u) \cdot d(u,v)^{-\alpha}}{N + \sum_{w \in X \setminus \{u,v\}} p(w) \cdot d(w,v)^{-\alpha} + \gamma N^\beta \sum_{w \in X \setminus \{u,v\}} d(w,v)^{-\alpha}}.
\]

Figure 7: Graph Model. Note that each dot in (a) and (b) denotes an individual value and each line denotes the average over 100 randomly generated networks for each α.

Figure 8: SINR Model. Each line denotes the average latency over 100 randomly generated networks for each n.

Here, we can easily observe that increasing α values while fixing all the other parameter values make $SINR(u, v)$ at v increase. The larger the SINR values at receivers, the more the senders can send data at the same time thereby decreasing the latencies. Thus, as α increases, the latencies decrease as in Figure 8(a).

Next, in order to evaluate the effect of β, we fixed $\alpha = 5$ and $\gamma = 5$. Here, γ is fixed to be 5 because larger
γ values result in smaller latencies. Figure 8(b) shows the latency performance of the HBCS algorithm with the fixed α and γ, and various β ∈ {1.0, 1.5, 2.0, 2.5, 3.0}. We can observe that as β decreases, the latencies also decrease. It is because having smaller β values makes more number of nodes can send data at the same time (See Equation (1)) thereby requiring the smaller number of timeslots to complete data collection.

Lastly, in order to evaluate the effect of the constant γ, we first fixed the pass loss exponent α = 5 and the SINR threshold β = 5. Note that α is fixed to be 5 because as α increases, ρ decreases (See Equation (2)). Also note that β is fixed to be 1 because as β decreases, more nodes can send data at the same time (See Inequality (1)). Figure 8(c) shows the latency performance of the HBCS algorithm with the fixed α and β, and various γ ∈ {1.0, 2.0, 3.0, 4.0, 5.0}. We can observe that as γ increases while fixing both α and β, the latencies decrease. It can be explained that as the value of γ increases (i.e., as the power P increases), the levels of many nodes decrease on T as γ increases. Accordingly, data can be collected at the sink node with less delay. Note that having a complete communication graph G gives the optimal solution (i.e., latency, $n − 1$) for the MLCS problem.

Based on our experiment, we infer that latency can be improved with larger α and γ values, and smaller β values.

VI. Conclusion

In this paper, we focused on the Minimum Latency Collection Scheduling (MLCS) problem of Wireless Sensor Networks (WSNs) in the graph model as well as the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). We proposed a $O(1)$-approximation algorithm that works in both interference models by yielding schedules whose latency is bounded by $O(n)$, where n is the number of nodes in a network. We then evaluated the performance of the proposed algorithm with simulated networks and discussed experimental results. For future work, we plan to study other related problems such as broadcast and data aggregation adopting both the interference models.

REFERENCES

Hyuk Cho received the B.E. degree in computer engineering from Chonbuk National University, Korea, the M.A. degree in computer science from Korea University, Korea, and both the M.S. and the Ph.D. degrees in computer sciences from the University of Texas at Austin.

He is an associate professor in the Department of Computer Science at Sam Houston State University, Huntsville, Texas, USA. He is known for his work on co-clustering algorithms, their extensions, and their applications to various practical tasks in real world problems. His research interests include data mining, statistical pattern recognition, machine learning, pervasive computing, bioinformatics, and data science. Previously he worked on linear matrix inequality and soft computing, including neural networks, evolutionary computation, genetic algorithm, and fuzzy/rough set theory.

Prof. Cho is a member of IEEE/ACM and SIAM.