How to Give a Good Research Presentation

Three Essential Elements

Darren Grant
Sam Houston State University

Slides available on Research Gate and on my website, www.shsu.edu/dpg006, with annotations in comments that can be toggled on.
A Presentation Is a Journey
Grades Data
(for 1 of 5 instructors studied)
The First Key to a Good Presentation:

CREATE A IN KNOWLEDGE

(which you will then fill)
Dynamics of the Aluminum Market

1900-1940

YEAR

Log Stock (in Mil. Lbs.)

Price in $/lb.-Mkt. Shr. in %

1900 1910 1920 1930 1940

Log Stock Real Price of Virgin .Sec. Market Share 7% Growth Rate
What Is The Key Difference between These Pricing Formulas?

Single Product, Linear (Lerner, 1934):

\[
\frac{(P - c)}{P} = \frac{1}{|\eta|}
\]

Multiproduct, Nonlinear (Mirrlees, 1976):

\[
\sum \frac{\partial}{\partial n_j} \mu_j(v, v', n) + \sum \frac{u_{zn_j}(x(v, v', n), z(v, v', n), n)}{u_z} \mu_j(v, v', n) = \left(1 - \frac{\lambda}{u_z}\right)f.
\]
The Second Key:

MAKE YOUR SLIDES KINETIC
(by using good graphic design)

HA HA HA – there aren’t 51 slides, only 15!
Published Academic Literature on .08 Laws
(rings = external funding; bubble size ≈ citations)

Estimated Percentage Reduction in Fatalities

<table>
<thead>
<tr>
<th>Year Study Published</th>
<th>Pooled</th>
<th>Panel</th>
<th>Quasi-Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Congressional Mandate
Estimates of % Change in Fatalities Due to ZT Law

Target Group and Control Groups

(100γ; standard errors in parentheses; * for p < 0.05)

<table>
<thead>
<tr>
<th>DRIVING TO</th>
<th>YOUTH (15-20)</th>
<th>YOUNG ADULT (21-25)</th>
<th>ADULT (21-90)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Nighttime Fatalities</td>
<td>-5.0 (2.8)</td>
<td>-4.7 (2.8)</td>
<td>-3.4* (1.7)</td>
</tr>
<tr>
<td>Total Daytime Fatalities</td>
<td>-5.3* (2.4)</td>
<td>2.1 (3.3)</td>
<td>2.2 (1.4)</td>
</tr>
<tr>
<td>Total Fatalities, Day and Night (Replication)</td>
<td>-4.7* (1.8)</td>
<td>----</td>
<td>0.8 (1.2)</td>
</tr>
</tbody>
</table>
Western States 100: Course Layout and Approximate Split Times for a Twenty-Four Hour Finisher

1. Red Star Ridge 8:30 am
2. Robinson Flat 11:30 am
3. Last Chance 2:00 pm
4. Devil's Thumb 3:00 pm
5. Michigan Bluff 5:00 pm
6. Foresthill 7:00 pm
7. River Crossing 11:00 pm
8. Auburn Lakes Trails 1:00 am
9. Highway 49 Crossing 3:00 am
Finish 5:00 am

Western States 100:
Course Layout and Approximate Split Times for a Twenty-Four Hour Finisher

- Red Star Ridge 8:30 am
- Robinson Flat 11:30 am
- Last Chance 2:00 pm
- Devil's Thumb 3:00 pm
- Michigan Bluff 5:00 pm
- Foresthill 7:00 pm
- River Crossing 11:00 pm
- Auburn Lakes Trails 1:00 am
- Highway 49 Crossing 3:00 am
- Finish 5:00 am

Sunrise: 5:00 am
Sunset: 11:00 pm

Elevation (ft.):
- Squaw Valley 5:00 am
- Red Star Ridge 8:30 am
- Robinson Flat 11:30 am
- Last Chance 2:00 pm
- Devil's Thumb 3:00 pm
- Michigan Bluff 5:00 pm
- Foresthill 7:00 pm
- River Crossing 11:00 pm
- Auburn Lakes Trails 1:00 am
- Highway 49 Crossing 3:00 am
- Finish 5:00 am

Distance (miles):
- 0
- 10
- 20
- 30
- 40
- 50
- 60
- 70
- 80
- 90
- 100
The Third Key:

Let Your Talk COMPLEMENT Your Slides (and your paper complement both)
PREVIOUS STUDIES OF ZT LAWS

<table>
<thead>
<tr>
<th>“Case-Control” Analyses</th>
<th>Micro Data Studies</th>
<th>Panel Regressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generally indicate large (20%) fatality reductions</td>
<td>Mixed – some evidence of less heavy drinking</td>
<td>Youth fatalities fall by 5%, no change for adults</td>
</tr>
<tr>
<td>Results implausible given distribution of BAC</td>
<td>Theory predicts MORE heavy drinking!</td>
<td>Used combined day and night fatalities</td>
</tr>
</tbody>
</table>
A Quadratic in Three Parameters:

\textit{desire, fatigue, and uncertainty} \((P, \gamma, \sigma) \)
Actual Juvenile Bicycling Fatalities (middle), Hypothetical Fatalities with Helmet Laws in All States (bottom) and in No States (top)
A Presentation Is a Journey