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ABSTRACT

García-Puente, Luis D., On writing a M.S. in mathematics thesis at Sam Houston State
University. Master of Arts Department of Mathematics and Statistics, April, 2012, Sam
Houston State University, Huntsville, Texas.

This is the format for the bibliographic information required for the abstract. The con-

tent of the abstract that follows this citation will vary according to the subject area. The

abstract should be concise and informative; however, the abstract must be less than 350

words in length. In general, it should state the purpose and describe the subjects and the

methodology used in the study. The abstract should also describe the findings, conclusions,

and implications of the study. Students should consult their thesis director and style manual

to determine the content of the abstract. The abstract must be signed by the thesis director

below.

A list of key words must be included at the bottom of the abstract; however, key words

and the title information do not count toward the 350 word total. Key words should be

specific terms or phrases used in the thesis that would enable a person to successfully

search out the content of the document if it were in a library database. The first word of

each key term should be capitalized.

KEY WORDS: Thesis guidelines, Index word, Sam Houston State University, Graduate
School, Texas.
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CHAPTER 1

AMS MONOGRAPH SERIES SAMPLE

1.1 This Is A Numbered First-Level Section Head

This is an example of a numbered first-level heading.

1.1.1 This Is A Numbered Second-Level Section Head

This is an example of a numbered second-level heading.

Lemma 1. Let f ,g ∈ A(X) and let E, F be cozero sets in X.

1. If f is E-regular and F ⊆ E, then f is F-regular.

2. If f is E-regular and F-regular, then f is E ∪F-regular.

3. If f (x)≥ c > 0 for all x ∈ E, then f is E-regular.

The following is an example of a proof, but before a small footnote. 1

Proof. Set j(ν) = max(I\a(ν))−1. Then we have

∑
i/∈a(ν)

ti ∼ t j(ν)+1 =
j(ν)

∏
j=0

(t j+1/t j).

Hence we have 2

∏
ν

(
∑

i/∈a(ν)
ti

)|a(ν−1)|−|a(ν)|
∼∏

ν

j(ν)

∏
j=0

(t j+1/t j)
|a(ν−1)|−|a(ν)|

= ∏
j≥0

(t j+1/t j)
∑ j(ν)≥ j(|a(ν−1)|−|a(ν)|).

(1)

1Here is an example of a footnote. Notice that this footnote text is running on so that it can stand as an example
of how a footnote with separate paragraphs should be written.

2And here is the beginning of the second footnote.
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By definition, we have a(ν( j)) ⊃ c( j). Hence, |c( j)| = n− j implies (5.4). If c( j) /∈ a,

a(ν( j))c( j) and hence we have (5.5).

This is an example of an ‘extract’. The magnetization M0 of the Ising

model is related to the local state probability P(a) : M0 = P(1)−P(−1). The

equivalences are shown in Table 1.

Table 1: Every table must have a caption.

−∞ +∞

f+(x,k) e
√
−1kx + s12(k)e−

√
−1kx s11(k)e

√
−1kx

f−(x,k) s22(k)e−
√
−1kx e−

√
−1kx + s21(k)e

√
−1kx

Definition 2. This is an example of a ‘definition’ element. For f ∈ A(X), we define

Z ( f ) = {E ∈ Z[X ] : f is Ec-regular}. (2)

Remark 3. This is an example of a ‘remark’ element. For f ∈ A(X), we define

Z ( f ) = {E ∈ Z[X ] : f is Ec-regular}. (3)

Example 4. This is an example of an ‘example’ element. For f ∈ A(X), we define

Z ( f ) = {E ∈ Z[X ] : f is Ec-regular}. (4)

Exercise 5. This is an example of the xca environment. This environment is used for

exercises which occur within a section.
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Figure 1: This is an example of a figure caption with text.

Figure 2: Every figure must have a caption.

Some extra text before the xcb head. The xcb environment is used for exercises that

occur at the end of a chapter. Here it contains an example of a numbered list.

Here is an example of a cite. See [9].

Theorem 6. This is an example of a theorem.

Theorem 7 (Marcus Theorem). This is an example of a theorem with a parenthetical note

in the heading.

1.2 Some More List Types

This is an example of a bulleted list.

• Jg of dimension 3g−3;

• E 2
g = {Pryms of double covers of C = with normalization of C hyperelliptic of

genus g−1} of dimension 2g;

• E 2
1,g−1 = {Pryms of double covers of C = H

P1 with H hyperelliptic of genus g−2}

of dimension 2g−1;

• P2
t,g−t for 2 ≤ t ≤ g/2 = {Pryms of double covers of C = C′

C′′ with g(C′) = t− 1

and g(C′′) = g− t−1} of dimension 3g−4.
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This is an example of a ‘description’ list.

Zero case ρ(Φ) = {0}.

Rational case ρ(Φ) 6= {0} and ρ(Φ) is contained in a line through 0 with rational slope.

Irrational case ρ(Φ) 6= {0} and ρ(Φ) is contained in a line through 0 with irrational slope.
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CHAPTER 2

EMMY NOETHER

In recent years, there has been a development in mathematical pedagogy to integrate

the original ideas of the mathematicians who actually developed the theory, rather than

using textbooks that refer to these works. These original sources oftentimes show why

and how problems were solved, and provide insight into the way of thinking of those ge-

nius minds. In the preface his book “Mathematical Expeditions,” Reinhard Laubenbacher

talks about using historical sources in university math classes he taught at New Mexico

State University. The success of those classes was reflected in greater appreciation for the

impetus in the development of the topics discussed and in providing the students with a

simpler, or less abstract, approach. This concept of “learning from the masters” has led to

the growth in interest to translate groundbreaking articles and books written by the most

important mathematicians in history. Laubenbacher suggested that we translate Noether’s

seminal paper on describing what we now call Noetherian rings and modules. In this work,

Emmy Noether describes the precise condition that generalizes principal ideal domains,

and thereby forever changing the way mathematicians view rings and modules.

After an exhaustive search, we discovered that this foundational paper had already been

translated by Colin McLarty, professor of mathematics and philosophy at Case Western

Reserve University. McLarty is one of the leading experts in the works of Emmy Noether.

He translated some of her more important contributions to mathematics and physics and

published various articles that highlight her mathematical work. Over correspondence with

McLarty, he suggested that there is a rather large number of very influential mathematicians

and mathematical historians that would appreciate knowing more about Emmy Noether’s

contribution to classical invariant theory. This thesis is part of a larger project: translate
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Noether’s dissertation, verify the computations of the algebraic invariants she computed via

an archaic symbolic approach, complete the computation of algebraic invariants of fourth

degree forms in three variables, and connect the symbolic notation to modern techniques

in algebraic invariant theory. Kung and Rota [9] said about this that “. . . the covariants of

no nontrivial form (except for conics) in three or more variables have been fully classified,

not even those of ternary quartic which persuaded Emmy Noether to quit invariant theory.”

This is the project I am presenting in this thesis.

Figure 3: Arabian Phoenix

In Chapter II of this paper, I will give a quick overview over Emmy Noether’s life. In

Chapter III, I will discuss the major differences between classical and modern invariant

theory. In Chapter IV, I will take an in depth look at classical invariant theory via the

well-known binary forms. In Chapter V, I look at modern tools via Sturmfels’ book, and

an algorithm to compute an invariant ring. Finally, Chapter VI contains the translation of

Emmy Noether’s doctoral dissertation.
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2.1 About Emmy Noether

Amalie “Emmy” Noether was born on March 23, 1882 in Erlangen, Germany into a

Jewish family. Emmy’s father was the mathematician Max Noether, who lectured at the

University of Erlangen. Emmy had plans to become a teacher, but instead ended up study-

ing math at the University of Erlangen. She completed her dissertation (which has been

translated here) in 1907 under Paul Gordan, and then worked for the university for seven

years without getting paid. In 1915, David Hilbert and Felix Klein wanted her to join the

mathematics department of the University of Göttingen, but again, the university objected

to hiring a female. She taught under Hilbert’s name for four years and became very well

known in the mathematical community. She proved a theorem, now called “Noether’s The-

orem,” which is one of the most important theorems in mathematics to guide and develop

physics. Her theorem is the proof that “Energy may neither be created nor destroyed” and

other laws of conservation. Her habilitation was finally approved in 1919, and she was

allowed to teach under her own name. In 1920, Noether started working in the area of

abstract algebra with Werner Schmeidler. She published papers on theory of ideals and as

a result of her work on rings, the term “Noetherian Rings” was being used. She worked

with B. L. Van der Waerden and was a great influence on the work he published in his book

Moderne Algebra, which was one of the first central textbook in the algebra. Noether super-

vised multiple doctoral students, having great influence on their work. Examples of those

are Max Deuring, who worked in the area of Arithmetic Geometry, and Wolfgang Krull

who advanced the area of Commutative Algebra. Emmy Noether taught at the University

of Göttingen until 1933, when the Prussian Ministry of Sciences, Art, and Public Education

withdrew the right to teach from her. She, and a lot of other Jewish colleagues were forced
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to find jobs outside of Germany. Through the support of highly influential mathematicians,

Emmy Noether was invited to teach at Bryn Mawr University, and also started lecturing at

Princeton University in 1934, where Albert Einstein and Hermann Weyl worked. Noether

died in 1935 after surgery to remove an ovarian cyst.

2.2 Things Other Great Mathematicians Said About Emmy Noether

Solomon Lefschetz from Princton University wrote to Jacob Billikopf at Bryn Mawr

University about Emmy Noether:

“. . . she is the holder of a front rank seat in every sense of the word. As the leader of the

modern algebra school, she developed in recent Germany the only school worthy of note

in the sense, not only of isolated work, but of very distinguished group scientific work.

In fact, it is no exaggeration to say that without exception all the better young German

mathematicians are her pupils. . . . ”

Norbert Wiener from the Massachusetts Institute of Technology also wrote to Mr Bil-

likopf:

“ Leaving all questions of sex aside, she is one of the ten or twelve leading mathemati-

cians of the present generation in the entire world and has founded what is certain to be

the most important close-knit group of mathematicians in Germany–the Modern School of

Algebraists.”

Albert Einstein writes in his obituary about Emmy Noether: [15]

“In the judgment of the most competent living mathematicians, Fräulein Noether was the

most significant creative mathematical genius thus far produced since the higher education

of women began.”

Hermann Weyl said the following at Emmy Noether’s funeral:
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“Justifiably proud, for you were a great woman mathematician - I have no reservations in

calling you the greatest that history has known. Your work has changed the way we look

at algebra, and with your many gothic letters you have left your name written indelibly

across its pages. No-one, perhaps, contributed as much as you towards remoulding the

axiomatic approach into a powerful research instrument, instead of a mere aid in the logical

elucidation of the foundations of mathematics, as it had previously been. Amongst your

predecessors in algebra and number theory it was probably Dedekind who came closest.”

[15]
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CHAPTER 3

A BRIEF ACCOUNT OF MODERN INVARIANT THEORY VS CLASSICAL

INVARIANT THEORY

3.1 Modern Invariant Theory

In modern invariant theory, we have Γ, a subgroup of GL(Cn). Given a polynomial

f ∈C[x1, . . . ,xn] then every linear transformation π ∈Γ transforms f into a new polynomial

function f ◦π. The goal is to compute the ring of invariants for Γ:

C[x1, . . . ,xn]
Γ := { f ∈ C[x1, . . . ,xn] : ∀π ∈ Γ( f = f ◦π)}.

Example 8 (Symmetric polynomials). We let Sn be the group of permutation matrices

in GL(Cn). Its invariant ring C[x1, . . . ,xn]
Sn is the subring of symmetric polynomials

C[σ1, . . . ,σn], by definition of symmetric polynomials.

In classical invariant theory we consider the homogeneous polynomial (also known as

a form) of degree n,

F (x,y) = ∑
i+k=n

cik

(
n
i

)
xiyk.

For A ∈ GL2(C), we map the variables

x

y

 7→ A

x

y

=

x′

y′

 .

Then,

F (x,y) 7→F (x′,y′) = ∑
i+k=n

c′ik

(
n
i

)
xiyk.
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Definition 9. An invariant of the form F is a polynomial I (cik) such that

I (c′ik) = det(A)p ·I (cik),

for some p ∈ N

Example 10 (The Quadratic Binomial Case). When n = 2, let A =

a11 a12

a21 a22

 ∈GL2(C).

Then, x

y

 7→ A

x

y

=

a11x+a12y

a21x+a22y

=

x′

y′

 .
F (x,y) = c0x2 +2c1xy+ c2y2 becomes F (x′,y′) = c′0x2 +2c′1xy+ c′2y2.

Then one invariant is c0c2− c2
1, because

c′0c′2− c′21 = c2
0(a

2
11a2

12−a2
11a2

12)

+2c0c1(a2
11a12a22 +a2

12a11a21−a11a12(a11a22 +a12a21))

+ c0c2(a2
11a2

22 +a2
12a2

21−2a11a12a21a22)

+ c2
1(4a11a21a12a22− (a11a22 +a12a21)

2)

+ c2
2(a

2
21a2

22−a2
21a2

22)

+2c1c2(a11a21a2
22 +a12a22a2

21−a21a22(a11a22 +a12a21))

= c0c2(a11a22−a12a21)
2− c2

1(a11a22−a12a21)
2

= δ
2(c0c2− c2

1).
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Definition 11. A covariant of the form F is a polynomial in the C (cik,x,y) such that

C (c′ik,x,y) = det(A)p ·C (cik,x,y),

for some p ∈ N.

The power of the coefficients cik is called the degree of C the power of the variables

x,y is called the order of C . Note that an invariant is a covariant of order zero.

Invariant Theory was studied by a lot of great mathematicians in the late 1800s and early

1900s like Paul Gordan, Felix Klein, Hermann Weyl, Bartel L.van der Waerden, George

Boole, Arthur Cayley, David Hilbert, Emmy Noether to name just a few. There had been a

“British School,” which Boole was part of, but later Göttingen became the “world capital

of invariant theory.” Paul Gordan was one of the main contributors to invariant theory. He

proved the Finiteness Theorem for binary forms in 1868. In this proof Gordan constructed

the invariant ring for binary forms and showed that it is finitely generated. People had tried

to generalize this result, but nobody could successfully prove it until 1890 when Hilbert

published his first proof of the Finiteness Theorem for general forms. It proved that there

exists a finite basis for any system of invariants of arbitrary degree and with an arbitrary

number of indeterminantes. Gordan did not like Hilbert’s proof since it was an existence

proof rather than a constructive proof. This is when Gordan said his famous, “Das ist

Theologie, nicht Mathematik,” which means“This is Theology, not Mathematics.” Later,

Hilbert published a constructive proof of the Finiteness Theorem where he gave an algo-

rithm on how to construct the invariant ring. Gordan was much happier with this proof, and

began to see the advantages of the more theoretic approach. Hilbert’s constructive proof

essentially “solved” the problems in classical invariant theory by producsing an algorithm
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to find the invariants.
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CHAPTER 4

INTRODUCTION

4.1 First Section

The significance of being able to classify strongly regular graphs under certain param-

eters has not be lost on researchers the last 50 years. For instance, under what parameters

do we have a strongly regular Cayley graph? The generating set for such a graph is called

a partial difference set. It is known that there exist partial difference sets for groups of

exponent 4 or less. In [6], Jim Davis and John Polhill describe how they are able to con-

struct difference sets in groups Cr
2 and Cr

4 for all r ≥ 2, which can then be used to construct

partial difference sets. They also prove a new product construction for such sets. Through

this method, they are able to show that there do not exist partial difference sets in groups

of exponent 16. However, a question raised by Davis and Polhill is whether or not par-

tial difference sets exist in groups of exponent 8. In particular, do they exist in the group

C8×C8?

In this paper, the study of strongly regular graphs and that of Cayley graphs is combined

to find all partial difference sets given specific sets of parameters. In particular, Cayley

graphs on finite abelian groups G are sought. This allows for the use of character theory

of the groups and rational idempotents in the group ring C[G] to simplify computations.

Given parameter sets, partial difference sets are found through a collapsing process on our

unknown generating set S of the Cayley graph, working with smaller cases to build sets S

that yield strongly regular Cayley graphs which are thus partial difference sets. Through

this method, we answer the existence question posed by Davis and Polhill. The significance

of being able to classify strongly regular graphs under certain parameters has not be lost on

researchers the last 50 years. For instance, under what parameters do we have a strongly
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regular Cayley graph? The generating set for such a graph is called a partial difference set.

It is known that there exist partial difference sets for groups of exponent 4 or less. In [6],

Jim Davis and John Polhill describe how they are able to construct difference sets in groups

Cr
2 and Cr

4 for all r ≥ 2, which can then be used to construct partial difference sets. They

also prove a new product construction for such sets. Through this method, they are able to

show that there do not exist partial difference sets in groups of exponent 16. However, a

question raised by Davis and Polhill is whether or not partial difference sets exist in groups

of exponent 8. In particular, do they exist in the group C8×C8?

In this paper, the study of strongly regular graphs and that of Cayley graphs is combined

to find all partial difference sets given specific sets of parameters. In particular, Cayley

graphs on finite abelian groups G are sought. This allows for the use of character theory

of the groups and rational idempotents in the group ring C[G] to simplify computations.

Given parameter sets, partial difference sets are found through a collapsing process on our

unknown generating set S of the Cayley graph, working with smaller cases to build sets S

that yield strongly regular Cayley graphs which are thus partial difference sets. Through

this method, we answer the existence question posed by Davis and Polhill.

4.2 Second Section

The significance of being able to classify strongly regular graphs under certain param-

eters has not be lost on researchers the last 50 years. For instance, under what parameters

do we have a strongly regular Cayley graph? The generating set for such a graph is called

a partial difference set. It is known that there exist partial difference sets for groups of ex-

ponent 4 or less. In [6], Jim Davis and John Polhill describe how they are able to construct

difference sets in groups Cr
2 and Cr

4 for all r≥ 2, which can then be used to construct partial
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difference sets. They also prove a new product construction for such sets. Through this

method, they are able to show that there do not exist partial difference sets in groups of

exponent 16. However, a question raised by Davis and Polhill is whether or not partial dif-

ference sets exist in groups of exponent 8. In particular, do they exist in the group C8×C8?

The significance of being able to classify strongly regular graphs under certain parameters

has not be lost on researchers the last 50 years. For instance, under what parameters do we

have a strongly regular Cayley graph? The generating set for such a graph is called a partial

difference set. It is known that there exist partial difference sets for groups of exponent 4 or

less. In [6], Jim Davis and John Polhill describe how they are able to construct difference

sets in groups Cr
2 and Cr

4 for all r≥ 2, which can then be used to construct partial difference

sets. They also prove a new product construction for such sets. Through this method, they

are able to show that there do not exist partial difference sets in groups of exponent 16.

However, a question raised by Davis and Polhill is whether or not partial difference sets

exist in groups of exponent 8. In particular, do they exist in the group C8×C8?

In this paper, the study of strongly regular graphs and that of Cayley graphs is combined

to find all partial difference sets given specific sets of parameters. In particular, Cayley

graphs on finite abelian groups G are sought. This allows for the use of character theory

of the groups and rational idempotents in the group ring C[G] to simplify computations.

Given parameter sets, partial difference sets are found through a collapsing process on our

unknown generating set S of the Cayley graph, working with smaller cases to build sets S

that yield strongly regular Cayley graphs which are thus partial difference sets. Through

this method, we answer the existence question posed by Davis and Polhill.

In this paper, the study of strongly regular graphs and that of Cayley graphs is combined
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to find all partial difference sets given specific sets of parameters. In particular, Cayley

graphs on finite abelian groups G are sought. This allows for the use of character theory

of the groups and rational idempotents in the group ring C[G] to simplify computations.

Given parameter sets, partial difference sets are found through a collapsing process on our

unknown generating set S of the Cayley graph, working with smaller cases to build sets S

that yield strongly regular Cayley graphs which are thus partial difference sets. Through

this method, we answer the existence question posed by Davis and Polhill. The significance

of being able to classify strongly regular graphs under certain parameters has not be lost on

researchers the last 50 years. For instance, under what parameters do we have a strongly

regular Cayley graph? The generating set for such a graph is called a partial difference set.

It is known that there exist partial difference sets for groups of exponent 4 or less. In [6],

Jim Davis and John Polhill describe how they are able to construct difference sets in groups

Cr
2 and Cr

4 for all r ≥ 2, which can then be used to construct partial difference sets. They

also prove a new product construction for such sets. Through this method, they are able to

show that there do not exist partial difference sets in groups of exponent 16. However, a

question raised by Davis and Polhill is whether or not partial difference sets exist in groups

of exponent 8. In particular, do they exist in the group C8×C8?

In this paper, the study of strongly regular graphs and that of Cayley graphs is combined

to find all partial difference sets given specific sets of parameters. In particular, Cayley

graphs on finite abelian groups G are sought. This allows for the use of character theory

of the groups and rational idempotents in the group ring C[G] to simplify computations.

Given parameter sets, partial difference sets are found through a collapsing process on our

unknown generating set S of the Cayley graph, working with smaller cases to build sets S
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that yield strongly regular Cayley graphs which are thus partial difference sets. Through

this method, we answer the existence question posed by Davis and Polhill.

It turns out that such Cayley graphs with our chosen set of parameters are negative Latin

Square graphs. To discuss the significance of this, in Section II we begin by reviewing

Cayley graphs and strongly regular graphs. This section is meant as a brief overview of the

specific topics we need to utilize in this paper. Further study of these can be found in [8]

and [2].

Section III describes how we use the rational idempotents in C[G] to find partial differ-

ence sets in G, throughout which we discuss the dual group G∗ and properties of the char-

acters in G∗. An example of this method is thoroughly investigated in Section IV, where

we consider the group C8×C8 and parameter set (64,18,2,6). From this construction we

can now generate all partial differences sets in groups of exponent 8. Our method can also

be extended to groups C2n×C2n with parameter set (64,9r,r2 +3r−8,r2 + r) for positive

integer values of r. We discuss the more general case and further topics of investigation in

Section V.

Filtering is one of the most popular methods in image restoration. The local filtering

restores an image by its local average such that the restored value at a pixel is obtained

as a (weighted) average of its neighboring pixels. People show favor towards local filters

for they provide fast and real-time algorithms. The local linear filtering algorithms, such

as the well-known Gaussian filtering and Wiener filtering, are fast but tend to blur image.

To avoid the blurring effect, many nonlinear filters have been constructed, for example, the

Yaroslavsky neighborhood filter [18] (or sigma filter [10]) and the bilateral filter [17] (or

SUSAN filter [16]). These filters, whose weights favor the pixels having the similar gray
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level values, create faster diffusion inside a homogeneous region while slower diffusion

across the boundary of the region so that the image edge can be preserved. Although

nonlinear filtering algorithms do not take the benefit of linear convolution, they can still be

implemented very fast using very little read-only memory (ROM). Besides, being easily

integrated into hardware, they are attracting more and more industrial attentions (see [4, 7,

12, 13, 19]).

Unfortunately, all of these local nonlinear filters create artificial shocks, showing a stair-

case effect. That is, artificial boundaries are created in the image of flat region. The au-

thors of [3] showed that the Yaroslavsky neighborhood filter asymptotically behaves like

a Perona-Malik model [14], creating large flat zones and spurious contours inside smooth

regions. They also illustrated that this enhancing character of the neighborhood filter is due

to its failure in reproducing linear functions (see Section IV in [3]). The similar behavior

of the bilateral filter was also observed by Barash in [1] and Chui and Wang in [5].

To eliminate the staircase effect caused by the above nonlinear filters, the authors of [3]

applied linear regression to a filter and called the corrected one linear regression neigh-

borhood filter (LRNF), which is a sequel of a nonlinear filtering and its linear regression.

Thanks to linear regression correction, LRNF no longer has enhancing character. However,

the correction needs much more computing time, making LRNF slower than a standard

filtering algorithm.

The purpose of this paper is to construct a new local nonlinear filter, called directional

diffusion filter (DDF), which still preserves image edge, but does not show staircase effect.

Because DDF reproduces linear functions, it has no need of linear regression correction

and, therefore, is much faster than LRNF.
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The paper is organized as follows. In the next section, we briefly review the linear

regression correction method and analyze its necessity for the Yaroslavsky filter and the

bilateral filter in eliminating staircase effect. In Section 3, we introduce the directional

diffusion filter, reveal the relation between it and the improved TV model [11], and explore

its ability to reproduce linear functions. In Section 4, we develop its numerical algorithm

and discuss how to set the parameters in the filter. In the last section, we implement the

algorithm in several experiments.

4.3 Review Of Linear Regression Correction For Nonlinear Filters

Let u(x),x ∈Ω⊂ R2, be an image. As usual, we assume Ω = [0,1]2. The Yaroslavsky

neighborhood filter [18] first defines a neighborhood N(x) := Gh(x)∩Bρ(x) for pixel x,

where Gh(x) = {y ∈Ω; |u(y)−u(x)|< h} and Bρ(x) = {y ∈Ω; ||y− x||< ρ} , then

sets the updated value at x as the average of the pixels in N(x) :

Y NFh,ρu(x) =
1

|N(x)|

∫
N(x)

u(y)dy,

where |N(x)| denotes the Lebegues measure of N(x). This filter is often rewritten in a more

continuous form as

Y NFh,ρu(x) =
1

C(x)

∫
Bρ (x)

u(y)e−
|u(y)−u(x)|2

h2 dy,

where C(x)=
∫

Bρ (x) e−
|u(y)−u(x)|2

h2 dy is the normalization factor. If we also smooth the Yaroslavsky

filter in the spatial domain, then it becomes the bilateral filter [17] (or SUSAN filter [16]):

BNFh,ρu(x) =
1

C(x)

∫
Ω

u(y)e
− c‖x−y‖2

ρ2 − |u(y)−u(x)|2

h2 dy, (5)



21

where C(x) is again the normalization factor in the form as

C(x) =
∫

Ω

e
− c‖x−y‖2

ρ2 − |u(y)−u(x)|2

h2 dy.

Note that if we choose c such that e−c ≈ 0, then

BNFh,ρu(x)≈ 1
C(x)

∫
Bρ (x)

u(y)e
− c‖x−y‖2

ρ2 − |u(y)−u(x)|2

h2 dy.

Hence, no essential difference exists between the bilateral filter and the Yaroslavsky one.
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CHAPTER 5

STRONGLY REGULAR CAYLEY GRAPHS

5.1 Assuptions

We assume throughout this section that G is a finite group and S is subset of G. The

Cayley graph with respect to G is the graph Γ = Γ(G,S) such that the vertex set V is

exactly the members of G and, for all vertices x,y ∈ V , x is adjacent to y if and only if

y = sx for some s ∈ S.

For this paper, we consider only simple Cayley graphs. To achieve this, we choose our

set S so that the identity element of G is not in S and if s ∈ S then s−1 ∈ S. In addition

to being simple, based on the group structure built into a Cayley graph, we note that our

graphs are all regular.

A special type of regular graph, called strongly regular, was first introduced by R.C.

Bose in 1963 [2]. Given a regular graph with v vertices of degree k, we can define a

strongly regular graph, denoted SRG(v,k,λ ,µ), to be such that there exist integers λ and

µ satisfying that every pair of adjacent vertices have λ common neighbors and every pair

of non-adjacent vertices have µ common neighbors. Probably the most famous example of

a strongly regular graph is the Petersen graph, which is a SRG(10,3,0,1):

Figure 4: Petersen Graph

We can see here that the Petersen graph is a connected graph which satisfies the defi-

nition of a strongly regular graph, where adjacent vertices do not have common neighbors
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and non-adjacent vertices have one common neighbor. Let’s recall that the Petersen graph

is the complement of the line graph of the complete graph on five vertices, which is con-

nected. For connected strongly regular graphs whose complements are also connected, we

have the following bounds on their parameters:

0 < µ < k < v−1

Considering further the complement of a strongly regular graph, if we have a graph G =

SRG(v,k,λ ,µ), then its complement is G = SRG(v,v− k− 1,v− 2k+ µ − 2,v− 2k+λ ).

Because our parameters are non-negative, this tells us that

v−2k+µ−2≥ 0

5.2 Lemma

We can more carefully consider the structure of strongly regular graphs to develop the

next lemma which specifies under what parameters we may construct a strongly regular

graph.

Lemma 12. For a strongly regular graph G = SRG(v,k,λ ,µ),

k(k−λ −1) = µ(v− k−1)

Proof. Fix a vertex x in G , and consider the set E := {(y,z) : y z, x y x � z}. We can

computer the order of E in two different ways.

First, by counting the number of vertices of G which are distance 2 from x. Because
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the degree of x is k and the diameter of G is 2, there are v− k−1 vertices distance 2 from

x. Note that µ counts the number of common neighbors of non-adjacent vertices. Thus,

|E|= µ(v− k−1)

Now, let’s determine the order of E by first counting the number of vertices of G which are

adjacent to x not having a common neighbor with x. Recall that λ counts the number of

common neighbors of adjacent vertices. Thus, there are k−λ −1 vertices of G adjacent to

x and not adjacent to a neighbor of x. Because the degree of G is k,

|E|= k(k−λ −1).
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CHAPTER 6

FOR DEMO FIGS AND TABLES ONLY

6.1 Some Graphs

To add graphs in your thesis, you may use the following methods. The first figure is

showing in the Chapter 2. The second figure is in pdf-format. You may use "scale" option

to rescale it.

Figure 5: Seven Briges.

The third figure contains three graphs: Swiss Roll, S-Curve, and 3D Cluster, defined as

follows.

• Parametric equation of the Swiss Roll:



x = (3π

2 (1+2t))cos(3π

2 (1+2t)),

y = s,

z = (3π

2 (1+2t))sin(3π

2 (1+2t)),

0≤ s≤ L, |t| ≤ 1.
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• Parametric equation of the S-Curve:



x = −cos(1.5πt),

y = s,

z =


−sin(1.5πt) 0≤ t ≤ 1,

2+ sin(1.5πt) 1 < t ≤ 2,

0≤ s≤ L, 0≤ t ≤ 2 .

• Construction of the 3D Clusters: The 3D cluster in this experiment is not a surface in

the usual sense, but consists of three separated balls, with centers connected by two

line segments.

We show their graphs in the Figure 6.

Figure 6: Left: Swiss Roll. Middle: S Curve. Right: 3D Cluster.

6.2 Some Tables

In the first example of the Swiss Roll dataset, Gaussian random projection (i.e. type-

1) is used for RAT 1, · · · , RAT 4, and the experimental DR results are compiled in Table

1. Observe that all RAT algorithms are much more efficient than the standard Isomap

algorithm, while the deviations of each RAT from Isomap are negligible.
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We assume throughout this section that G is a finite group and S is subset of G. The

Cayley graph with respect to G is the graph Γ = Γ(G,S) such that the vertex set V is

exactly the members of G and, for all vertices x,y ∈ V , x is adjacent to y if and only if

y = sx for some s ∈ S.

For this paper, we consider only simple Cayley graphs. To achieve this, we choose our

set S so that the identity element of G is not in S and if s ∈ S then s−1 ∈ S. In addition

to being simple, based on the group structure built into a Cayley graph, we note that our

graphs are all regular.

A special type of regular graph, called strongly regular, was first introduced by R.C.

Bose in 1963 [2]. Given a regular graph with v vertices of degree k, we can define a

strongly regular graph, denoted SRG(v,k,λ ,µ), to be such that there exist integers λ and

µ satisfying that every pair of adjacent vertices have λ common neighbors and every pair

of non-adjacent vertices have µ common neighbors. Probably the most famous example of

a strongly regular graph is the Petersen graph, which is a SRG(10,3,0,1):

Algorithm CPU time eigen 1 eigen 2 eigen 3 deviation
Isomaps 3.8179 1.0000 0.9543 0.0290
RAT 1 0.0675 0.9972 0.9416 0.0173 0.0030
RAT 2 0.2253 1.0000 0.9542 0.0280 0.0001
RAT 3 0.5190 1.0000 0.9543 0.0285 0.0001
RAT 4 0.5916 1.0000 0.9543 0.0285 0.0000

Table 2: Comparison of standard Isomap algorithm with RAT applied to Isomap DRK: All RAT
algorithms employ the 6-neighborhood and Gaussian (i.e. type-1) random projection. For normal-
ization, all eigenvalues are divided by the first eigenvalue = 1654657 of the DRK.

In the second example of the S-curve dataset, Gaussian random projection (i.e. type-

1) is again used for RAT 1, · · · , RAT 4, and the experimental DR results are compiled in

Table 2. Observe that all RAT algorithms are much more efficient than the standard Isomap
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algorithm, while the deviations of each RAT from Isomap are again negligible. We assume

throughout this section that G is a finite group and S is subset of G. The Cayley graph with

respect to G is the graph Γ = Γ(G,S) such that the vertex set V is exactly the members of

G and, for all vertices x,y ∈V , x is adjacent to y if and only if y = sx for some s ∈ S.

For this paper, we consider only simple Cayley graphs. To achieve this, we choose our

set S so that the identity element of G is not in S and if s ∈ S then s−1 ∈ S. In addition

to being simple, based on the group structure built into a Cayley graph, we note that our

graphs are all regular.

A special type of regular graph, called strongly regular, was first introduced by R.C.

Bose in 1963 [2]. Given a regular graph with v vertices of degree k, we can define a

strongly regular graph, denoted SRG(v,k,λ ,µ), to be such that there exist integers λ and

µ satisfying that every pair of adjacent vertices have λ common neighbors and every pair

of non-adjacent vertices have µ common neighbors. Probably the most famous example of

a strongly regular graph is the Petersen graph, which is a SRG(10,3,0,1):

We assume throughout this section that G is a finite group and S is subset of G. The

Cayley graph with respect to G is the graph Γ = Γ(G,S) such that the vertex set V is

exactly the members of G and, for all vertices x,y ∈ V , x is adjacent to y if and only if

y = sx for some s ∈ S.

For this paper, we consider only simple Cayley graphs. To achieve this, we choose our

set S so that the identity element of G is not in S and if s ∈ S then s−1 ∈ S. In addition

to being simple, based on the group structure built into a Cayley graph, we note that our

graphs are all regular.

A special type of regular graph, called strongly regular, was first introduced by R.C.
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Bose in 1963 [2]. Given a regular graph with v vertices of degree k, we can define a

strongly regular graph, denoted SRG(v,k,λ ,µ), to be such that there exist integers λ and

µ satisfying that every pair of adjacent vertices have λ common neighbors and every pair

of non-adjacent vertices have µ common neighbors. Probably the most famous example of

a strongly regular graph is the Petersen graph, which is a SRG(10,3,0,1):

We assume throughout this section that G is a finite group and S is subset of G. The

Cayley graph with respect to G is the graph Γ = Γ(G,S) such that the vertex set V is

exactly the members of G and, for all vertices x,y ∈ V , x is adjacent to y if and only if

y = sx for some s ∈ S.

For this paper, we consider only simple Cayley graphs. To achieve this, we choose our

set S so that the identity element of G is not in S and if s ∈ S then s−1 ∈ S. In addition

to being simple, based on the group structure built into a Cayley graph, we note that our

graphs are all regular.

A special type of regular graph, called strongly regular, was first introduced by R.C.

Bose in 1963 [2]. Given a regular graph with v vertices of degree k, we can define a

strongly regular graph, denoted SRG(v,k,λ ,µ), to be such that there exist integers λ and

µ satisfying that every pair of adjacent vertices have λ common neighbors and every pair

of non-adjacent vertices have µ common neighbors. Probably the most famous example of

a strongly regular graph is the Petersen graph, which is a SRG(10,3,0,1):

In the third example of the 3D cluster dataset, Gaussian random projection (i.e. type-

1) is again used for RAT 1, · · · , RAT 4, and the experimental DR results are compiled in

Table 3. Observe that all RAT algorithms are much more efficient than the standard Isomap

algorithm, while the deviations of each RAT from Isomap are again negligible. We assume
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Algorithm CPU time eigen 1 eigen 2 eigen 3 deviation
Isomaps 3.4289 1.0000 0.2762 0.0199
RAT 1 0.0642 0.9999 0.2753 0.0099 0.0023
RAT 2 0.2043 1.0000 0.2762 0.0190 0.0001
RAT 3 0.5109 1.0000 0.2762 0.0197 0.0001
RAT 4 0.5662 1.0000 0.2762 0.0197 0.0001

Table 3: Comparison of standard Isomap algorithm with RAT applied to Isomap DRK: All RAT
algorithms employ the 6-neighborhood and Gaussian (i.e. type-1) random projection. For normal-
ization, all eigenvalues are divided by the first eigenvalue = 17553 of the DRK.

throughout this section that G is a finite group and S is subset of G. The Cayley graph with

respect to G is the graph Γ = Γ(G,S) such that the vertex set V is exactly the members of

G and, for all vertices x,y ∈V , x is adjacent to y if and only if y = sx for some s ∈ S.

For this paper, we consider only simple Cayley graphs. To achieve this, we choose our

set S so that the identity element of G is not in S and if s ∈ S then s−1 ∈ S. In addition

to being simple, based on the group structure built into a Cayley graph, we note that our

graphs are all regular.

A special type of regular graph, called strongly regular, was first introduced by R.C.

Bose in 1963 [2]. Given a regular graph with v vertices of degree k, we can define a

strongly regular graph, denoted SRG(v,k,λ ,µ), to be such that there exist integers λ and

µ satisfying that every pair of adjacent vertices have λ common neighbors and every pair

of non-adjacent vertices have µ common neighbors. Probably the most famous example of

a strongly regular graph is the Petersen graph, which is a SRG(10,3,0,1):

We assume throughout this section that G is a finite group and S is subset of G. The

Cayley graph with respect to G is the graph Γ = Γ(G,S) such that the vertex set V is

exactly the members of G and, for all vertices x,y ∈ V , x is adjacent to y if and only if

y = sx for some s ∈ S.
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For this paper, we consider only simple Cayley graphs. To achieve this, we choose our

set S so that the identity element of G is not in S and if s ∈ S then s−1 ∈ S. In addition

to being simple, based on the group structure built into a Cayley graph, we note that our

graphs are all regular.

A special type of regular graph, called strongly regular, was first introduced by R.C.

Bose in 1963 [2]. Given a regular graph with v vertices of degree k, we can define a

strongly regular graph, denoted SRG(v,k,λ ,µ), to be such that there exist integers λ and

µ satisfying that every pair of adjacent vertices have λ common neighbors and every pair

of non-adjacent vertices have µ common neighbors. Probably the most famous example of

a strongly regular graph is the Petersen graph, which is a SRG(10,3,0,1):

Algorithm CPU time eigen 1 eigen 2 eigen 3 deviation
Isomaps 4.3294 1.0000 0.1454 0.0049
RAT 1 0.0756 0.9999 0.1453 0.0038 0.0009
RAT 2 0.2123 1.0000 0.1454 0.0049 0.0000
RAT 3 0.7380 1.0000 0.1454 0.0049 0.0000
RAT 4 0.7103 1.0000 0.1454 0.0049 0.0000

Table 4: Comparison of standard Isomap algorithm with RAT applied to Isomap DRK: All RAT
algorithms employ the 6-neighborhood and Gaussian (i.e. type-1) random projection. For normal-
ization, all eigenvalues are divided by the first eigenvalue = 22271 of the DRK.

If your table is very wide, you can use the following method. The example below is

gotten from Darwin Luna’s thesis.
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APPENDIX A

Write your Appendix content here. (Sample)

The following style manuals have been accepted by the Sam Houston State University

Graduate Council. The most recent edition of these manuals should always be followed.

CONSULT YOUR THESIS DIRECTOR TO DETERMINE WHICH MANUAL IS RE-

QUIRED BY YOUR DEPARTMENT.

ACS (American Chemical Society) Style Guide: A Manual for Authors and Editors

AIP (American Institute of Physics) Style Manual

Associated Press Stylebook and Libel Manual

Chicago Manual of Style

Form and Style: Theses, Reports, Term Papers (William G. Campbell)

A Manual for Authors of Mathematical Papers (American Mathematical Association)

A Manual for Writers of Term Papers, Theses, Dissertations (Kate Turabian)

MLA (Modern Languages of America) Handbook for Writers of Research Papers

Publication Manual of the American Psychological Association

Scientific Style and Format: THE CBE (Council of Biology Editors) Manual for Au-

thors, Editors and Publishers

Style Manual for Political Science

Style Manual (United States Government Printing Office)

Suggestions to Authors of the Reports of the United States Geological Survey

A Uniform System of Citation (Harvard Law Review)

A Manual for Authors of Mathematical Papers (American Mathematical Association)

A Manual for Writers of Term Papers, Theses, Dissertations (Kate Turabian)
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MLA (Modern Languages of America) Handbook for Writers of Research Papers

Publication Manual of the American Psychological Association

Scientific Style and Format: THE CBE (Council of Biology Editors) Manual for Au-

thors, Editors and Publishers

Style Manual for Political Science

Style Manual (United States Government Printing Office)

Suggestions to Authors of the Reports of the United States Geological Survey

A Uniform System of Citation (Harvard Law Review)
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APPENDIX B

Anomaly detection. Detecting anomaly for given statistical models.

Classification of objects (Spectral classification). Classifying objects in a HSI data

set.

Demixing. Finding material components in a raster cell.

Electromagnetic radiation (EMR). The energy in the form of electromagnetic waves.

Electromagnetic spectrum. The entire family of electromagnetic radiation, together

with all its various wavelengths.

Endmember spectra. The “pure” spectra that contribute to mixed spectra.

Fused images. A fused image is a combination of the HSI image and the HRI image

(to be mentioned below). It is usually the best because of high resolution from the HRI

camera and color information from the HSI sensor. This combination results in sufficiently

high image resolution and contrast to facilitate image evaluation by the human eyes.

High Resolution Imagery (HRI). A high-resolution image (HRI) camera, which cap-

tures black-and-white or panchromatic images, is usually integrated in an HSI system to

capture the same reflected light. However, the HRI camera does not have a diffraction

grating to disperse the incoming reflected light. Instead, the incoming light is directed to

a wider CCD (Charge-Couple Device) to capture more image data. The HSI resolution is

typically one meter per pixel, and the HRI resolution is much finer: typically a few inches

square per pixel.

Hyperspectral imaging. The imagery consists of a larger number of spectral bands so

that the totality of these bands is numerically sufficient to represent a (continuous) spectral

curve for each raster cell.
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Illumination factors. The incoming solar energy varies greatly in wavelengths, peak-

ing in the range of visible light. To convert spectral radiance to spectral reflectance, the

illumination factors must be accounted. Illumination factors taken into account includes

both the illumination geometry (angles of incoming light, etc.,) and shadowing. Other

factors, such as atmospheric and sensor effects, are also taken into consideration.

Macroscopic and intimate mixtures. Microscopic mixture is a linear combination of

its endmembers, while an intimate mixture is a nonlinear mixture of its endmembers.

Mixed spectra. Mixed spectra, also known as composite spectra, are contributed by

more than one material components.

Multi-spectral imaging. The imaging bins the spectrum into a handful of bands.

Raster cell. A pixel in a hyperspectral image.

Reflectance conversion. Radiance values must be converted to reflectance values be-

fore comparing image spectra with reference reflectance spectra. This is called atmospheric

correction. The method for converting the radiance to reflectance is also called reflectance

conversion. The image-based correction methods include Flat Field Conversion and Inter-

nal Average Relative Reflectance Conversion. They apply the model R1 = mR2, where R1

is the reflectance, R2 is the radiance, and m is the conversion slope. Some conversions also

apply the linear model R1 =−c+mR2, where c is an offset that needs to be abstracted from

the radiance. The popular conversions are

1. Flat Field Conversion. A flat field has a relatively flat spectral reflectance curve. The

mean spectrum of such an area would be dominated by the combined effects of solar

irradiance and atmospheric scattering and absorption. The scene is converted to "rel-

ative" reflectance by dividing each image spectrum by the flat field mean spectrum.
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2. Internal Average Relative Reflectance (IARR) Conversion. This technique is used

when no knowledge of the surface materials is available. The technique calculates a

relative reflectance by dividing each spectrum (pixel) by the scene average spectrum.

Region segmentation. Partitioning the spatial region of a hyperspectral image into

multiple regions (sets of pixels). The goal of segmentation is to simplify and/or change

the representation of an HSI image into something that is more meaningful and easier to

analyze. Region segmentation is typically used to locate objects and boundaries (lines,

curves, etc.) in images.

Remote sensing. Sensing something from a distance. The following processes affect

the light that is sensed by a remote sensing system:

1. Illumination. Light has to illuminate the ground and objects on the ground before

they can reflect any light. In the typical remote sensing environment, which is out-

doors, illumination comes from the sun. We call it solar illumination.

2. Atmospheric Absorption and Scattering of Illumination Light. As solar illumination

travels through the atmosphere, some wavelengths are absorbed and some are scat-

tered. Scattering is the change in direction of a light wave that occurs when it strikes

a molecule or particle in the atmosphere.

3. Reflection. Some of the light that illuminates the ground and objects on the ground

is reflected. The wavelengths that are reflected depend on the wavelength content of

the illumination and on the object’s reflectance. The area surrounding a reflecting

object also reflects light, and some of this light is reflected into the remote sensor.
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4. Atmospheric Absorption and Scattering of Reflected Light. As reflected light travels

through the atmosphere to the remote sensor, some wavelengths are absorbed, some

are scattered away from the sensor, and some are scattered into the sensor.

These four effects all change the light that reaches the remote sensor from the original

light source. After the reflected light is captured by the remote sensor, the light is further

affected by how the sensor converts the captured light into electrical signals. These effects

that occur in the sensor are called sensor effects.

Spectral curve. It is the one-dimensional curve of a spectral reflectance.

Spectral libraries. A spectral library consists of a list of spectral curves with data of

their characteristics corresponding to specific materials such as mines, plants, etc.

Spectral radiance. It is the measurable reflected light reaching the sensor. The spectral

reflectance of the material is only one factor affecting it. It is also dependent of the spec-

tra of the input solar energy interactions of this energy during its downward and upward

passages through the atmosphere, etc

Shape recognition. Recognizing the shape of a detected object.

Spectral reflectance. It is the ratio of reflected energy to incident energy as a function

of wavelengths. A certain material has its own spectral reflectance. The light that is re-

flected by an object depends on two things: (1) light that illuminates the object; and (2) the

reflectance of the object. Reflectance is a physical property of the object surface. It is the

percentage of incident EMR of each wavelength that is reflected by the object. Because it

is a physical property, it is not affected by the light that illuminates the object.

Spectral reflection. It is the observed reflected energy, represented as a function of

wavelengths under illumination. It is affected by both reflectance of the object and the light
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that illustrates the object. If an object was illuminated by balanced white light, and if there

was no atmospheric absorption or scatter, and if the sensor was perfect, then the wavelength

composition of reflected light detected by an HSI sensor would match the reflectance, or

spectral signature of the object.

Spectral space. The n-dimensional space, where each point is the spectra of a material

or a group of materials.

Spectral signature. A unique characteristic of an object, represented by some chart of

the plot of the object’s reflectance as a function of its wavelength. It can be thought of as

an EMR “fingerprint” of the object.

Spectroscopy. The study of the wavelength composition of electromagnetic radiation.

It is fundamental to how HSI technology works.

Signature matching. Matching reflected light of pixels to spectral signatures of given

objects.
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