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1. Introduction 

 This paper characterizes a class of rules for decision-making under the type of non-

probabilistic uncertainty considered first by Arrow and Hurwicz (1972). Under this type of 

uncertainty, the agent knows different possible states of the world and the outcome of each of her 

actions for each state, but does not have any probabilistic information, such as exact 

probabilities, the likelihood ranking
1
, or probability intervals

2
 for these states. Following Arrow 

and Hurwicz (1972), several writers (see, for example, Maskin (1979), Barrett and Pattanaik 

(1984), and Barbera and Jackson (1988)), have discussed different rules of decision-making 

under uncertainty of the Arrow-Hurwicz type. All these contributions, however, focus on „max‟-

based or „min‟-based rules and variants of such rules. In light of the agent‟s usually limited 

capacity for processing information, it seems intuitively plausible to assume that an agent, when 

confronted with the problem of choice under uncertainty, may concentrate on some „focal‟ 

outcomes
3
 for each action.  It is, however, not clear why the agent will necessarily look only at 

the extreme outcomes, i.e., the best or worst outcomes, of each action.  An alternative focal point 

for each action may be its median outcome(s)
4
. The ranking of actions on the basis of their 

extreme outcomes involves excessive optimism or pessimism on the part of the agent. In 

contrast, the focus on the median outcome(s) in ranking alternative actions can be interpreted as 

a characteristic of more balanced behavior. Though decision rules based on the median 

outcome(s) seem to have considerable intuitive plausibility, the structure of these rules in the 

Arrow-Hurwicz framework has not been explored so far. The purpose of this paper is to fill this 

gap in the literature by providing an axiomatic characterization of a class of median-based 

decision rules for choice under non-probabilistic uncertainty of the Arrow-Hurwicz type
5
. 

  The structure of the paper is as follows. In section 2, we introduce the basic notation and 

assumptions. Section 3 presents the axioms with illustrative examples. The main result and its 

                                                
1 See Kelsey (1986) for a discussion of decision-making when the agent has only the likelihood ranking of the states, 

but not their exact probabilities. 
2 See Gilboa and Schmeidler (1989) for a model of decision-making where the agent has a probability interval for 

each state of the world. 
3  The idea that the agent may consider only some focal outcomes of each available action goes back to Milnor 

(1954) and Shackle (1954). It may be worth recalling that the paper of Arrow and Hurwicz (1972) was published in 

a volume in honor of Shackle.  
4 For a precise definition of the median outcome(s) of an action, see Section 2 below. 
5  Nitzan and Pattanaik (1984) characterize a class of median-based decision rules in a framework which was first 

introduced by Kannai and Peleg (1984), and which is very different from that of Arrow and Hurwicz (1972). Nitzan 

and Pattanaik, (1984), as well as Kannai and Peleg (1984), do not introduce the states of the world into their model, 

they assume that the agent knows only the set of outcomes for each action.    
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proof are given in section 4. Section 5 contains an example of a median-based rule. Finally, 

section 6 concludes. 

 

2. Notation and Assumptions 

Assumption 2.1. The universal set of outcomes, X, is a non-empty and convex subset of n , 

where n is some fixed positive integer. 

Assumption 2.2. The agent has a convex ordering  over X, such that for some ,x y X , x y  

and not ( y x ). 

The asymmetric and symmetric factors of  are given by  and , respectively. Let 

( , )d x y  denote the Euclidean distance between ,x y X . 

A decision problem is defined by a (finite) non-empty set of states of the world, s. Let Z 

be the class of all decision problems and let the elements of Z be denoted by , ,S S S   etc. Given 

S Z , let A(S) denote the set of all possible functions :a S X . The elements of A(S) are 

called actions. For a decision problem 1{ ,..., }mS s s , where m is a positive integer, an action 

specifies exactly one n-tuple of real numbers for each of the m states of the world, and hence, can 

be thought of as an m n  vector of real numbers. It may be worth noting here that this 

representation of actions as m n  vectors of real numbers allows us later to introduce the 

property of continuity of the agent‟s ordering over actions for a given decision problem (see 

Assumption 2.3 below). 

A typical decision problem with two states of the world 1 2{ , }S s s , two actions 

, ( )a b A S , and outcomes 1 2 1 2( ), ( ), ( ), ( )a s a s b s b s X is described as follows – 

     S 

      1s         2s  

a     a( 1s )    a( 2s ) 

b     b( 1s )    b( 2s ) 

 

An action ( )a A S  is trivial, if for all ,s s S , ( ) ( )a s a s . A trivial action ( )a A S , 

such that for all s S , ( )a s x , is denoted by x . 

Assumption 2.3. For all S Z , the agent has a weak preference ordering SR  defined over 

( )A S , such that,  
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(i) 
SR  is continuous

6
 over ( )A S , 

 and  

(ii) for all ,x y X , x y  iff 
Sx R y .  

SI  and 
SP  are the symmetric and asymmetric factors, respectively, corresponding to 

SR  

Remark 2.4. Given Assumption 2.3, the ordering  over X is continuous. 

For all decision problems S Z , and, for all , ( )a b A S , we write a b  iff the outcomes 

of action a corresponding to the different states of the world in S, constitute a permutation of the 

outcomes of action b.   

 Let 
1 2{ , ,..., }mS s s s Z  be a decision problem and let ( )a A S . Let the outcomes in the 

set ( )A S  be indexed as 
1 2, ,..., mx x x  such that for all k ( 1)m k  , 

1k kx x 

7
. Then the set of 

median outcome(s) of action a is denoted by med(a) and is defined to be: 
1

1
2

mx 


 
 
 

 if m is odd, 

and
1

2 2

,m mx x


 
 
 

 if m is even.  

The agent follows a median-based rule iff for all S Z and for all , ( )a b A S , SaI b  if 

( ) ( )med a med b
8
 and there exists a one-to-one function h from med(a) to med(b) such that for 

all ( ),x med a  ( )x h x .  

For example, consider the following decision problem 1 2 3 4 5 6{ , , , , , }S s s s s s s , actions 

, ( )a b A S , and outcomes 1 2 2 3 3 3 3 4 4 5 6 6, , , , , , , , , , ,x x x x x x y y y y y y X       such that, 2 4x y  , 3 5x y , 

1 2 2 3 3 3x x x x x x   , and 3 4 4 5 6 6y y y y y y  .  

     S 

      1s     2s     3s     4s     5s     6s  

a     2x     3x     3x     1x     2x     3x  

 b     5y     3y     4y    6y     4y    6y  

                                                
6 As noted earlier, actions for any given decision problem with m states of the world can be thought of as m n  

vectors of real numbers. Therefore, continuity of the agent‟s ordering over A(S) can be defined in the usual fashion. 
7 If there are more than one way of indexing the outcomes in this fashion, we choose one of them and keep it fixed. 
8
 ( )med a  represents cardinality of the set of median outcome(s) from action a. 
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We choose the indexing of outcomes, such that, 
1 2 2 3 3 3x x x x x x    and 

3 4 4 5 6 6y y y y y y  . Then, 
2 3( ) { , }med a x x , 

4 5( ) { , }med b y y , and a median-based 

rule will yield 
SaI b . 

Note that the class of median-based rules is not necessarily a singleton. Consider the 

following decision problem 
1 2{ , }S s s  and two actions , ( )a b A S  such that, 

1 1( ) ( )b s a s  and 

2 2( ) ( )a s b s . It is easy to see that, both 
SaP b  and 

SbP a  are consistent with a median-based rule 

as we have defined it. This shows that a median-based rule need not be unique 

     S 

      
1s         

2s  

a     a(
1s )    a(

2s ) 

b     b( 1s )    b( 2s ) 

 

3. The Axioms 

 We shall now introduce several plausible properties that the agent may satisfy. The 

properties are also illustrated with examples. We shall later characterize median-based rules in 

terms of these properties. 

 

Axiom 3.1. Neutrality: Suppose ,S S Z , S S , , ( ), , ( )a b A S a b A S    . Further, suppose 

there exists a one-to-one function f from S to S   such that, for all ˆ,s s S , ˆ[ ( ) ( )a s b s  iff 

ˆ( ( )) ( ( ))]a f s b f s  , ˆ[ ( ) ( )b s a s  iff ˆ( ( )) ( ( ))]b f s a f s  , ˆ[ ( ) ( )a s a s  iff ˆ( ( )) ( ( ))]a f s a f s  , 

ˆ[ ( ) ( )a s a s  iff ˆ( ( )) ( ( ))]a f s a f s  , ˆ[ ( ) ( )b s b s  iff ˆ( ( )) ( ( ))]b f s b f s  , and ˆ[ ( ) ( )b s b s  iff 

ˆ( ( )) ( ( ))]b f s b f s  . Then [ SaR b  iff Sa R b  ] and [ SbR a  iff Sb R a  ]. 

Suppose two decision problems S and S   have equal number of the states of the world. 

Neutrality then requires that, if the ranking of outcomes from two actions a and b, in decision 

problem S is “analogous” to the ranking of the outcomes of two actions a  and b , in the 

decision problem S  , then the ranking of a and b will be similar to the ranking of a  and b .  

For example, neutrality implies [ SaR b  iff Sa R b  ] and [ SbR a  iff Sb R a  ] in the following 

two decision problems S and S   where 1 1( )s f s  , 2 2( )s f s  , and , , , , ,p q r x y z X  such that 

p q r x y z . 
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    S                                                       S   

 
1s       

2s                                             
1s      2s  

                                      a    r       y                                        a    q       x 

                                      b    z       p                                        b    y       p 

 

Neutrality has several plausible implications that have been discussed in the literature for 

decision-making under complete uncertainty. First, neutrality implies that the identities of the 

states of a decision problem do not matter while ranking actions in a decision problem; only 

order of the outcomes under different states matters. Thus, neutrality is similar to the well-known 

„symmetry‟ axiom introduced by Arrow and Hurwicz (1972), but it is stronger than the 

„symmetry‟ axiom. The „symmetry‟ axiom as discussed in Arrow and Hurwicz (1972) requires 

the image set of the mapping from one decision problem to the other to be identical with the 

domain set, whereas, the image set can be different than the domain set under neutrality. 

Second, neutrality implies that, while ranking two actions, only the ranking of outcomes 

from these two actions are relevant. The ranking of outcomes, at least one of which does not 

occur in the two actions under consideration, is of no importance. This may be noted as 

“Independence of the Irrelevant Outcomes”.  

Thus, in the presence of neutrality, only the ordering of the relevant outcomes under the 

different states is considered. At first sight, this may seem implausible. Consider the following 

example with two states and two actions where the outcomes are assumed to be monetary 

magnitudes. 

  S                                                            S   

                                        1s         2s                                               1s            2s  

                                   a    7         1                                      a    7000        4.99 

                                   b    5         5                                      b       5              5 

 

Suppose, an outcome x is at least as good as y iff x y . It is possible for an agent to have 

SaI b  and Sa P b  , violating neutrality. However, the Arrow-Hurwicz (1972) framework of 

complete ignorance provides only ordinal information about an agent‟s preference over the 

outcomes. Since the ordering of outcomes from , ( )a b A S  is the same across states as the 

ordering of outcomes from , ( )a b A S   , neutrality seems to be a plausible axiom in this 

framework.  
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Lemma 3.2. Suppose the agent satisfies neutrality. Then, for every decision problem 

1 2{ , ,..., }mS s s s Z   and for all actions , ( )a a A S , such that, a a  and 

1 2( ) ( ) ... ( )ma s a s a s , we must have 
SaI a . 

Proof: Let 
1 2{ , ,..., }mS s s s Z   and let , ( )a a A S  such that a a  and 

1 2( ) ( ) ... ( )ma s a s a s . Since a a , there exists a one-to-one function f from S to S such that 

for all s S , ( ) ( ( ))a s a f s  and hence ( ) ( ( ))a s a f s . Therefore, by neutrality [
SaR a  iff 

SaR a ] and [
SaR a  iff 

SaR a ]. Since, by connectedness of 
SR , we have (

SaR a  or 
SaR a ), it 

follows that SaI a . 

 

Axiom 3.3. Duality: Suppose ,S S Z , S S , , ( )a b A S , , ( )a b A S   , and ˆ,s s S . 

Further, suppose there exists a one-to-one function g from S to S   such that, for all ˆ,s s S , 

ˆ[ ( ) ( )a s b s  iff ˆ( ( )) ( ( ))]b g s a g s  , ˆ[ ( ) ( )b s a s  iff ˆ( ( )) ( ( ))]a g s b g s  , ˆ[ ( ) ( )a s a s  iff 

ˆ( ( )) ( ( ))]a g s a g s  , ˆ[ ( ) ( )a s a s  iff ˆ( ( )) ( ( ))]a g s a g s  , ˆ[ ( ) ( )b s b s  iff ˆ( ( )) ( ( ))]b g s b g s  , 

and ˆ[ ( ) ( )b s b s  iff ˆ( ( )) ( ( ))]b g s b g s  . Then [ SaR b  iff Sb R a  ] and [ SbR a  iff Sa R b  ]. 

Suppose two decision problems S and S   have the same number of states of the world. 

Duality then requires that, if the ranking of outcomes from two actions a and b in decision 

problem S is the „reverse‟ of the ranking of the outcomes of two actions a  and b  in the 

decision problem S  , then the ranking of a and b must be the „reverse‟ of the ranking of a  and 

b . 

 In the following two decision problems S and S   such that 1 1( ),s g s  2 2( ),s g s   

3 3( ),s g s   , ,p q r X  and p q r , duality implies [ SaR b  iff Sb R a  ] and [ SbR a  iff Sa R b  ]        

                                                S                                                            S   

     1s       2s      2s                                         1s       2s      3s  

                                a     p       q       r                                   a     r        q       p 

                                b     r        r       p                                  b     p        p       r 

                                                        

Axiom 3.4. Weak Dominance: For all decision problems S Z , and for all , ( )a b A S , if 

( ) ( )a s b s  for all s S , then SaR b . 
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 Thus, if, for every state of the world, an action yields an outcome that is better than the 

outcome from another action, then the former action is at least as good as the later one. For 

example, in the following decision problem S, where , ( )a b A S , p q r X , weak 

dominance requires 
SaR b . 

         S 

        
1s        

2s  

a     p         q 

b     r          r 

 

4. The Main Result 

Proposition 4.1. Suppose, Assumptions 2.1 through 2.3 hold. Then the agent follows a median-

based rule if she satisfies neutrality, duality, and weak dominance. 

 

We proceed to the proof of Proposition 4.1 via a series of lemmas. Throughout the proof, 

it is to be understood that Assumptions 2.1, 2.2, and 2.3 hold, and the agent satisfies neutrality, 

duality, and weak dominance.  

Let 1{ ,..., }mS s s Z   be any decision problem such that , , ( )a b a A S , 

( ) ( )med a med b , there exists a one-to-one function h from ( )med a to ( )med b  such that for 

all ( ),x med a  ( )x h x , a a , and 1( ) ... ( )ma s a s .                                                             (1) 

We assume that (1) holds for the rest of our discussion. 

 

Lemma 4.2: For all S Z  such that 2S  , and for all , ( )a b A S  such that ( )b s v  for all 

s S , and { } ( )v med a , we must have SaI b . 

Proof: If 1S  , then, SaI b  follows immediately by reflexivity of SR . If 2S  , then, SaI b  

follows from reflexivity of SR  and neutrality.  

 

Lemma 4.3: Let 1 2 1{ ,..., }mS s s Z   be such that m is a positive integer. Let , ( )a b A S  be 

such that 1 2 2 1( ) ( ) ... ( )ma s a s a s  , and 1( ) ( )mb s a s   for all s S . Then, we must have 

SaI b . 
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Proof: Consider S and , ( )a b A S  as specified in the statement of lemma 4.3. For the sake of 

convenience, we represent , , , ( )a b a b A S   as follows: 

S 

         
1s               

2s    ………………………..   
2ms           

2 1ms 
 

                             a  
1( )a s         

2( )a s  ……………………… 
2( )ma s       

2 1( )ma s 
 

                             b    
1( )b s          

2( )b s ………………………..
2( )mb s       

2 1( )mb s 
 

                             a  2 1( )ma s 
   

2( )ma s ………………………
2( )a s          

1( )a s  

                             b    2 1( )mb s     2( )mb s ………………………..
2( )b s         1( )b s  

Recall that 
1( ) ( )mb s a s 

 for all s S  and 
1 2 2 1( ) ( ) ... ( )ma s a s a s 

. Hence, by neutrality, 

SaI a  and SbI b . By transitivity of SR , we then have - 

( SaR b  iff  Sa R b  ) and ( SbR a  iff Sb R a  )                                                                                     (2) 

By duality, we have - 

( SaR b  iff  Sb R a  ) and ( SbR a  iff Sa R b  )                                                                                     (3)                                                                             

By connectedness of SR , either SaP b , or SbP a , or SaI b . If SaP b , then, by (2) and (3), Sa P b   

and Sb P a  , which is a contradiction. Similarly SbP a  yields a contradiction. Thus we must have 

SaI b .  

 

Lemma 4.4: Let 1 2{ ,..., }mS s s Z   be such that m is a positive integer. Let , ( )a b A S  be such 

that 1 2 1 2 2( ) ( ) ... ( ) ( ) ( ) ... ( )m m m ma s a s a s a s a s a s  , [ ( ) ( )i mb s a s  for 1,...,i m ], 

and [ 1( ) ( )i mb s a s   for 1,...,2i m m  ]. Then we must have SaI b . 

Proof: The proof follows exactly similar logic as described in the proof of Lemma 4.3. 

 

Lemma 4.5. Let ,x y X  be such that x y and let   be such that ( , ) 0d x y   . Then, for 

every positive integers m, there exist 1 2, ,..., ] , [mw w w x y  such that 1 2 ... mx w w w y , 

and 1 2( , ) ( , ) ... ( , )md w y d w y d w y     . 

Proof: We first show that, 
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for all ,q r X  such that q r , and all   such that ( , ) 0d q r   , there exists ] , [w q r  

such that ( , ) 0d w r   , and q w r .                                                                                     (4) 

Let ,q r X  be such that, q r . Let   be such that, ( , ) 0d q r   . 

Since q r , by convexity of , w r  for all ] , [w q r .                                                 (5) 

Noting q r , by the continuity of , there exists ] , [w q r  such that ( , ) 0d w r    and 

q w .                                                                                                                                            (6) 

(4) follows from (5) and (6). 

Now, let ,x y X  such that x y , let   be such that ( , ) 0d x y   , and let m be any positive 

integer. 

 Since ,x y X , x y , and ( , ) 0d x y   , by (4), there exists 
1 ] , [w x y , such that 

1( , ) 0d w y   , and 1x w y .                                                                                                 (7) 

 Since 1,w y X , 1w y , and 1( , ) 0d w y   , for some positive   , by (4) again, there 

exists 
2 1] , [w w y  such that, 

2( , ) 0d w y   , and 
1 2w w y .                                                (8) 

Thus, we have 1 2, ] , [w w x y  such that, 1 2( , ) ( , ) ( , )d x y d w y d w y     , and 

1 2x w w y . Continuing in this fashion, for all ,x y X  such that, x y , all   such that 

( , ) 0d x y   , and every positive integers m, there exist 1 2, ,..., ] , [mw w w x y  such that 

1 2 ... mx w w w y , and 1 2( , ) ( , ) ... ( , )md w y d w y d w y     . 

 Lemma 4.3 showed that, in a decision problem with an odd number of states of the world, 

if two actions a and b are such that b always yields outcomes that are indifferent to the median 

outcome of a and if a does not yield indifferent outcomes for any two distinct states of the world, 

then a and b must be indifferent.  Our next lemma, Lemma 4.6, extends lemma 4.3 by relaxing 

the requirement that a does not yield indifferent outcomes for any two distinct states of the 

world.  Lemma 4.7 extends Lemma 4.4 in an analogous fashion. 

  

Lemma 4.6: Let 1 2 1{ ,..., }mS s s Z   be such that m ( 1m  ) is a positive integer. Let 

, ( )a b A S  be such that, 1 2 2 1( ) ( ) ... ( )ma s a s a s  , and 1( ) ( )mb s a s   for all s S . Then, we 

must have SaI b . 
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Proof: Consider 
1 2 1{ ,..., }mS s s Z  . Let , ( )a b A S  be such that 

1 2 2 1( ) ( ) ... ( )ma s a s a s 
, 

and 
1( ) ( )mb s a s 

 for all s S . Now, partition S into 
1 2, ,..., tS S S such that, [for all {1,..., }j t , 

and all , js s S , ( ) ( )a s a s ], and [for all {1,..., 1}j t  , all 
js S , and all 

1js S 
 , 

( ) ( )a s a s ]
9
. For all {1,..., }j t , let ( )m j  be the cardinality of 

jS . 

  By our assumption, there exist 
0 ,y y X  such that 

0y y . Then, by Lemma 4.5, 

there exists 
1 0,..., ] , [ty y y y  such that, 

0 1 2 ... ty y y y y  and 

0 1 2( , ) ( , ) ( , ) ... ( , )td y y d y y d y y d y y    .  Let   be a positive number such that 

0 1 1 2 1min( ( , ), ( , ),..., ( , ))t td y y d y y d y y  . Consider ( / )k , where k ( 2k  ) is any positive 

integer. Then, for every {1,..., }j t , by Lemma 4.5, there exist 
,1 ,2 , ( ), ,...,j j j m jw w w  such that, 

1 ,1 ,2 , ( )...j j j j m j jy w w w y , and ,1 ,2 , ( )( / ) ( , ) ( , ) ... ( , )j j j j j m j jk d w y d w y d w y     .  

Let /ka  be an action such that for every {1,..., }j t , and {1,2,..., ( )}n m j , 

(1) (2) ... ( 1) ,( )m m m j n j na s w      . It is clear by lemma 4.5 that for all s S , 
/ ( ) ( )ka s a s , and 

/( / ) ( ( ), ( )) 0kk d a s a s   . 

Hence, as k  , /ka  converges to action a.                                                                  (9) 

Further, note that, for every k, kV V , where /{ } ( )k kV med a  and { } ( )V med a . Then, 

by Lemma 4.2, /k S ka I V  for every k
10

. Again, by Assumption 2.3, k SV P V . Hence, by 

transitivity of SR , /k Sa p V  for all k. 

 Finally, noting (9) and /k Sa p V , we have SaR V , by continuity of SR .                 (10) 

All that remains to be shown is that [not SaP V ], which given (10), will give us 

SaI V . Suppose SaP V . Then, by continuity of SR , there exists large enough k  , such that, 

S kaP V  . But, given /k S ka I V  for every k, we must have /k S ka I V   . Therefore, by transitivity 

of SR , it follows that, for some k  , /S kaP a  . This contradicts weak dominance, since, as we 

noted earlier, / ( ) ( )ka s a s  for all s S . This completes the proof of Lemma 4.6. 

 

                                                
9 If t = 1, then , ( )a b A S  are trivial actions such that, Lemma 4.6 follows immediately, by reflexivity of R

S
. 

10
 Note, that as k  , V

k
 converges to V . 
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Lemma 4.7: Let 
1 2{ ,..., }mS s s Z   be such that m ( 1m  ) is a positive integer. Let , ( )a b A S  

be such that, 
1 2 /2 ( /2) 1 ( /2) 2 2( ) ( ) ... ( ) ( ) ( ) ... ( )m m m ma s a s a s a s a s a s 

, [
/2( ) ( )i mb s a s  

for 1,..., / 2i m ], and [
( /2) 1( ) ( )i mb s a s 

 for ( / 2) 1,...,2i m m  ]. Then, we must have 
SaI b . 

Proof: Consider 
1 2{ ,..., }mS s s Z   such that m ( 1m  ) is a positive integer. Let , ( )a b A S  be 

such that, 
1 2 /2 ( /2) 1 ( /2) 2 2( ) ( ) ... ( ) ( ) ( ) ... ( )m m m ma s a s a s a s a s a s 

, [
/2( ) ( )i mb s a s  for 

1,..., / 2i m ], and [ ( /2) 1( ) ( )i mb s a s   for ( / 2) 1,...,2i m m  ]. Now, partition S into 

1 2, ,..., tS S S such that, [for all {1,..., }j t , and all , js s S , ( ) ( )a s a s ], and [for all 

{1,..., 1}j t  , all 
js S , and all 

1js S 
 , ( ) ( )a s a s ]. The rest of the proof is similar to the 

proof of Lemma 4.6. 

 

Proof of Proposition 4.1: Finally, given (1) and Lemma 3.2, we have SaI a . Thus, by transitivity 

of SR , and following Lemmas 4.2, 4.3, 4.6, and 4.7, we must have SaI b .  

 

5. An Example 

We have shown that, given Assumptions 2.1, 2.2, and 2.3, if the agent satisfies neutrality, 

duality, and weak dominance, she must follow a median-based rule. We now give an example 

where Assumptions 2.1, 2.2, and 2.3 as well as neutrality, duality, and weak dominance are all 

satisfied. 

Let X be any non-empty and convex subset of n  and let  be any convex and 

continuous ordering over X, such that, for some ,x y X , x y . Thus, by our specification, 

Assumptions 2.1, 2.2, and 2.3 (i) are satisfied. Let U be a real valued and continuous utility 

function representing . Clearly, such a utility function U exists
11

. For every decision problem 

S Z , let SR  defined over ( )A S  be such that, for all , ( )a b A S , SaR b  iff 

( ) ( )

( ) ( )
x med a y med b

U x U y
 

  . Clearly, for every S Z , SR  is continuous and for all ,x y X , 

Sx R y  iff x y , and hence Assumption 2.3 (ii) is satisfied. Further, for all S Z , and for all 

                                                
11 See Debreu (1959). 
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, ( )a b A S , if ( ) ( )med a med b  and there exists a one-to-one function h from med(a) to 

med(b) such that for all ( ),x med a  ( )x h x , then 
( ) ( )

( ) ( )
x med a y med b

U x U y
 

   and hence 
SaI b .  

6. Concluding Remarks 

 Most of the papers, which discuss non-probabilistic uncertainty of the Arrow-Hurwicz 

type, focus on what may be called positional decision rules. The positional rules characterized in 

this literature mainly consider the best or the worst outcomes. Lexicographic variants of such 

rules have also been discussed. It is, however, surprising that none of the papers in this area have 

dealt with the case when the agent makes decision on the basis of the median outcome(s) of her 

actions. In this paper, we have sought to fill this gap by providing an axiomatic characterization 

of median-based rules.  
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