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Abstract 

The purpose of this paper is to construct a dynamic stochastic production frontier 

incorporating the sluggish adjustment of inputs, to measure the speed of adjustment 

of output, and to compare the technical efficiency estimates from this dynamic 

model to those from a static model. By assuming instantaneous adjustment of all 

inputs, a static model may underestimate technical efficiency of a production unit in 

the short-run. However, in this paper I show that under the assumption of similar 

adjustment speed for all inputs, a linear partial adjustment scheme for output 

characterizes the dynamic production frontier. The dynamic frontier with time-

invariant technical efficiency is estimated using the system GMM (generalized 

method of moments) estimator. Applying the model and estimation method on a 

panel dataset spanning nine years of data on private manufacturing establishments 

in Egypt, I find that 1) the speed of adjustment of output is significantly lower than 

unity, 2) the static model underestimates technical efficiency by 4.5 percentage 

points on average, and 3) the ranking of production units based on their technical 

efficiency measures changes when the lagged adjustment process of inputs is taken 

into account. 
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1. Introduction 

Production frontier estimation and the measurement of technical efficiency 

of production systems have been important areas of research for more than half a 

century. Following the pioneering work of Aigner, Lovell, and Schmidt (1977) 

and Meeusen and Broeck (1977), who independently proposed the estimation of 

stochastic production frontier, this field has further grown with important 

contributions by many researchers (see Schmidt and Lovell (1979), Jondrow et al. 

(1982)). These studies have posited two main causes for the deviation of actual 

output from the maximum possible output (potential output), given the inputs. A 

part of this deviation is attributed to the symmetric random shocks to a production 

system that are not under the control of a producer (e.g., uncertainty about the 

weather, or input market conditions). The other reason for the failure to produce 

the potential output, given a set of inputs, is the presence of technical inefficiency 

caused by factors such as managerial error and coordination failures. Accordingly, 

a firm is said to be technically inefficient if it produces below the production 

frontier, and the corresponding technical inefficiency is measured by the deviation 

of the actual output from the frontier, after accounting for the random shocks to 

the system.  

The literature has expanded to include both time-invariant and time-

varying technical efficiency measures (see Cornwell, Schimdt and Sickles (1990); 

Kumbhakar (1990); Kumbhakar (1991); Battese and Coelli (1992); Lee and 

Schmidt (1993); Ahn, Lee, and Schimdt (1994); and Kumbhakar, Heshmati, and 

Hjalmarsson (1997)), as well as cross-sectional and panel data models of 

stochastic frontier estimation (see Schmidt and Sickles (1984)). A general 

discussion on the measurement of productive efficiency and the related literature 
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can be found in Lovell (1996), Kumbhakar and Lovell (2000), and Coelli et al. 

(2005).  

Most of the existing studies on stochastic frontiers and technical efficiency 

are based on the assumption that when an input is introduced into the production 

system, it immediately contributes to production at its maximum possible level. 

However, once introduced to a production system, an input may require some 

time for adjustment within the system. Possible causes include quasi-fixity of 

inputs, time needed to learn, and/or different contractual bindings. Given the time 

for adjustment, it may not be possible for a firm to catch up with the production 

frontier instantaneously following the introduction of a new input, even in the 

absence of any other source of inefficiency. A vast literature on the source, 

structure, size and specification of adjustment costs (Lucas (1967a, 1967b); 

Treadway (1971); and Hamermesh and Pfann (1996)) has established the 

importance of the adjustment process in the theory of production.  

Consequently, behind the productivity change of a firm, a dynamic process 

is likely to be at work in terms of input adjustment. This dynamic adjustment 

process is a natural phenomenon of any production system and thus the shortfall 

in the output that results does not really represent inefficiency of the production 

unit. The adjustment process of inputs is rather an inherent characteristic of any 

production system that cannot completely be controlled by the producers. Hence, 

a static production frontier model that ignores the effect of input adjustment on 

output may misspecify the process of output generation. Consequently, technical 

efficiency measures from such a misspecified model are likely to be biased.   

Among studies that have considered sluggish adjustment of inputs, Ahn, 

Good, and Sickles (1998, 2000) and Hultberg, Nadiri, and Sickles (1999) assume 

that technical innovations introduced at the beginning of a period are only 
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partially adopted.  Thus, according to their assumption, the actual productivity in 

any period depends on the actual productivity in the previous period as well as on 

the productivity level which could be achieved if the technology innovations were 

instantaneously adopted. The speed of adjustment plays a crucial role in 

determining how quickly productivity gains are realized and in turn, implies that 

the technical efficiencies of production units are autoregressive. Thus, the current 

output depends on the current inputs and on both last period‟s output and inputs. 

Other studies that incorporate dynamic adjustment include Ayed-Mouelhi and 

Goaied (2003), Kumbhakar, Hesmati, and Hjalmarsson (2002), and Asche, 

Kumbhakar, and Tveteras (2008). 

Sluggish adjustment of inputs not only affects the adoption of 

technological innovations, but can also affect the whole production process by 

preventing output from reaching its maximum possible level. Further, ranking of 

the production units is also likely to be altered in the presence of lagged 

adjustment of inputs.  

The present paper is also motivated by the idea that inputs and changes in 

production plans are sluggishly adopted but takes the next logical step that due to 

the sluggish adjustment of inputs, output follows a partial adjustment scheme. 

Current output depends on the last period‟s output, and the potential output 

(output that could be achieved with instantaneous adjustment of inputs in a fully 

efficient production system). Thus, the theoretical model developed in this paper 

presents a production process from a perspective similar to but different from that 

discussed in Ahn, Good, and Sickles (1998, 2000), and Hultberg, Nadiri, and 

Sickles (1999). The model also portrays an idea similar to Hultberg, Nadiri, and 

Sickles (2004), which highlights the importance of the productivity gap in 

determining the growth rate of output.  
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The principal objective of this paper is to measure technical efficiency 

using a dynamic, stochastic production frontier incorporating lagged adjustment 

of inputs, and to compare the resulting estimates of time-invariant technical 

efficiency of production units with the estimates from a static production model 

assumimg instantaneous adjustment of all inputs. For this purpose, I use a panel 

dataset on private manufacturing establishments in Egypt from the Industrial 

Production Statistics of the Central Agency for Public Mobilization and Statistics 

(CAPMAS).  

The remainder of this paper is organized as follows. The main theoretical 

and econometric models are presented in sections 2 and 3, respectively. Section 4 

elaborates on the estimation methods. Results from the empirical analysis are 

described in section 5, and finally, section 6 presents concluding remarks. 

2. Theoretical Model 

The dynamic production model is based on the following three assumptions. 

First, the speeds of adjustment of inputs are similar for all inputs at every time 

period. In reality, different inputs may have different speeds of adjustment, which 

may vary with time as well. However, I focus on the simplified production model 

as the base model in this paper.
1
 Second, the output is generated by a partial 

adjustment scheme, i.e., the change in actual output between two periods is a 

fraction of the desired change in output in that period. Third, the speed of 

adjustment of output is determined by the speed of adjustment of inputs. 

Therefore, the speed of adjustment of inputs and output are similar in nature.  

After introduction of inputs, it is logical to have a time lag before they produce 

at their maximum possible level. Therefore, it is likely that a newer input will 

                                                

1 Extending the basic model to a more general one with input specific and time varying speeds of 

adjustment of inputs is an interesting and open area of future research. 
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contribute less to the output than the older ones. For example, a worker who was 

hired a month ago would be more familiar with the production process than a 

worker who was hired a day ago. Hence, the new worker‟s contribution would be 

less at the beginning. 

The change in actual output between any two periods is a combined result of 

contribution of new inputs, a part of which is adjusted during the period, and 

contribution of a part of the old inputs that adjusts in that period. Therefore, during 

the adjustment process of inputs, the current output is higher than previous 

period‟s output, but lower than the potential output, when the potential output is 

increasing over time. Let us refer to the change in output that is needed in any 

period to catch up with the potential output, as the „desired change‟ in output. The 

difference between the actual and the desired change in output depends on the 

speed of adjustment of inputs. 

To further analyze the production model, let us consider a general 

production function for the potential output *

ity  of firm i that uses a vector of 

inputs xit at time t. 

* ( , )it ity f x                                                                                                       (2.1) 

where i = 1,…,N denotes the production unit, t = 1,…,T represents the time 

periods, and   is the technology parameter. Let ity  be the actual output produced 

by firm i at time t, and let   (0 1)   be the speed of adjustment of inputs. 

In the initial period of production, the actual output is only   fraction of 

the potential output. From next period onwards, not only   fraction of the 

potential output in that period is produced, but also   fraction of the gap between 

the potential output and the previous period‟s output is covered. If the speed of 

adjustment is lower than unity, then the actual output will be lower than the 
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potential output. Moreover, the higher is the speed of adjustment of inputs, the 

lower is the deviation of actual output from the potential output, and the potential 

output is exactly the actual one when the speed of adjustment is unity, i.e., when 

inputs are instantaneously adjusted in the production system. Thus, in the initial 

perod, 

*

it ity y
                                                                                                            

(2.2)
 

and * *(1 )it it ity y y                                                                                         (2.3)
 

Therefore, the dynamic process of output generation can be represented by - 

* *

1 1 (1 )it it ity y y                                                                                         (2.4) 

or, *

1 1 (1 )it it ity y y    
                                                                                

(2.5)
 

or, *

1(1 )it it ity y y    
                                                                                  

(2.6) 

Using (2.6) for output produced in each period, the partial adjustment 

scheme of output as given in (2.6) can further be restated as follows- 

1 ( 2)( , ) (1 )( ( , ) (1 ) )it it it i ty f x f x y            

or, 2

1 2( , ) (1 ) ( , ) (1 ) ( , ) ...it it it ity f x f x f x                              (2.7) 

The partial adjustment scheme for actual output at time t demonstrates that 

the current output depends on the current and past inputs. With a speed of 

adjustment that is less than unity, the most recent past of input usage receives the 

greatest weight in determining the current output, and influence of past inputs will 

fade out uniformly with the passage of time. Therefore, the distant past receives 

arbitrarily small weight. This refers to the fact that the unadjusted part of an input 

continues to adjust and contribute to production. With the passage of time, an 

input is almost fully adjusted, and hence only a very small unadjusted part 

remains to increase its contribution to the production process. 
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3. Econometric Model 

The potential output is a hypothetical characterization of the maximum 

possible output and is not observed in reality. The actual output is generally above 

or below the potential output because a production system is exposed to random 

shocks that may positively or negatively affect production plans. Moreover, a 

production unit is likely to suffer from technical inefficiency that may lower the 

actual output. The stochastic version of (2.6), which is more realistic, considers a 

composite error term that accounts for the random shocks to a production unit, 

and the technical inefficiency of that unit. I obtain the stochastic versions of the 

dynamic output generation process (2.6) by considering a composite error term     

( it ) consisting of symmetric random shocks itv  to firm i at time t, and the 

producer specific effects, iu , that determine the technical inefficiency of each 

production unit and are constant over time
2
.  

Therefore, following (2.6), the production model is - 

*

( 1)(1 )it i t it ity y y     
                                                                              

(3.1) 

where i = 1,…,N, and t = 1,…,T, ,it it iv u    and 0iu   captures the producer 

specific, time-invariant, non-negative inefficiency effects for production unit i.  In 

a more general set up where the technical efficiency varies with time ( itu ), the 

difference between the potential output and the short run actual output captures 

the inefficiency of the production model. Assuming that the effects of random 

shocks are similar on 
*

ity  and ity , 

                                                

2 The model can further be generalized to estimate time-varying technical efficiency of each 

production unit. However, discussion on the more general case is beyond the scope of this paper. 
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*

* *

1

* *

1 1

* *

1 1

   (1 )

   (1 ) (1 )( )

   (1 ) (1 )( )

it it it

it it it

it it it

it it it

u y y

y y y

y y u

u y y

 

 

 



 

 

 

   

    

    

 

Thus, when the output is generated by a partial adjustment scheme, the technical 

inefficiency in any period depends on the last period‟s inefficiency, the speed of 

adjustment of inputs, and the change in potential output. The change in potential 

output may also be referred to as the “potential output gap”. If the technical 

inefficiency is constant over time, as assumed in this paper, then it depends on the 

speed of adjustment and the “potential output gap”. This result is not surprising in 

view of the fact that Hultberg, Nadiri, and Sickles (2004) discuss the process of 

capital evolution where they show that the growth rate of output in any period 

depends on the speed of technology adoption and the productivity gap in the last 

period.  

Let us consider a Cobb-Douglas function for the production of potential 

output
3
- 

*

0

1 2

ln ln
M T

it m mit t t

m t

y x D  
 

    ,                                                                    (3.2)     

where i = 1,…,N denotes the production unit, t = 1,…,T represents the time 

periods, m = 1,…,M represents the inputs used in production, m  is the elasticity 

of the mth input, and 0  is the intercept of the potential production frontier. I 

introduce the time dummy variables Dt in the production model to incorporate the 

pure technological change as proposed by Baltagi and Griffin (1988). Thus, no 

specific structure is imposed on the behavior of the technological change. t  

captures the effect of technological changes on the potential output. Then, the 

                                                

3 The analysis is valid for more general production functions. 
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dynamic stochastic production frontier that incorporates the sluggish adjustments 

of inputs
4
 and time-invariant technical inefficiency, is given by- 

( 1) 0

1 2

ln (1 ) ln ( ln )
M T

it i t m mit t t it

m t

y y x D     

 

                                      (3.3) 

where i = 1,…,N, t = 1,…,T, m = 1,…,M. In (3.3), ,it it iv u    and 0iu   

captures the producer specific, time-invariant, non-negative inefficiency effects 

for production unit i with ( )iE u  , and variance 2

u . 
itv  are the random shocks 

to the production unit i at time t, with zero mean and variance 2

v . The time 

dummies, tD , have value equals unity for year t and zero otherwise. I further 

assume that *

0 0    , *

i iu u    such that * 2(0, )i uu iid   and the stochastic 

production model can be written as 

* *

( 1) 0

1 2

ln (1 ) ln ( ln )
M T

it i t m mit t t it i

m t

y y x D v u    

 

                                (3.4) 

The standard structure of the error component as discussed in Blundell and Bond 

(1998) is also maintained as follows- 

1. *

iu  is uncorrelated with itv , i.e. *( ) 0it iE v u   for all i =1,…,N, and              

t =1,…,T. 

2. itv  is serially uncorrelated, i.e. ( ) 0it isE v v   for all i =1,…,N, and t s . 

3. 1( ) 0i itE y v   for  i =1,…,N, and t =2,…,T. 

                                                

4 Equation (3.3) can also be expressed in the form of (2.6) which demonstrates the fact that a 

fraction,  , of an input ( )mi t kx   that is introduced by firm i in the period t – k (0 < k < t), 

contributes to the output in that period. In period  t – k + 1,  fraction of the remaining                

(1-  ) ( )mi t kx   contributes to the output, and again   fraction of the unadjusted 
2

(1 )
( )

x
mi t k




 

contributes to output in t – k + 2. Following this process,  fraction of (1 )
( )

k
x
mi t k




 

contributes to output at time t. Therefore, the marginal effects of current inputs are higher than 

those for the inputs from previous periods. 
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In the dynamic model (3.3), the parameter  , which is invariant over time, 

producer, and inputs, reflects the fraction of the desired change in output that is 

realized in any period. Following Schmidt and Sickles (1984), the most efficient 

production unit in the sample is assumed to be 100% efficient, and technical 

efficiency of other units are measured relative to the best-practice frontier - 

* *ˆ ˆexp{ (max( ) ( ))}i i i
i

TE u u                                                                            (3.5) 

where a consistent estimator of *ˆ
iu is given by - 

* *

( 1) 0

2 1 2

1 ˆ ˆ ˆ ˆ ˆ ˆˆ ln (1 ) ln ln
1

T M T

i it i t m mit t t

t m t

u y y x D
T

     

  

  
      

  
                 (3.6) 

The conventional static specification of the stochastic production frontier 

assumes instantaneous adjustment of inputs while catching up with the potential 

output and hence 1   for the static version of (3.3). Formally, the static 

production frontier is given by -  

0

1 2

ln ln
M T

it m mit t t i it

m t

y x D    
 

                                                              (3.7) 

Here, i  represents the non-negative producer specific inefficiency effects. 

Therefore, the technical efficiency is measured from (3.7) as  

* *ˆ ˆexp{ (max( ) ( ))}i i i
i

TE                                                                              (3.8) 

where * ( )i i iE    , *

0 0 ( )iE    , 
* 2(0, )i iid   , and 2(0, )it iid   . If 

the producer specific effects are correlated with the input levels, then (3.7) is 

estimated as a fixed effects model and the producer specific effects are 

consistently estimated as 

* *

0

1 2

1 ˆ ˆ ˆˆ ln ln
M T

i it m mit t t

t m t

y x D
T

   
 

  
    

 
                                                   (3.9) 
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Alternatively, if the producer specific effects are random, then (3.7) is estimated 

as a random effects model
5
 and the estimates of producer specific effects are given 

by- 

2

* *

02 2
1 2

ˆ ˆ ˆˆ ln ln
M T

i it m mit t t

t m t

y x D
T



 


   

   

  
    

  
                                      (3.10) 

The static model as represented in (3.7) omits the lagged adjustment 

phenomenon of inputs and is likely to provide biased estimates of technical 

efficiencies of the production units, particularly in the short-run, if the true 

process of output generation is dynamic. Also, the ranking of firms based on their 

technical efficiency estimates will be biased if the ranking is obtained from a 

similarly misspecified static model. Therefore, in the presence of sluggish 

adjustment of inputs, a static model cannot identify the true process of output 

generation or the true technical efficiency of a production system. A dynamic 

model is more suitable for this purpose. 

4. Estimation Methods 

The dynamic model of production as given in (3.3) includes the one period 

lagged dependent variable as a regressor along with other exogenous variables. 

Both ity and 1ity   are functions of iu , leading to a correlation between one of the 

regressors and the error term. Thus the OLS estimator is biased and inconsistent 

even if itv  are not serially correlated. Arellano and Bond (1991) suggested a 

generalized method of moments (GMM) estimator for the dynamic panel data 

model that consistently estimates a dynamic panel data model. The basic principle 

of such estimation is to use a first difference transformation to eliminate the 

                                                

5 A detailed discussion on the model specification and related prediction procedures can be found 

in Baltagi (1995). 
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individual specific effects and then to consider the dependent variable with two 

period lags or more lags as valid instruments. The GMM estimator is more 

efficient than the Anderson-Hsiao (1982) instrumental variable estimator. Ahn 

and Schimdt (1995) derived additional non-linear moment restrictions and the 

estimation method is further generalized and extended by Arellano and Bover 

(1995) and Blundell and Bond (1998).  

I use the system GMM estimator proposed by Blundell and Bond (1998)
6
 

which uses a set of moment conditions relating to the first differenced regression 

equation, and another set of moment conditions for the regression equation in 

levels. A dynamic panel data model in levels is presented by 

1it it it ity y x u    , i = 1,…, N; t = 1,…, T.                                                  (4.1) 

where it i itu v  . It is further assumed that 

( ) 0iE   , ( ) 0itE v  , ( ) 0it iE v    for all i=1,…, N and t =2,…, T.                (4.2) 

( ) 0it isE v v   for all i=1,…, N and t s                                                              (4.3) 

1( ) 0i itE y v   for all i=1,…, N and t =2,…, T.                                                    (4.4) 

The first difference of (4.1) does not contain the individual specific effect, and is 

given by - 

1it it it ity y x v                                                                                        (4.5) 

where 1it it ity y y     for i = 1,…, N and t = 2,…, T.  

According to Bludell and Bond (1998) and Blundell, Bond, and 

Windmeijer (2000), the first differences of the two or more period lagged 

dependant variable are valid instruments for the equation in levels, and two or 

more period lagged dependent variables in levels are relevant instruments for the 

                                                

6 A semiparametric estimation method for dynamic panel data  models is discussed by Park, 

Sickles, and Simar. However, I limit the analysis of this paper within the parametric framework. 
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equation in first differences. In addition, some or all of the other explanatory 

variables (
mitx ) are exogenous or predetermined, generating more instrumental 

variables for estimation. For a production process, inputs are likely to be 

correlated with the producer specific effects and the shocks to the production 

system in the previous periods. Therefore, I use the following moment conditions 

to identify the set of valid instruments for the equations in first differences 

( ) 0it s itE y u    for t = 3,…, T and 2 1s t                                                   (4.6) 

( ) 0it s itE x u    for t = 3,…, T and 1 1s t                                                    (4.7) 

Further, to identify the set of instruments for the equations in levels, I use the 

moment conditions  

1( ) 0it itE u y    for t = 3,…, T                                                                            (4.8) 

and 1( ) 0it itE u x    for t = 3,…, T                                                                     (4.9) 

This GMM estimation is consistent for large N and finite T, and is more efficient 

that the estimator proposed by Arellano and Bond (1991). 

Finally, to estimate (3.3), I use 2 1ln , ln ,it mity x   and 2ln mitx  , 1,... ,m M  

as instruments for the equation in first differences and 1 2(ln ln ),it ity y   

3 4(ln ln ),mit mitx x   1,.., ,m M  as instruments for the equation in levels
7
. I use 

the one-step GMM estimator for which the estimates are consistent
8
. A crucial 

assumption of the validity of GMM estimates is that the instruments are 

                                                

7 Though it is possible to have more instrumental variables for our model, considering even deeper 

lags of the instrumental variables that I am using, I do not use all available instruments, as too 

many instruments may over fit the endogenous variable and weaken the power of the Hansen test 

to detect over identification. Given the sample with 28 groups, I choose to use 26 instruments from 

the recent lags, for which the power of the Sargan test is the largest. 

 
8 While the coefficient estimates of two-step GMM estimator are asymptotically more efficient, I 
do not find any difference in the estimates of coefficients from the one-step and two-step 

estimation procedure. Since my purpose is to estimate technical efficiency, I use the one-step 

estimation results only. 
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exogenous. I verify joint validity of the instruments with the Sargan test. 

Furthermore, consistency of the GMM estimator relies upon the fact that the 

idiosyncratic errors are serially uncorrelated. If the differenced error term is 

second-order serially correlated, then 
2ln ity 
 is not a valid instrument for the first 

differenced equation
9
. The Arellano and Bond (1991) test is applied to the 

residuals in differences to test for second-order autocorrelation. I also employ 

small-sample corrections to the covariance matrix estimate, and the standard 

errors, which are robust to heteroskedasticity and arbitrary pattern of 

autocorrelation within production units. 

The static model with time-invariant technical efficiency as given in 

equation (3.7) is estimated as a random effects model
10

 and accordingly the 

technical efficiency is estimated using (3.10). 

 

5. Empirical Analysis 

5.1. Data 

 To estimate the theoretical model, I use the panel data for nine years 

(1987/88 – 1995/96) on private sector manufacturing establishments in Egypt, 

obtained from the Industrial Production Statistics of the Central Agency for Public 

Mobilization and Statistics (CAPMAS). The data is in three-digit ISIC 

(International Standard Industrial Classification) level and for 28 sectors with the 

total number of observation being 252. The broader categories of output include 

                                                

9 By construction, the differenced error term is expected to be first order serially correlated and the 

evidence of the correlation is uninformative. 

 
10 Hausman‟s specification test (1978) for equation (3.4) using the sample suggests random effects 

specification. 
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food, tobacco, wood, paper, chemicals, non-metallic products, metallic product, 

engineering products, and other manufacturing products. Table 1 in the appendix 

presents the description of each sector.  

This data set is directly taken from a study by Getachew and Sickles 

(2007) and details about the data can be found in their paper. They use the 

superlative index number approach to aggregate the data to the three-digit level, 

such that the establishments in each sector can be viewed as homogeneous in 

terms of production technology. To get a single aggregate measure of output from 

heterogeneous and multi-product firms, they consider total revenue from these 

firms for goods sold, industrial services provided to others, and so on. Finally, 

they obtain the quantity indices for output and inputs by deflating the total value 

of output and inputs by the relevant price indices. 

Capital, labor, energy, and material are the inputs for the manufacturing 

sectors‟ output. As found by Getachew and Sickles (2007), the quantity indices 

for output and inputs grew over the period under consideration. The summary 

statistics of the indices are presented in Table 2 in the appendix. Getachew and 

Sickles (2007) use this data set to analyze relative price efficiency of the Egyptian 

manufacturing sectors, but they do not measure technical efficiency of these 

sectors, particularly, in a dynamic framework.  

The private sector has always been important for the economic growth and 

development in Egypt. However, the Egyptian government adopted sweeping 

privatization policies in the early 1990 that were followed by increased growth of 

the private manufacturing sectors, and as a result, Egypt‟s manufacturing sector 

became the highest contributor to the value-added at the national level. Several 

sub-sectors of the private manufacturing sector (like food and textile) generated 

good employment opportunities for unskilled and semi-skilled labors, particularly 
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in a labor abundant country like Egypt. Moreover, during the 1990s, the activities 

that contributed higher value-added at the national level received higher priority 

and as a result the input ratios were changing within different sectors (Nathan 

Associates Inc., 2000). I expect the production process and technical efficiency of 

the Egyptian private manufacturing sectors to be affected by sluggish adjustment 

to changing input ratios and the employment of new workers. 

5.2. Results  

The estimation results for equation (3.3) with four inputs using the 

Blundell and Bond (1998) system GMM
11

 estimator and are given in column (1) 

of Table 3. From the estimation results I find that the one period lagged output has 

a significant positive effect on the current output, where output is measured in 

logarithm. Using the estimated value of ˆ1 0.16  , the actual change in output 

of a sector in any period is 84% of the change in output that is needed to catch up 

with the potential output in that period. Further, estimate of ( ˆ1  ) is statistically 

significant at the 1% level indicating that the speed of adjustment is significantly 

different from unity.  Assuming similar speeds of adjustment for inputs across 

sectors, this result supports the partial adjustment scheme for output and suggests 

that the static model is a misspecified one for this sample.  

As the purpose of this paper is to identify the true technical efficiency of 

the sectors, the significance levels of the input elasticities are not of much interest. 

                                                

11 I use Stata command xtabond2 developed by Roodman (2006). The standard errors of the 
estimates are robust to heteroskedasticity and arbitrary patterns of autocorrelation within sectors, 

and I also incorporate the small-sample corrections to the covariance matrix estimate. 

 

 



18 

However, I find that labor and material have significant input elasticities in the 

dynamic production model
12

. 

Consistency of the system GMM estimator relies upon the fact that the 

idiosyncratic errors are not serially correlated. The AR(2) test statistic (p-value = 

0.966), as reported in column (1) of Table 3 corresponds to the test of the null 

hypothesis that the residuals in the first-differenced regression exhibit no second 

order serial correlation. Following the test procedure proposed by Arellano and 

Bond (1991), a negative first order serial correlation in the equation in first 

differences is expected and the AR(1) test statistic supports that. Thus, the random 

shocks to the sectors are not serially correlated and the estimation results are 

consistent.   

The Sargan test statistic for testing exogeneity of the instrumental 

variables, as reported in column (1) of Table 3, supports validity of the 

instruments (p-value = 0.688). The GMM system estimation uses internal 

instruments for estimation, and thus, there can be several valid instrumental 

variables. I chose the set of instrumental variables for which the Sargan test of 

exogeneity was the most powerful. 

 To generate the comparative estimates of technical efficiency, I 

estimate (3.7), the static stochastic frontier, as a random effects model, following 

the Hausman‟s specification test (1978) results. The estimation results presented 

in column (2) of Table 3 show that the input elasticities are not materially 

different from those estimated using the dynamic model
13

. The estimation results, 

                                                

12 Though capital and energy do not have significant input elasticities, I do not drop them from our 

production model, because they are valid inputs, and have positive elasticities as expected.  

 
13 The estimation results from a fixed effects model are similar to the random effects model. The 

input elasticities of capital, labor, energy, and material are 0.15, 0.92, 0.014, and 0.76 respectively 

when (3.6) is estimated as a fixed effects model.The elasticity of material is significant at the 1% 

level among other inputs. 
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as presented in Table 3, also show an interesting phenomenon regarding the input 

elasticities. The coefficients of the input variables, as estimated from the dynamic 

model represent the short-run input elasticities. The long-run input elasticities are 

obtained by dividing the estimated coefficients by ˆ 0.84   for the data used in 

this paper, and are presented in column (3) of Table 3. Thus, the long-run input 

elasticities are higher than the short-run elasticities. This is due to the fact that, in 

the presence of sluggish adjustment of inputs in the short-run, the inputs cannot 

contribute at their full capacity, and hence, their contribution to the change in 

output in the short-run is less than what the inputs can contribute in the long-run. 

However, I cannot really compare the estimates from the dynamic and the static 

model as the short-run and long-run elasticities because, for this sample, the static 

model is misspecified and yields biased estimates of parameters. 

The average of the time-invariant technical efficiency estimates from the 

dynamic (3.3) and the static (3.7) models are shown in column (1) and (2) of 

Table 4. I find that the technical efficiency estimate from the dynamic model is 

74.5% for a sector on average, whereas the estimate from the static model is 

70.02% on average. Thus, I find that the static model underestimates the technical 

efficiency of sectors by 4.49 percentage points on average
14

, and this 

underestimation can be as high as 17.16 percentage points. Nine sectors or almost 

one-third of the total, have differentials as large as 10 percentage points. 

The estimates of technical efficiency from the dynamic and the static 

specification of production model clearly suggest that the static model generates 

biased estimates of technical efficiency in the presence of lagged adjustment of 

inputs. Due to the fact that only relative efficiency has been measured using the 

                                                                                                                                 

 
14 Average TE from dynamic model – Average TE from static model = 74.51 – 70.02 = 4.49 

percentage points. 
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stochastic frontier approach, the technical efficiency estimates from the static 

model can be either higher or lower than the estimates from the dynamic model 

for a particular sector. It is important to note that in nineteen of the twenty eight 

sectors technical efficiency is underestimated by the static model, and in nine of 

these by as much as 10 percentage points. 

Wilcoxon signed-rank test to check whether the median difference of the 

technical efficiency scores from the dynamic and the static model is different from 

zero also shows that the technical efficiency estimates from the dynamic and the 

static model are significantly different. More specifically, p-value while testing 

the null hypothesis that difference between estimated efficiency scores from the 

dynamic and the static model has median zero is 0.0091. Consequently, I reject 

the null hypothesis.
15

 

The misspecification of the static model also causes the ranking of sectors 

according to the dynamic and static model specifications to differ. The ranking of 

sectors based on their technical efficiency estimates are given in column (3) and 

(4) of Table 4.  The two model specifications, though agreeing on the best sector 

over all, generate different internal ranking for the other sectors.  The Spearman‟s 

correlation coefficient for these ranks from the dynamic and static model is found 

to be 0.59. Though the ranks of sectors as generated from the static and the 

dynamic model may not be independent, clearly they are different. Since several 

organizational and production decisions are taken based on the relative efficiency 

                                                

15 The Wilcoxon signed-rank test statistic is given by 
1 1 1

( 1) ( 1)(2 1)
4 2 24

n n T n n nz
   

       
    

  

where n is the number of non-zero differenced terms, P is the positive signed ranks, and 

1
( 1)

2
T n n P   . 
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of the sectors, a true ranking as generated by the dynamic model is more 

reliable
16

. 

6. Conclusion 

This paper outlines a theory for a dynamic stochastic production frontier 

that describes a process of lagged output response to sluggish adjustment of 

inputs, and accordingly measures the time-invariant technical efficiency of 

production units using a dynamic production model. Using data from the private 

manufacturing sectors in Egypt, I find that the speed of adjustment of output is 

significantly lower than unity for the period under consideration. Thus, the 

conventional static model that assumes instantaneous adjustment of inputs is 

missspecified, and provides biased estimates of technical efficiency.  

The dynamic production model provides a more realistic approach to 

estimating technical efficiency in Egyptian manufacturing, where sluggish 

adjustment of inputs is a very plausible phenomenon in light of the fact that 

during the period under consideration, Egypt underwent several changes in the 

manufacturing production. Our analysis shows 19 of 28 sectors were relatively 

more efficient than static model estimates would reveal. 

Estimation of technical efficiency and ranking of production units 

according to their efficiency levels are important aspects of productivity analysis, 

forming the basis for critical decisions about their production plans and informing 

policy makers about the relative performances of the production units. For 

example technical efficiency estimates can identify whether publicly owned or 

                                                

16
 The estimated coefficients of the time dummies, both from the static and the dynamic model, 

were negative through 1991/92, and positive thereafter. the effects of technological changes on 
output were negative. However, with a significant effect in 1990/91 only, the pattern of the 

coefficients support the positive impacts on the Egyptian industrial output of the introduction of 

the new economic reform programs in early 1990s. 
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privately owned companies are more efficient, or whether there is any change in 

efficiency after a policy intervention. Therefore, better estimates of technical 

efficiency will result better decisions, and on average, better outcomes.  
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Appendix: Tables and Figures 

Table 1: Sectors and the Industrial Activities at the three-digit ISIC 

level   

Sector Number Industrial activity 

1 Food manufacturing 

2 Other food manufacturing 

3 Beverage and liquor 

4 Tobacco 

5 Manufacture of textile 

6 Manufacture of wearing apparels 

7 Manufacture of leather products 

8 Manufacture of footwear 

9 Manufacture of wood products 

10 Manufacture of furniture & fixture 

11 Manufacture of paper products 

12 Printing and publishing industries 

13 Manufacture of industrial chemicals 

14 Manufacture of other chemical products 

15 Other petroleum and coal 

16 Manufacture of rubber products 

17 Manufacture of plastic products 

18 Manufacture of pottery and china 

19 Manufacture of glass and glass products 

20 Manufacture of other non metallic products 

21 Iron and steel basic industries 

22 Non-ferrous basic industries 

23 Manufacture of fabricated metal products 

24 Manufacture of machinery except electrical 

25 Manufacture of electrical machinery 

26 Manufacture of transport equipment 

27 Manufacture of professional equipment 

28 Other manufacture industries 
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Table 2: Variable Descriptions and Summary Statistics 

 

Variable Description 
Number of 

Observation 
Mean 

Standard 

deviation 
Minimum Maximum 

Yearid 
id number for 9 years 

of data for each sector 
252 5 2.59 1 9 

Sectorid 

id numbers for the 28 

three digit 

manufacturing sectors 

252 14.5 8.09 1 28 

Output Output quantity index 252 2888.90 3333.39 67 19236 

Capital Capital quantity index 252 288.84 475.29 1 3437 

Labor Labor quantity index 252 273.34 344.06 10.50 1689.2 

Energy Energy quantity index 252 61.97 116.56 0.20 860.1 

Material Material quantity index 252 1823.44 2168.83 44.8 11853.8 

 

Source: Getachew and Sickles (2007). 
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Table 3: Estimation Results from Dynamic and Static Specifications 

(Time-Invariant Technical Efficiency Model) 

Coefficients 

Dynamic 
Specification 

Static 
Specification 

Long-run Input 
Elasticity 

(1) (2) (3) 

lag_ln(output) 

 0.16*** 

- - [0.06]  

ln(capital) 

0.02 0.014 0.02 

[0.05] [0.01]   

ln(labor) 

0.22** 0.123*** 0.26 

[0.09] [0.04]   

ln(energy) 

0.04 0.044** 0.05 

[0.05] [0.02]   

ln(material) 

0.65*** 0.833*** 0.77 

[0.09] [0.03]   

Constant 

0.33 0.803***   

[0.29] [0.15] - 

AR(1) -2.72*** - - 

AR(2) -0.04 - - 

Sargan test 12.79 - - 

Observations 140 252 - 

Number of sectors 28 28 - 

Number of 
instruments 26 - - 

R-squared - 0.973 - 

F (8, 27) 381.21*** -  - 

 Note: Robust standard errors are reported in parentheses; * significant at 10%; ** significant at 

5%; *** significant at 1%; AR(1) and AR(2) represent the Arellano-Bond (1991) test statistics for 

the first order and second order serial correlation in the first differenced residuals respectively; The 
null hypothesis for Sargan test is that instruments used are not correlated with the residuals; the 

instruments used are ln(output)it-2, ln(capital)it-1, ln(capital)it-2 , ln(labor)it-1, ln(labor)it-2 , 

ln(energy)it-1, ln(energy)it-2 , ln(material)it-1 , and ln(material)it-2 for the equation in first differences, 

and are ln(output)it-1 – ln(output)it-2, ln(capital)it-3 – ln(capital)it-4, ln(labor)it-3 – ln(labor)it-4, 

ln(energy)it-3 – ln(energy)it-4, and ln(material)it-3 – ln(material)it-4 for the equation in levels; The 

regressions also include dummy variables for the different time periods that are not reported. 
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Table 4: Time-Invariant Technical Efficiency Estimates and Ranking of 

Sectors from Static and Dynamic Specifications       

 

Note: Technical efficiency of a sector is measured relative to the most efficient sector. 

 

Sectorid 

Technical 
Efficiency 

from Dynamic 
Specification 

(%) 

Technical 
Efficiency 
from Static 

Specification 
(%) 

Underestimation 
by Static Model 

Rank_Dynamic 
Specification 

Rank_Static 
Specification 

(1) (2) (1) - (2) (3) (4) 

1 57.12 64.35 -7.23 27 21 

2 79.62 70.94 8.68 6 11 

3 68.91 66.88 2.03 21 17 

4 87.51 74.28 13.23 4 6 

5 54.17 61.84 -7.67 28 25 

6 65.81 65.69 0.12 23 20 

7 71.46 59.56 11.9 17 28 

8 71.27 65.87 5.4 19 19 

9 78.46 66.34 12.12 9 18 

10 76.63 73.58 3.05 11 8 

11 100 100 0 1 1 

12 64.58 68.5 -3.92 24 14 

13 76.37 67.9 8.47 13 16 

14 73.13 71.96 1.17 15 9 

15 78.58 61.42 17.16 8 26 

16 76.2 62.66 13.54 14 24 

17 60.64 64.3 -3.66 26 22 

18 77.11 71.78 5.33 10 10 

19 76.59 77.72 -1.13 12 4 

20 71.41 78.14 -6.73 18 3 

21 99.67 86.2 13.47 2 2 

22 72.54 60.19 12.35 16 27 

23 65.86 70.23 -4.37 22 12 

24 60.81 63.29 -2.48 25 23 

25 69.69 68.1 1.59 20 15 

26 88.96 76.2 12.76 3 5 

27 78.76 73.8 4.96 7 7 

28 84.29 68.81 15.48 5 13 

Mean 74.51 70.02 4.49 _ _ 

Maximum 100.00 100.00 17.16 _ _ 
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