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This manuscript is linked to two companion papers, each part of a series on the economics,
political economy, and statistical analyss of drunk driving legisation. Grant (2010b), which
motivates Section V, documents how academic findings on the effects of three major laws have
become muchlessfavorable over time, and explansthisevolutionin termsof changesin study design
and an “early adopter effect.” Grant (2010c) explores how the federal government assesses the
efficacy of drunk driving lawsthrough an extended narrative of the process surrounding the passage
of the Nationa Minimum Drinking Age Act. Itsfindings on the political economy of deterrence-
based drunk driving countermeasures complement the empirica findings in Section V1. A fourth
paper, Grant (2010d), completes the series.



Drunk driving countermeasures try to reduce traffic accidents by reducing drunk driving. A
thorough understanding of their effectswould therefore require an understanding of two causal links:
that between countermeasures and the distribution of blood alcohol concentration (BAC) among
drivers, and that between BAC and crash probabilities. The latter is chiefly an epidemiological
guestion, to which we have areasonably satisfactory answer (Blomberg et a., 2005, 2009). The
former is a question for policy analysts, and we have virtually no answer to it at al. It has been
addressed by only a handful of studies, discussed below, which focus solely on the incidence of
drinking and use inferior methods that are generally eschewed by economists.

This knowledge would have two practical uses. Firg, it would provide an alternate method
of assessing the effect of drunk driving laws on traffic safety. Such a mechaniam is vitally needed.
Most sudiesreatelaws directly to outcomes, such asfatalities, without using BAC or theincidence
of drunk driving as mediating factors. Generdly, however, these estimates are highly variable across
studies, with the greatest variability (and some bias) occurring in those early studies that have the
greatest influence on policymakers (Grant, 2010b). Because these mediating factors are far less
variable than crashes are, and are subject to fewer influences (see below), analyzing them instead
could lead to improved estimates that are less affected by these problems.

Second, this knowledge would help usbetter understand the reative importance of law and
“social forces’ (such as media campaigns, public awareness of the risks of drunk driving, and safety
attitudes) inreducing drunk driving over the decades. While laws, demographics, social forces, road
qudity, and automobile safety technology all affect crash incidence, only the first three of those
should substantively affect drunk driving. If we can approximate the contribution of laws and
demographics, then, the remainder approximates the contribution of social forces.

Among driversinvolved in fatal accidents in the United States, blood alcohol concentration



conditional on drinking hasremained unchanged for the past generation. Thustheevolution of drunk
driving over this period can be described using the fraction of accident-involved drivers who have
beendrinking. The dynamic propertiesof thisvariablesugges that it is, in fact, a superior instrument
with which to assess the effects of effectiveness of drunk driving legidation, and panel regressions
using this variable imply that the effects of several mgor drunk driving laws on fatalities are a the
low end of the range estimated inthe literature. A decomposition that buildsonthisfinding, in turn,

suggests that new laws have affected drunk driving far less than social forces have.

I. The Basic Dynamics of Drunk Driving.

We begin by documenting the basic dynamics of drunk driving and traffic fatdities. 1dedly,
thiswould have been done at the very inception of theliterature, to understand the properties of the
dependent variable(s) one seeksto explain, but thiswas not possible because of datalimitations. This
understanding proves useful in several ways, identifying the drunk driving statistic on which to focus
our investigation, delineating the temporal and spatid scales over which it evolves, and revealing
sources of bias and inefficiency in standard empirical analyses.

To do this we rey, by necesdty, on the only long, nationwide panel of traffic outcomes
available: the Fatality Analyss Reporting System (FARS) of the National Highway Traffic Safety
Administration(NHTSA). Thisrecordsaccident, vehicle, anddriver characteristicsfor dl fata traffic
accidents on public highways since 1975. BAC isdirectly reported in afraction of al accidents and
imputed for the others, most of which involve nondrinkers. Imputations are present only from 1982

onward, and our data end in 2004, leaving atota span of 30 years, 23 of which have reported or



imputed BAC for each involved driver. National statistics are reported for all fifty states plusthe
District of Columbia; following the precedent in many recent studies (e.g., Dee, 1999; Freeman,
2007), regression analyses are conducted on 48 states, omitting Alaska, Hawaii, and the District of
Columbia. Whilethe FARS data are not a sample, for convenience we use the term* sampl e period”
and refer to the random variation inherent in any probabilisic process, such as traffic fatalities, as
“sampling error.” The underlying fatdity risk at any point in time and space is only imperfectly
reveded by the observed fatdity rate, because, fortunatey, fata accidents are infrequent.

These data have two mgor limitations. First, they contain only those accidents that involve
afatdity. Accidentsinvolving drinkers are somewhat more likely to be fatal (Blincoe et al., 2002;
Grant, 2010d). Still, our empirica analysisis unaffected aslong asthis relation remains congtant over
time-if BAC does not have sizeable complementaritieswith road qudity and automobile technology
in the “production of accident severity.” There little reason to sugpect such a complementarity.
Furthermore, whileonly about 1% of dl accidents arefatal, these generate half of all accident-related
economic costs (Blincoe et al., 2002).

The other limitation is presence of imputed BACs. Using these imputations, aswedo, limits
the sample period and could affect estimates of statelaws’ effects, asimputations are not conditioned
by state. Thisshould not be amajor problem, because few drinkers’ BACs are imputed and because
the strongest predictors of driver BAC are accident-specific factors such as driver age, passenger
BAC, and police reported drinking involvement. Still, to provide arobustness check and extend the

sample period, we also present some results using just unimputed data.* Neither limitation has

! Two caveats should also be reported. First, NHTSA’s imputation sysem provides ten
imputed values for every non-reported BAC. Thefirst valueisutilized in the resultsreported inthis
paper; the use of the others yields similar findings. Second, while BAC reporting has increased
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prevented NHT SA from using these datato analyze the effects of laws on drinking incidence, most
recently by Dang (2008), whose work we extend in the fina section of this paper.

We begin by examining the evolution of BAC conditional on drinking (BAC > 0). This,
astonishingly, isstatic. Over the past generation, people have changed whether they drink and drive,
but not the amount they drink when they drive. Figure 1 documentsthe 25", 50", and 75" percentiles
of BAC conditional on driving after drinking for all driversinvolved in fatal accidents in the U.S.
between 1975 and 2004. The BAC digtribution is essentialy normal, with a mean of about 0.16, a
standard deviation of about 0.08, and aninterquartilerange of about 0.05, whether theimputed BACs
areincluded or excluded. Crucially, in both cases, these numbers are virtually constant across time.

This stability extends to two levels of disaggregation. We calculated BAC (conditiona on
drinking) at each of these percentileswithin sate* year cdls, and then regressed them on afull set of
state and year dummy variables. Inthese regressons, the standard deviations of the state dummies
wereonly about .008, indicating geographic stability. Furthermore, the standard deviationsof BAC
at each percentile, calculated across all pooled gate* year cells were between .01 and .015, indicating
that tempord stability extends to the state level.

In consequence, the dynamics of drunk driving can be described using asingle statigtic: the

gradually in many states over time, severa initially low-reporting states dramatically increased
reporting in adiscrete jump at various yearsin the 1980s. While any effects of these secular trends
in reporting will be adequately captured by the year dummies in the regressions below, the discrete
changes are associated with discrete jumps in HBD, and thus can bias estimates of effects of drunk
driving legidation. (This occurs, not surprisingly, most strongly with the minimum drinking age,
which was changed frequently during this period; this problem biases estimates of its effect toward
zero.) Thus, the regressions below omit from the sample those few sample years prior to the jump
in reporting inthose states. The affected states and the last year of omitted dataare as follows: AL,
1982; AR, 1989; FL, 1985; ID, 1984; IN, 1985; I1A, 1982; KS, 1987; MS, 1991; MD, 1985; NC,
1982; ND, 1984; TX, 1985.



fraction of accident-involved drivers who have been drinking, or HBD (had been drinking). While
only asmall fraction of driversdrink, the typica drinking driver isfar more risky than a sober driver
is. Inan exhaustive study that follows and extends decades of epidemiol ogical research, Blomberg
et al. (2005, 2009) carefully assess how crash risk is influenced by BAC. Colloquially, this risk
doubles with each standard drink beyond two; Grant (2010d) arguesthat thisholdsfor fatalities as
well as crashes, and that theserisks, relative to those of sober drivers, have not changed substantialy
over time. Given the high BACs of accident-involved drinkers, simple calculations show that the
average crash risk of drinking drivers is sixteen times that of sober drivers.

Inconsequence, whiledrinkersarewell-represented among driversinvolved infatal accidents,
they form a small percentage of dl drivers. This, inturn, impliesthat aone percent decrease in the
number of drinking drivers will lead to a one percent decrease in crashes attributable to drinking
drivers, virtually no increase in crashes attributable to sober drivers, and thus a decrease in overdl
crashes of about HBD percent. This holds true whether the decrease is caused by fewer drivers
drinking, or by fewer drinkers driving. By algebraically backing out the change in the number of
drinking drivers from changes in HBD, one can cdculate the implied the percentage reduction in
fatalities. Thisequalsthe percentage increase inthe fraction of drivers who have not been drinking.

While BAC conditional on drinking is sable, this is not true for drinking itself. HBD has
declined nationwide, and it isinstructive to document the systematic, evolutionary way in which it
has done so. Figure 2 illustrates using age-HBD profiles & five-year intervals, both including and
excluding the imputed data. Including the imputations sharply increases the age-HBD gradient for
adultsand the absolute magnitude of change but leavesthe relativerates of change unaffected. These

profilesindicatethat HBD fell “fromtheoutsidein,” initially declining most among the youngest and



oldest drivers, with middle aged drivers catching up adecadelater. Thelargest declinesin HBD first
occurred among driversover forty, with HBD falling ten percentage points or more between the late
1970s and the early 1990s Next came drivers under twenty, where HBD declined about fifteen
per centage points between the early 1980s and the mid 1990s. Findly, among middle-aged drivers
aged 20-40, HBD fell most rapidly during the 1990s. Driversin their early thirties, laggards during
the previous decades, were the only group reducing HBD asthe new century dawned. Using the
relation given above, these changesin HBD generated fatality reductions of about 30% for young
drivers, 20% for middle-aged drivers, and 10% for older drivers. These account for alarge, but not
dominant, share of the reduction in fatalities per vehicle mile traveled over this period, which fell by
half (NHTSA, 2009).

Changesin HBD are dso not uniform geographically. To focus on the age group with the
greatest drinking involvement and also reduce variation in driver age and accident type, we analyzed
HBD in al dngle vehide accidents involving drivers aged 21-40 for the 1982-2004 period.
Calculating HBD by state by year (1173 state* year cells), wethen regressed these values on state and
year fixed effects. Thestate effects have a standard deviation of 6.9 percentage points, with heavy-
drinking Wisconsin at thetop and light-drinking Utah at the bottom, thirty percentage points below.
Together, they and the year fixed effects explain about two-thirds of the variation in the dependent
variable. Still, the residuds, which track within-state variation in HBD that has been purged of
national trends, are quite variable, with a standard deviation of 5.7 percentage points.

The properties of this “ purged HBD” variable are of great import, as most modern analyses
of drunk driving laws, panel regression anayses, incdude state and year fixed effects as control

variables Therefore we also estimate thisvariable’ s serial corrdation, of the current value with its



one year lag, and its spatid correlation. This is cdculated across matched pars of states that are
geographicaly and demographicdly smilar, like those used in many case-control studies of drunk
driving laws. (Vermont is matched with New Hampshire, for example, and New Mexico with
Arizona. Thefull set of parsis identified in the noteto thetable.) Theresultsare shown inthefirst
row of Table 1: the serid corrdation and the spatia corrdation are both quite small.

Within state*year cdls, however, sampling error can contribute substantially tothe variation
inHBD. That is, HBD can be areatively inaccurate measure of the underlying rate of drinking and
driving in that state in that year, because it is calculated from only those drivers involved in fatal
accidents. Because HBD estimates the population proportion of “successes’ in a binomial
distribution, however, this sampling error can be agpproximated and extracted, thus allowing the
variance of theunderlying latent variableto be calculated, along with its serial and spatia correlation.

To do this, let H be HBD observed within a state* year cell, 2 be the unobservable latent
variable or “true HBD” around which H varies, H* be the HBD predicted from state and year fixed
effectsalone, S be the number of observations withineach state* year cell, and C be the total number
of state*year cells. The capitalized variables are observed and the lower case variables are not, a

convention maintained throughout. Then, summing across state* year cells:

S(H-H* Y= S(H- b2+ B(h- H*)? = E@+E(h—f[*)2 "

- B0 H) s gy
S
where sampling error is approximated by replacing z withits unbiased and reasonably closeegtimate
H* Wewishto know the propertiesof # - H*, that is, /4 net of state and year fixed effects. Because

this has an expectation of zero, the sample andog of its variance is then:
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The extensonsto serial and spatial correlation are sraightforward.

Theresultsare presented inthe second row of Table 1. Sampling error in fact generates most
of the variance of HBD at the gate* year leve; the sandard deviation of the underlying latent variable
isonly about two percentage points. Its spatid correlation is amodest 0.4, but its serial correlation
ismuch higher, about 0.8. Just asit doesat the national level, state-1evel drinking and driving evolves
gently and persistently, but at different ratesin different states. These inter-state differences might
suggest the relevance of states’ legal environments, but also could reflect the influence of social
forces, which plausibly affect drinking and driving in the systematic, evolutionary manner that we

have just documented.
II. HBD and Fatalities.

The agebraic link between HBD and fatalities noted in the previous section helps usimpute
the change in fatalities that can be attributed to changesin HBD. But it isaso useful to understand
the statistical rel ationship between these two variables, asfatalities are affected by factors other than
drunk driving. While are theoreticd developments are generd, our caculationsfocus, as before, on
values within state* year cells after extracting time-invariant state factors and year fixed effects.

Above we digtinguished between observed HBD and the underlying, unobservable latent
variable around which these observations varied, and estimated the variance of each. We can do the

same for fatalities, which are distributed Poisson around their expected value. Let F' be actual



fatalities within each state* year cell, f'bethe underlying latent variable (expected fatdities), and F*
be the number of fatalities predicted from sate and year fixed effects and vehicle milestraveled. The
relationship needed to extract sampling error is as follows:
s pen ey = 2L Loy
F* F* F* F* 2 F*

@)
- 2L S0(L) = 5L+ B(togt)- log(F )y’
F* F* F*

The results are presented in the next two rows of Table 1. Aswith HBD, much of this variable's
variation isdue to sampling error, and oncethis isremoved the spatid correlation of the underlying
factor is dso about 0.4 and the serial correlation about 0.8.7

Given that the covariance between HBD and log fatalities should be unaffected by sampling
error, we can caculae both the raw correlation between these two variables and a correlaion that
is adjusted for sampling error—that is, the correlation of the latent variables. Even after extracting
sampling error, this corrdation is only 0.32, as seen in the last column of the table. Changesin
drinking and driving account for only a modest fraction of the variation in log fatalities. In
consequence, regressions using HBD could be quite different from those using fatalities.

The relationship between HBD and fatalities can be better understood by setting out asimple,
first-order modé for fatditiesthat is consistent with our previousdiscussion and with previouswork

on the subject. In addition to the variables defined previously, add the following:

2 Thesefindings call into question adesign feature of anumber of early traffic safety studies
(e.g., Williamset d., 1983; Arnold, 1985) that draw on matched Sate pairsto infer the effects of law
changes. Inthisdesign, the paired states are deemedto beidenticd in their characteristics except for
the passage of the law, which isvalid only if the adjusted spatia correlation for fataitiesisvery high.
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. s = the miles driven by sober drivers

. d = the miles driven by drinking drivers

. r = the generd riskiness of driving, due to weather, road qudity, automobile technology,
general safety laws, etc.

. M =5+ d =milesdriven

Also let K represent the average crash risk of drinking drivers relative to sober drivers. Evidence
provided previously indicates K~=16. The latent varidble 7 = Kd | (s+Kd).

Observed fatalities, F, are distributed Poissonaroundtheir expectedvaue, £, afunction of the
miles driven by sober drivers, s, the miles driven by drinking drivers, d, and the general risk factor,
r, asfollows: = (s + Kd)*r. Inthisequation aten percent reduction in the general risk factor leads
to aten percent reduction in fatalities among both sober and drinking drivers, while a ten percent
reduction inthe number of drinking drivers will lead to aten percent reduction in fatalitiesinvolving
those driversand a 10* HBD percent reduction in overall fatalities, asin Section |. One can think of
reasons why these statements might not be strictly true, but they are likely to be second-order.?

Algebrayields:

% Behaviorally, the compensating variation hypothesis suggeststhat sober driverswould be
less careful if they knew that there were fewer drunk drivers on the road. This hypothesis would
suggest that the HBD regressions below, which find mild effects, are biased away from zero. If
dominant, it would also imply a negative correl ation between drinking incidence and the general risk
factor, instead of the postive correation that obtains, as shown shortly.

Alternatively, sober and drinking drivers may have different risk factors. Even then an HBD
analysisis probably preferred to a fatality andysis. To seethis, consder the expression:

f DRINKING

h
= log(K)+ log(M)- log(d) + 108(rpaze) 108 somzs) = log(==-)
7 SOBER 1-

If the two risk factors are positively correlated regresson error isreduced, asis biasif thecommon
risk component is correlated with d, as empirical estimates presented shortly will indicate.

The dependent variablein most previous, related work intheliteratureisthe empirica analog
of the leftmost expression in the equation above, which, as shown, is a simple transformation of H.
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f- M-r-[l+%] = M-r-[1+hI(1-B)] = M-ri(1- B) @

(- pa-m

where the approximation is very close whenever K >> 1, asit ishere. Then:

log(fIM) ~ log(r)- log(1- h) S))

so that expected per mile fatalities are directly proportional to the generd risk factor and, as in
Sectionl|, inversely proportional to thefraction of crash-involved driverswho have not been drinking.

We have already identified the variation in log fatalities that isattributable to sampling error.
With this new relationship we can now break down the remaining variation into components
associated with the latent variable log(r), the latent variable log(1-/), and their interaction, and use

the method of moments to identify each fromthe data. The results of this exercise are found in the

* Definen = 1 - h, and N and N* accordingly. Then, the key relationships are as follows:

s g Moty g Ny o U, g gy
N* N* N* §N*? N
= 217V, 5 (log(n)- logV " ))?
SN

cov(log(F/M),log(N)) = cov(log(r)+log(n),log(n)) = cov(log(r),log(n))+ var(log(rn))

F-F~
F*

( )Z—EF—I* = Z(log())- log(F ")} = Z(log—"

r*/N
= 3 ([log(r)- log(r *)1- [log()- logV ")])*
= C-[var(log(r))+ var(log(n))+ 2cov(log(r),log(n))]

Thefirst relationship identifies the variance of 1og(»), the second the covariance of log(r) and log(n),
and the third the variance of log(r).
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final two rows of Table 1. The variationinlog fataitiesthat is not attributable to sate fixed effects,
year fixed effects, milesdriven, and sampling error has a standard deviation of 8.1 percentage points.
Each of the components listed above contributes about 1/3 of this variation. The interaction
component is generated by a weak podtive correlation between drinking and the general risk factor
(p =0.20), whichsuggestseither that drinking sentiment and general “driving safety sentiment” move
together, or that new drunk driving laws are associated with other traffic safety initiatives, such as
an increased police presence. A practical implication is that fatality regressions may yield “ effect
sizes’ (the estimated effect of laws) that are both biased and more variable than those in regressions

analyzing HBD, unlessthese risk factors can be directly observed and controlled for.

III. Legislation and HBD: Estimation.

Using the relationships derived above, one can estimate the effect of laws (or other factors)
on HBD and then impute the implied reduction in fatalities caused by the attendant reduction in

drinking. Following the literature, many of our regressonstake a natura, panel anaysisform:

Y, = Ss,t+ YLs,t+ O+ Tt es,t (6)

st

with s indexing states and ¢ indexing time; 3 the coefficients on statewide, time-varying controls S;
v the coefficients on the law dummies, ;> o the state fixed effects; and © the time fixed effects.

For the dependent variable, Y, there are three options, which are not all equally good. The

®> The coding of all laws is taken from the Digest of State Alcohol-Highway Safety Related
Legislation, supplemented occasionally with Dang (2008) or Grant (20103).
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first, suggested by equation (5), is to usethelog of thefraction of crash-involved drivers who have
not been drinking in that state in that year, log(1-H). Then vy is interpreted as the reduction in log
fatalities implied by the reduction in drinking and driving attributed to law L. If the number of fatal
crashes within any given sate* year cell is sufficiently small, however, H can deviate subgtantialy
fromits expected vaue, /4, dueto sampling error. Then it easy to show that E(log(1-H)) # log(1-4),
that thisdifferenceislarger when A islarger, and (numericaly) that this biasesregression coefficients
in afavorable direction. This problem is severe in panel analyses of crashes for a small age range,
such as young drivers, because there are few such fatalities in less-popul ated states.

A solutionisto usethe second option: employ H asthedependent variable, so sampling error
causes no hias, and then caculate the implied change in log(1-/4) from the estimate of y. Because
variationinz aroundits mean isnot large, aTaylor seriesapproximation isfeasible. Replacing log(1-

h) with its first-order gpoproximation around the grand mean of the sample, H,,, yields:

log(1- k) ~ log(1- H, )~ I—HM = log(1- H,,)- 1—HM+V ™
M M

The expected increase in log(1-4) is closaly approximated by the decrease in H divided by (1- H,,).
That is, it suffices to use HBD directly as the regressand in the regressions, and then scae the
coefficient estimateby -1/1-H,, to infer the effect on log fatalities Both the effect of thelaw on HBD
and its implied effect on fatalities are reported. (A dightly more accurate approximation can be
calculated using individua state meansrather than H,,.) Estimation isconducted using least squares,
weighted by the number of accident-involved driversin each sate* year cell.

The find option talors the specification for use with individual microdata. The probability

that an accident-involved driver has been drinking is estimated with a logit model that includes not
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just the state-level variables lised aove but dso individual demographic and accident-specific
information (see equation (9) below). The average marginal effect, calculated numericdly, indicates
how the law affects HBD, from which the implied effect on fatalities is calculated as above.

In the panel analyses, the vector of time-varying state covariates X can be smaller than in
fataity regressons, because many of their controls plausibly affect fatalities but not drinking.
Economic factors, which are known to affect the drinking incidence, should be included, along with
alcohol prices or consumption. Our estimations also focus on single vehicle accidents, to which the
model in Section |1 best gpplies, usng multiple-vehicle accidents as a robustness check. Thisis not
greatly limiting: many studiesinthe traffic safety literature have focused on single vehicle accidents,

in which responsibility for the accident isnaturally attributed to the driver.

IV. Estimation Results.

To compare how HBD regressions of laws’ effects compare with fatality regressions, we
initidly focus on the three most studied drunk driving laws in the literature, with one hundred
published academic studies between them (Grant, 2010b): a minimum lega drinking age (ML DA)
of twenty-one, zero tolerance (ZT) lawsthat lower the per seillegal BACfor youthto .01 or .02, and
laws that lower the per seillegal BAC for adultsto .08. These are now universally enacted within
the United States, mostly during our sample period and partly due to Congressional pressure (the
threatened loss of highway funds).

In the panel regressions, each law variable is set to zero if the law was not in effect in that

state in that year, to one if the law covered the entire intended population in that satein that year,
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and to afraction less than one if the law covered only part of the relevant population or was in effect
only part of the year.® In the logit models, in contrast, we can specifically determine whether that
driver was covered by the law in question and then assign a value of zero or one. All regressions
include controls for the annud, state unemployment rate and dummies for .10 per se laws and
administrativelicenserevocation (AL R) lawsthat alow the sateto suspend or revoke anindividua’s
license immediately upon testing positive for drunk driving or refusing to be tested. These are not
the only viable controls, just those that plausibly influence drunk driving and regularly appear inthe

large panel fatality sudies in the literature. (Expanded specifications are used in Section V1.)

Estimates for Adults. We first conduct estimations for “adults’ aged 21-60, for which all three

egtimation methods are acceptable, and for which we canignorethe lawsthat pertain to “youth” aged
18-20. These are presented in Table 2.

We begin with the basic specification in the fourth row of the table, which uses HBD directly
as the dependent variable and then present the implied reduction in fatalities, the coefficient divided
by 1-H,, in brackets. For the per se laws, the .10 coefficient estimate is insgnificant but the .08
edimate implies a sizeable 2.5 percentage point reduction in HBD and a concomitant five percent
reduction in fatalities. ALR reduces HBD by one percentage point and fatdities by two percent.

Moving upward fromthisrow of thetablewe encounter alternative specifications. Inthenext
row up, the specification uses-log(1-H) asthe dependent variable. The coefficient on thisvariable,

multiplied by one hundred, gives the implied percentage reductionin fatalities yielded by reductions

® The value of the dummy equals the fraction of the relevant populaion covered by the law
during that state in that year. For MLDA laws, then, this value was determined by multiplying the
fraction of 18-20 year olds covered by the law by the fraction of the year the law was in effect.
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in drinking and driving. These estimates tend to be slightly more negative than those in the HBD
regressions, whichis to be expected because of the bias discussed above. Finally, the top two rows
use logit modds. The first, in the top row of the table, includes just the controls used in the other
regressons along with driver age, while the modd in the second row aso includes driver gender and
sets of dummy variables for the hour, day, and month of the accident. After adding these controls,
the estimates become less favorable (more positive), faling about one-third for both .08 and ALR.

Below the basc HBD regresson in the fourth row of the table are found robustness checks
using dternative sets of accidents and using only the unimputed data. The gross effect of .08 laws
on fatdities (relative to no per se law) is alittle smaller than before, two to three percent, but its
significance and that of ALR is unaffected.

Overdl these findings, while confirming the value of .08 per se laws and ALR, are less
favorable than in the literature asa whole. The median estimate of .08 laws effects on fatdities in
Grant’s (2010b) review isfive percent, dightly higher than the average estimated effect in Table 2,
and most of these studies find that a.10 (or higher) per se lawv dso reduces fatdities substantidly,
while hereit hasno estimated effect. The estimated effects of ALR, aoneor two percent reduction

in fatalities, are also far lower than in most studies (see the review in McArthur and Kraus, 1999).

Estimatesfor Youth. Table 3 presentsestimates of theeffectsof MLDA and ZT laws for both youth

and “young adults’ aged 21-25, anatural control group. Theselaw variables are added to those used
inthe previous regressions, thus ALR, .08, and .10 law dummies are retained as controls.
We initidly focus on the ML DA coefficientsin the basic HBD regressions, which are in the

first three rows of thistable. These estimates are consstently postive and generdly significant,
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suggesting that making more people digibleto drink increasesHBD. Thus, raisingthe MLDA from
18t0 21 reduces HBD by three or four percentage points and brings fatalities down by aout seven
percent. In contrast, the coefficients for the young adult control group, while also podtive, are
smaller and insignificant.

The next three rows of the table utilize only the unimputed data. As before, these reaults
support the findings we have just reported.

Findly, inthe bottom two rows of the table, we run individual-level logit models. 1naddition
to facilitating theincdusion of demographic and accident controls, these regressions allow the values
of the two law variables to be precisely determined using driver age and accident year and month, as
described above. These MLDA coefficient estimates imply even smaller effects on fatalities.

On the whole, these reaults are at the low end of the range of esimates produced in the
literature. Grant (2010b) surveys al sudies of minimum drinking age (MLDA) laws published by
20009; effect estimates are widely dispersed and often large, with predicted reductions in fatalities
generdly exceeding ten percentage points. Many of these studies, however, include cross-sectional
variation or analyzejust afew dates; effect sizestend to be lower when anationwide panel andysis
isconducted. Theonepanel sudy of reductionsinthe MLDA, Cook and Tauchen (1984), estimates
a 7% effect on fatdities, the largest-scale studies of MLDA increases, Polnicki, Gruenwald, and
LaScda (2007) and Miron and Telebaum (2009), get estimates of 5-10%. Our findingssuggest even
these estimates are too high, maybe because of the correlation between HBD and the genera risk
factor that was uncovered in our decompositions.

Our results are aso smaller than those of the four other multi-state studies that examine the

effect of the MLDA on HBD (or itstransformation) using the FARS data: Robertson (1989), Voas,
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Tippetts, and Fell (2003), Fell e al. (2008), and Dang (2008).” These studies find that the MLDA
decreases fatdities by at least 11% (and similarly large effects for the other laws included in those
studies). But each of them omits Sate fixed effects, dlowing cross sectiond variation to influence
the coefficient estimate. In our models these sate fixed effects are highly sgnificant, and their
omisson affects coefficient estimates substantialy, just as it often does in fatality regressions.
Therefore, the large effects estimated in these studies are probably due to omitted variable bias.
Regarding zero tolerance laws, the findingsin Table 2 are even weaker. Across the full st
of regressionsthe coefficient estimates, whilenegative, areinsignificant, and nearly matched by those
in the control group. This suggedts zero tolerance laws do not materialy affect HBD or fatalities.
This too contrasts with most estimates reported in the literature (Grant, 2010b), but these often
analyze a small number of statesor allow cross-sectional variation. Later, more comprehensive panel
studies tend to be less favorable, and the most recent of these find no effect whatsoever (Dee,
Grabowski, and Morrisey, 2005; Grant, 2010a). Thelatter study revealsthe existence of unmeasured
confounders that were not accounted for inearlier work, which lead to equivalent effect szesinthe
target group and multiple control groups-the kind of correlation suggested by the decompostionin
Section 1. This sudy also finds no subgsantial effect of ZT laws on HBD among youth or control
groups, using ashorter sample period that brackets the years over which these laws were adopted.
Overdl, then, our estimatesfor MLDA and ZT lawsarefar smaller thanin the weaker studies
in those literatures and somewhat smaller than those of the stronger studies (large panel analyses).

Estimating the effects of drunk driving laws on fatdities viatheir effectson HBD leads to relatively

" Hingson, Heeren, and Winter (1996) find more modest effectsin abefore-after study of the
effects of .08 laws. These are the only published, multi-state studies that relate laws to drinking
incidence in traffic fatalities.

18



conservative estimates of their effectiveness. It may be argued that two of these laws, .08 and ZT,
which lower dlowable BAC limits, should not affect HBD but ingead affect BAC conditiona on
drinkingand driving. For ZT laws, however, Grant (2010a) hasexamined thiscontention specifically
and found no evidence to support it. For .08 laws, the number of fata traffic crashes involving
affected drivers (with BACsof .08 or .09) islessthan three percent, suggesting that even with nearly
full compliance the effect on fatalitieswould not exceed acouple of percentage points, which isless
thanthe .08 law-.10law differenceimplied by the Table 2 regressons. Section | offersanexplanation
for theselaws' impotence: drinkers seem to adjust whether they drive, but driversdo not adjust how

much they drink, which is what these laws are asking them to do.

V. HBD Effects and “Early Adopters.”

While a retrospective evaluation of the effects of these three laws is valuable, its practical
import is somewhat limited because they are now long-edablished. The diffusion of these laws
throughout the country is most strongly impacted by studies of the experience of those states that
adopt thelaw first. Carefully reviewing the academic literatureson MLDA, ZT, and .08 laws, Grant
(2010Db) finds that all three follow a familiar pattern: large and variabl e estimates of the law’ s effect
in those early studiesthat were available at the time of Congressiona action, converging to smaller,
less variable estimates decades later, after more data has been collected and improved analytical
techniques employed.

Furthermore, following Miron and Teebaum (2009), Grant shows tha conditiona on

egimator, specification, and data source, in all three literatures the law has larger estimated effects
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in early-adopting states, which he callsan “early adopter effect.” Thus, even with the best data and
techniques available, assessments of laws effects in early-adopting states are likely to overpredict
their effects in later-adopting states. A possible explanation for this early-adopter effect is the
existenceof other law changes, enforcement initiatives, or changesin safety attitudes that accompany
the new law in question. Theseare more likdy to be found inthose states that combat drunk driving
aggressively, and lesslikely to be found in statesincentivized to adopt these laws by the threatened
loss of federal highway funds. These factors should also affect fatalities more than HBD, and thus
should biasfatality regressions morestrongly thanHBD regressions. Thus, thetechniquesintroduced
here may be especidly valuable for uncovering the effects of drunk driving legidation in early-
adopting states, and thus for contemporaneous, rather than retrospective, policy analysis.

To find out whether HBD regressions also exhibit an early-adopter effect, we must etimate
the effect of the law in question in each state using a constant estimation method. A smple and

revealing way to do this, following Grant (2010b), isto estimate the following regression:

Hs,t = Ss,t+ YsLs,t+ O+ 7T, * es,t ®

Unlikeits predecessor, thisregression estimates a separate coefficient for each law-adopting satein
the data, and its gandard error. To determine the cumulative estimated effect based on all sates
adopting the law up to date T, we calculate the weighted average of al of those states' y estimates,
using theinverses of the squares of the standard errors asweights, and caculate the standard error
of this average accordingly. We cdculate this cumulative estimate at every date (month and year)
inwhich anew state passed the law in quegtion, and graph the results on a cumulative “stock plot”

that has time on the horizontd axis and the cumulative effect Sze on the vertical.
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For fatalities, Grant (2010b) performed such an analysis, quas-replicating three recent,
comprehensive studies of each laws' effects: Miron and Tetelbaum (2009) for MLDA laws, Grant
(2010a) for ZT laws, and Freeman (2007) for .08 laws. Each usesthe standard state* year panel
regression design; each contains numerous supplementary tests that strengthen its conclusons, each
takescareto replicateothers findingsand explain any differencesfromthose findings; and eachfinds
asmaller effect of the law than is typical inthe literature.

These stock plotsare presented in the left panes of Figure 3-5 for MLDA laws, ZT laws, and
.08 lawsrespectively.? Theright pane of each figure presentsthe stock plot calculated herefor HBD.
Crucidly, the axis has been scaled in the graph on the right by (1-H,), so that an equal vertical
digance on the two graphsimplies an equal change in fatdities. A cubic trend, which fits the data
reasonably well, isincluded. The leftmost point on each graph includes just the coefficient esimate
from the first state to adopt the law in question over the sample period; the rightmost contains the
cumulative, or “find,” estimate from all states adopting the law in question over the sample period.
Confidence intervals extending two standard deviations from the mean are depicted in the verticd
lines that surround the dot that represents the cumulative effect size.

In the left panes of Figures 3-5, the cumulative stock plots for fatality regressions, alarge,
consstent upward trend, toward zero, isclearly visible. Effect sizesin early-adopting Satesaremore
than double, and at least five percentage points, higher than the final estimate. This isthe early-

adopter effect.

8 A few sates passed early “partid” zero tolerance lawsthat affected only someyouth drivers
or that set aBAC limit above .02. These arerardy included in recent sudies of ZT laws but did
receive some early analysis, and are included here because of the focus on early-adopters. In Figure
4, separateesimatesfor “partial laws” and “full laws” areinduded for those statesthat adopted both.
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The right panes of Figures 3-5 are different. While early estimates of each law arenaturaly
quitevariable, they are not always strongly favorable. More importantly, in each casethe cumulative
egimate closely approaches the final estimate before half of the sample period has passed, by which
time only about one-quarter of the sa es have passed the law in question. This convergenceismuch
morerapid thanisobserved for thefatality estimates. Standard errorsat each pointintimearesimilar
between the fatdity and HBD estimates.” Therefore, HBD regressions better inform policymakers
about the experience of drunk driving lawsin early-adopting states-though great caution should be

used drawing strong conclusions from the experiences of a small number of states.

V1. The Role of Social Forces and the Role of Law.

Reductions in drunk driving have contributed significantly to the decline in per-mile crash
fatdity ratesinthe U.S. over the past generation. These reductions could come from three sources:
legal incentives, demographics, and general social forces such asmoral suasonand public information
about the dangers of drunk driving. Thefirst two factors are observable but thethird isnot. Instead,
its effect must be inferred, as the resdual after accounting for the effects of demographics and laws.

We can do this by conducting estimates on microdata that includes individual driver
demographics. Let n beadummy variableindicating whether aparticular driver is coded as having

apositive BAC. Expand thevector L to include indicator variablesfor seven key drunk driving laws,

° The standard errors should be smaller in the HBD regressions, but thisis obscured because
these regressons omit years 1975-1981 from their sample. One can show analytically that sampling
error is always larger in the fatdity regressons, and if important generd risk controls are omitted,
these sandard errorswill be even larger ill.
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described below. Define D asavector of accident (hour, day of theweek, and month of the accident)
and demographic variables (driver age, gender, and date), S as two “stae factors” the sate
unemployment rate and per capita dcohol consumption, and A as the logistic function. A standard

fixed effects specification relating these variables is asfollows:

P(ni,s,t: 1 ) = A(YLi,s,t+ ¢Di,s,t+ Sz‘,s,t+ ‘Et) (9)

wherei indexes individuals and ¢ isavector of coefficients. Thisisestimated on all driversaged 15-
60 involved in fatal single-vehicle accidents.

In addition to the five laws examined in Section 1V, the laws vector, L, includes open
container lawsanddramshop laws, based onempiricssupporting their effectivenessin comprehensive
panel traffic safety studies(Ruhm, 1995; Eisenberg, 2003; Whetten-Goldsteinet al, 2000; Bensonand
Rasmussen, 1999). The practical case for legislative drunk-driving countermeasuresrests squarey
onthese seven laws, as no othershave received appreciable support intheacademic literature, srong
financial incentives from Congress, or emphasis from NHTSA. The demographics vector, D, now
subsumes the state fixed effects expresdy written out before. The alcohol consumption measure
included in S could beinfluenced by economics, social forces, or laws, and the statistical andysiswill
indicate the relative importance of each. This regresson is estimated sngle-vehicle accidents
involving drivers aged 15-60 over the period 1986-2004. Several states have poor BAC reporting
prior to 1986, but from this year forward reporting isreasonably highand reasonably steady, ranging
from 56%-59.5% in each year.

Now, define t=0 as a base year, and consider the following four equations:
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H, = ﬁt = ﬁt = A(¢Di,s,t+ YLi,s,t+ Ss,t+ T,) (10)

E(Ht IL: LO) = A(¢Di,s,t+ YLz‘,s,0+ lIJ‘Ss,t-'- ‘Et) (11)

EH,|L=L,,8=S,) = A(¢Di,s,t+ YL, ot WS+ T,) 12)

E(H,|L=L,8= §yt=0) = A(¢Di,s,t+ YL, ot WS+ Tp) 13)

The difference between HBD in any given year, H,, and HBD in the base year, H,, can be broken
down into four components: laws, the difference between the first two equations; state factors, the
difference between the next two equations; socia forces and other residual factors, the difference
between the next two equations, and demographics, the difference between equation (13) and H,.
These components are caculated for each year of the sample, using 2004 as the base year, and
graphed in Figure 6.

Figure 6 depictsa drop in HBD of twelve percentage points, corresponding to aone-quarter
decreaseinfatalities, over the period 1986-1997, after whichisstasis(HBD for dl accidents behaves
similarly). Concomitantly, the contribution of each factor is largest in 1986 and falls more or less
deadily thereafter. The effect of laws, a tota reduction of two percentage points in HBD (and
therefore 4% in fatdities), is equd to the contribution of statefactorsand somewhat smaller thanthe
contributions of demographics (three percentage points) and social forces (four percentage points).

The interpretation of the state factors component can be clarified by additional regressons
whoseresultswenow report. Firg, it Smply reflectschangesin per-capitaacohol consumption (and
is labeled as such in the figure), because the coefficient on unemployment disappears after thisis

controlled for. Second, the component’s downward trend is not explained by the demographic
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(Greenfield, Midanik, and Rogers, 2000) and law variables in our regressions, nor by prices, which
closely tracked inflation throughout the period. Thus, the declineinper capita cohol consumption
Is itself beg attributed to social forces. By this measure social forces, which have both reduced
alcohol consumption and drunk driving conditional on alcohol consumption, are more than twice as
important in reducing drunk driving fatalities as are seven mgjor drunk driving laws.

We acknowledge the inherent imprecisonin inferring the effect of social forcesindirectly, as
aresidud, when it isnot feasble to control for every extant drunk driving law. To the extent that
important laws are excluded, the estimated effect of social forcesisoverstated. But we also believe
that, heretofore, the excess has run in the other direction. Because the effect of social forces can be
imputed only as the “remainder” after accounting for the effects of laws (and demographics), the
larger those effects are determined to be, the smaler must be the effects of social forces.
Accordingly, if the effects of law have been overstated, the effects of socid forces have been
correspondingly understated, or “crowded out.” Thisstudy and the evidence in acompanion paper,
Grant (2010b), suggest that thisis frequently the case. It is not unusud for laws’ estimated effects
to exceed the entire changein fatalitiesthat can be attributed toreductionsin HBD inthe gppropriate
agerange over the appropriate time period. Y et this disconnect has drawn no attention whatsoever.

The most striking instance of this disconnect isfound in Voas, Tippetts, and Fell (2003), a
frequently-cited, pooled time-series cross-section regression andysis of the effect of several laws on
drunk driving fatalities among drivers under 21. Among this group, they find crashes are reduced
19% by the rased MLDA, 24% by ZT laws, 18% by .10 per se laws, and 19% by administrative
license revocation (Table 3). The combined effect is to lower crashes by 59%, twice the amount

implied by the raw reduction in HBD among this group (see Section | and Figure 2). These effects
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are described as“modest” and “generally condstent with the results of other studies’ (p. 585).

But this phenomenon is far more pervasive that this one study. Consder, for example, zero
tolerance laws, universally adopted in the U.S., mostly during the mid-1990s. As Grant (2010a,
2010b) shows, many studiesfound that these lawsreduced fata accidents by fifteen percent or more,
though the implied fatality reduction from reduced drinking among the affected age group between
the early 1990s and the early 2000sis only about ten percent (see Section| and Figure 2). Similarly,
.08 laws, universaly adopted by al states, mostly around the turn of the century, are often found to
have double-digit (percentage) effects on fatalities, though the aggregate reduction in fatalities
attributable to general reductions in HBD among the affected age group (twenty-one and older, as
dl drivers under twenty were subject to zero tolerance laws) between the mid-1990s and the mid-
2000s was no more than five percent (again, see Figure 2), and though fewer than three percent of
all fatalities involved drinkers in the BAC range directly affected by the law, as mentioned above.

If theeffectsof drunk driving legidation have historically been overstated, and theimportance
of social forces understated, our effortsto combat drunk driving are, to some degree, misdirected.
This possbility could be more easily disregarded if HBD had not remained flat snce 1997, despite
increasing numbers of legal disincentives.

One corollary issue that defies quantification, and hence a smple resolution, is the
relationship—or, better put, relationships—between laws and social forces. The two variables are
associated, mutually causal, and complementary (see Grant, 2010c, which elaboratesonthefollowing
pointsat length). They are associated because both social forces and laws can befostered by changes
in the political environment and in scientific knowledge, as in the early 1980s. They are mutually

causal because changes in social attitudes can presage changes in the law, as many economists
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recognize, and because new laws can change socid attitudes, asmany politicians recognize. Findly,
as emphasized among some criminol ogists and sociologigs, the social acceptance of drunk driving
laws can be vital to their success, making the two variables complementary.

Generdly, theserelationshipswould imply that the estimated effect of lawsin standard traffic
safety analysesisfavorably biased. The difficulty of disentangling them, empirically, should caution
anyone who would declare the efficacy of any drunk driving law based on such an andysis, especially

if the legidation isto be “imposed” on gates againg their will.

VII. Conclusion.

From a mathematical perspective, the process governing traffic fatalities is preternaturaly
elegant, allowing repeated use of scale anadysis and elementary probability theory to unlock the
secrets harbored withinthe data. Inthis paper we have tried to harness the full power of these tools
to help staunch the tragic and heartbreaking carnage that gives rise to these data The results
illuminate the evolutionary, locd nature of drunk driving dynamics; generate an alternative method
of egtimating the effects of legislation, which has several practical advantages, and reveds the limits
of this legislation in modifying deviant driving behavior.

There are severa reasons why laws' effects, while present, are not large. One is suggested
by the dynamic analyssin Section | of this paper: people do change whether they drink and drive,
but not the amount they drink whenthey drive. Accordingly, .08 or ZT lawsaimed at accomplishing
the latter purpose are not particularly effective. A second, as previously mentioned (Grant 2010b,

2010c), isthat social acceptance of drunk driving laws is vital to their success. Consequently, laws
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passed incertain sates solely because of grong Congressond incentives are not effective, generating
the “early-adopter effect” discussed in Section V of this paper. A third reason, suggested by Grant
(2010d), is that, given the low probability of being apprehended if driving drunk and the modest
penaltiesimposed on those who are convicted, the expected legal costs of drunk driving are dwarfed
by the expected coststo one' sown life, health, and property. Most driverswho are sensitiveto these
cogts, therefore, will remain sober; those who do not are unlikely to be swayed by tougher laws,
which generate only a small increase in total expected costs.

To the extent that legal factors have been overemphasized in research on the effects of drunk
driving legidation, the effect of social forces have been underemphasized. Whiledifficult to quantify
with precision, these forces gopear to be at least as important as laws are. For over a decade,
drinking involvement infatal crasheshasremainedflat. The secret toreinstitutingadownward trend

may be arenewed emphasis on socia suasion.
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Table 1. Standard Deviations and Various Correlaions of HBD, Log Fatalities, and More.

Standard Spatial Serial Cross
Deviation Correlation Correlation Correlation
HBD—Raw 5.7 0.07 0.15 0.08
(percentage points)
HBD-Adjusted 2.3 041 0.81 0.32
Log Fatalities—-Raw 13.2 0.18 0.32 0.08
(times one hundred)
Log 8.1 0.46 0.84 0.32
Fatalities-Adjused
Implied Generd 5.2 0.43 0.82 0.20
Risk Factor
(percent)
Implied Drinking 54 041 0.81 0.20
Factor (percent)

Note: All observed and latent variablesaremeasured (or presumed measured) a the Sate* year levd,
in deviations from state and year fixed effects (and log vehicle miles, for fatalities).
correlations are calculated across matched state pairs. Using postal codes, the pairs are as follows:
ME/MA, VT/NH, CT/RI, NY/NJ, TX/OK, KS/INE, ND/SD, WA/OR, CA/NV, UT/CO, ID/MT,
MN/WI, MI/OH, IL/IN, IA/MO, AR/LA, AL/MS, TN/KY, GA/FL, NC/SC, VA/WV, MD/PA,
DC/DE, AK/HI. “Adjusted” meansthat sampling variance hasbeenremoved. Crosscorrelationsare
the correlation of HBD and log fatdities, and the general risk factor with theimplied drinking factor.

There are 1173 observations (51 states * 23 years).
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Table 2. Regressions, Adults Aged 21-60 (WLS or logit coefficient estimates, with standard errors
in parentheses, the predicted percentage effect on the number of driversinvolved in fata accidents
in graight brackets, and the average margind effect on HBD in curly brackets when necessary).

Dependent Varigble .10 per selaw .08 per selaw Adminigtrative
Change in Sample or Controls (effect relative to License
.10 per se) Revocation
Dummy for Driver BAC >0 0.002 -0.095* -0.033*
(logit model with age dummies) (0.017) (0.014) (0.0149)
{0.04} {-1.80} {-0.63}
[0.08] [-3.759] [-1.31]
Add Other Driver and 0.016 -0.083* -0.031*
Accident Controls (0.020) (0.026) (0.016)
{0.30} {-1.57} {-0.59}
[0.63] [-3.27] [-1.23]
-log(1-HBD,,) -0.008 -0.046* -0.026*
(0.013) (0.011) (0.010)
HBD,, , Single Vehicle Accidents -0.03 -2.45* -0.94*
(mean = 52%) (0.60) (0.49) (0.47)
[-0.06] [-5.10] [-1.96]
Single Vehicle Night 1.34 -2.28* -0.55
(mean HBD = 71%) (0.72) (0.59) (0.55)
[4.62] [-7.86] [-1.90]
Vehicles< 2 0.54 -1.46* -0.98*
(mean HBD = 36%) (0.50) (0.40) (0.38)
[0.84] [-2.28] [-1.53]
No Imputed Data -1.69* -1.73* -1.98
Single Vehicle (0.78) (0.66) (0.64)
Single Vehicle Night -1.08 -1.10 -1.17
(0.76) (0.65) (0.61)
Vehicles< 2 -1.10 -0.73 -2.43*
(0.68) (0.58) (0.55)

Note: All regressons use HBD as the dependent variable, andyze single vehicle accidents, and
includeimputed dataunless otherwise indicated. Except in thelogit models, N = 1058, 48 states(not
AK, DC, HI) for 23 years, subtracting out years prior to discrete jumps in BAC reporting in twelve
states. Controlsinclude state and year fixed effectsand unemployment, dong withadummy variable
to distinguish one car accidentsfrom two car accidentsinthe“vehicles< 2" regressons. Thefull logit
uses 327,560 individud observations and includes dummiesfor age, gender, hour of the day, day of
the week, and month. * means the coefficient esimate differs sgnificantly from zero a « = .05.



Table 3. Regressions, Drunk Driving Laws Aimedat Y outh (WL Sor logit coefficient esimates, with
standard errorsin parentheses, the predicted percentage effect on the number of driversinvolvedin
fatal accidents in straight brackets, and the average marginal effect on HBD in curly brackets when
necessary).

MINIMUM DRINKING AGE ZERO TOLERANCE
Dependent Varigble Y outh Young Adult Y outh Young Adult
Change in Sample/Controls (aged 18-20) (aged 21-25) | (aged 18-20) (aged 21-25)
HBD, in Single Vehicle 3.80* 0.40 -2.17 -1.00
Accidents (youth mean = (1.57) (1.29) 1.27) (1.06)
47%, young adults = 60%) [7.17] [1.00] [-4.09] [-2.50]
Single Vehicle Night 2.59 -0.36 -1.34 -1.59
(mean HBD = 63%, 75%) (1.92) (1.47) (1.62) (1.23)
[7.67] [-1.44] [-3.62] [-6.36]
Vehicles< 2 3.67 1.52 -2.12* -1.03
(mean HBD = 35%, 46%) (2.29) (1.00) (0.88) (0.81)
[5.17] [2.81] [-3.09] [-1.91]
No Imputed Data 4.55* 0.33 -2.63 -0.67
Single Vehicle (2.05) (1.60) (1.63) (1.29)
Single Vehicle Night 3.37 0.01 -0.87 -1.54
(2.22) (1.54) (2.22) (1.26)
Vehicles< 2 5.94* 2.06 -2.49* -0.92
(1.56) (2.39) (2.23) (2.120)
Single Vehicle Accidents 0.088* ---- -0.082 ----
Dummy for Driver BAC >0 (0.041) (0.043)
(logit model with age {1.63} {-1.54}
dummies) [3.07] [-2.91]
Add Other Driver and 0.068 -0.080
Accident Controls (0.047) (0.048)
{1.26} {-1.49}
[2.38] [-2.81]

Note: N = 1058, 48 gates (not AK, DC, HI) for 23 years, subtracting out years prior to discrete
jumps in BAC reporting intwelve states. State and year fixed effects, unemployment, .08 and .10
BAC laws, and ALR laws controlled for, dong with a dummy variable to diginguish one car
accidents from two car accidents in the “vehicles < 2” regressions. The full logit uses 59,490
individua observations and includes dummies for age, gender, hour of the day, day of the week, and
month. * means the coefficient esimate differs sgnificantly from zero a « = .05.



Figure 1. BAC Conditional on Driving after Drinking, Drivers Involved in Fatal Accidents, Nationwide: with Imputed Data (on left) and without.
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Figure 2. Evolution of HBD in the U.S.: Profiles by Age, with Imputed Data (on left) and without.
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Figure 3. Timing of MLDA Adoption and Estimated Effect Size. (For description, see the text.)
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Figure 4. Timing of ZT Adoption and Estimated Effect Size. (For description, see the text.)
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Figure 5. Timing of .08 Law Adoption and Estimated Effect Size. (For description, see the text.)
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Figure 6. Decomposition of the Reduction in HBD in Single-Vehicle Accidents, 1986-2004.
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