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Income Inequality and Economic Growth in the U.S.: A Panel Cointegration 
Approach 
 

I. Introduction 

There is now a large and growing literature, both theoretical and empirical, 

examining the relationship between income inequality and economic growth.  Early on, 

this relationship was usually assumed to be negative.  Galor and Zeira (1993), also 

Aghion and Bolton (1997), argue that credit market imperfections limit the ability of low-

income individuals to invest in human capital, leaving productivity gains unexploited.  

The political economy models of Alesina and Rodrik (1994) and Persson and Tabellini 

(1994) stress the efficiency losses from re-distributional schemes and government 

intervention as median voters use the political system to flatten the income distribution.  

Gupta (1990) and Alesina and Perotti (1996) emphasize the potential for social unrest and 

political upheaval from increased inequality and the consequent diversion of resources 

toward social control.  Empirical evidence, primarily cross-country regressions of 

economic growth over long periods on inequality and other control variables, tended to 

support the negative view.  Bénabou (1996) provides a useful survey of much of this 

literature. 

Over time, however, an alternate view of the inequality-growth nexus developed, 

with researchers emphasizing the positive aspects of inequality for growth.  In one 

variation of this view, inequality may reflect more flexible labor markets that bring about 

higher levels of work effort and entrepreneurial energy leading to stronger economic 

growth (Metzler, 1998; Siebert, 1998).  Separately, Galor and Tsiddon (1997) develop a 

model in which technological shocks concentrate productivity growth and factor 

payments in the advancing sectors of the economy.   Barro (2000) proposes that because 
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political power follows from economic power, concentration of income can lead to 

government policies favoring economic growth.  Some recent empirical work tends to 

support these alternative views, with positive relationships between growth and 

inequality found by Forbes (2000) for a panel of countries, and Partridge (1997) for a 

panel of U.S. states. 

Still other empirical work, however, notably by Barro (2000), Quah (2001), and 

Panizza (2002) find little or no stable relationship between inequality and growth; results 

appear to be extremely sensitive to the econometric specification or the data set 

(Deininger and Squire, 1998; Barro, 2000).  In general then, the evolution of the 

empirical literature on inequality and growth has moved from finding mainly negative 

relationships, to finding some positive relationships, to finding little or no relationship.   

The ambiguity is unfortunate, because inequality is clearly increasing, at least in the U.S., 

and whether and by how much this change in inequality is associated with a change in 

economic performance is an important question. 

[Figure 1 about here] 

Figure 1 illustrates changes in both real income per capita and income inequality 

among the 48 states over the period 1945 to 2001.  Shaded areas show periods of 

recession as defined by the National Bureau of Economic Research.  The solid line (left 

scale) shows the yearly trend in the average logarithm of real income per capita for the 48 

states.  In 2001, the average state income per capita ($16,361 in 1982-4 constant dollars) 

was three times greater than the average state income in 1949 ($5,491), the lowest year 

for the period.  The dashed line (right scale) shows the yearly average among the 48 

states of the gini coefficient, an inequality measure encompassing the entire income 
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distribution.1  Average inequality among the states has grown substantially over this 

period, from a low of 0.402 in 1953, to a high of 0.572 in 2000.  Clearly, current levels of 

inequality have been rising at an unprecedented rate in the post-war period.2  

However, one must be cautious in attempting to infer relationships from aggregate 

U.S. data.  Aggregate growth in the U.S. has been influenced by any number of factors 

during the past 50 years, and any attempt to partial out the effect of changes in income 

inequality is vulnerable to the problems of multicollinearity among the regressors, and 

the potential endogeneity of inequality itself.  For these reasons, we use pooled U.S. 

state-level data, which offers enhanced variability and additional controls for 

heterogeneity, and utilize a methodology to address endogeneity issues, as well as long-

run and short-run forces, as discussed below. 

Figure 2 shows the individual state-level trends in the log of real per capita income 

and income inequality.  It is clear that both income and income inequality have been 

rising within each state during the past half century.  Moreover, the apparent long run 

relationship between income and income inequality seen in Figure 1, is also apparent 

within each of the forty-eight states in Figure 2. 

[Figure 2 about here] 

The greater homogeneity of U.S. states vis-a-vis international panels mitigates the 

difficulty in adequately capturing the structural differences across the latter group 

confronted by earlier studies such as Forbes (2000).  Corruption levels, labor market 

flexibility, tax neutrality, tradition of entrepreneurship, and many other factors are only 

poorly measured, if at all, and these sources of heterogeneity are much more likely to 

contribute to omitted variable bias across countries than across U.S. states.  Therefore, 
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estimation using U.S. state-level data is more likely to accurately estimate the ceteris 

paribus effect of a change in inequality on the change in economic growth.  

U.S. state level data have been explored before, notably by Partridge (1997) and 

Panizza (2002).  Partridge (1997) estimates a panel of 48 states measured at ten year 

intervals using decennial U.S. Census data with controls for initial income, education, 

and industrial structure.  Partridge finds that initial inequality is positively associated with 

subsequent 10-year cumulative growth in state income.  These results were among the 

first empirical findings that challenged the view that inequality was harmful for economic 

growth.   Panizza (2002), however, using decennial income data from the U.S. Census as 

well as from IRS tax returns, “concludes that, at the U.S. cross-state level, there is no 

clear, robust relationship between inequality and growth and that small differences in the 

method used to measure income inequality and in the econometric specification yield 

substantial differences in the estimated relationship between inequality and growth.” (P. 

25)  Empirically, therefore, the relationship between inequality and economic growth at 

the U.S. state level appears to remain an open question. 

The purpose of this paper is to re-examine the U.S. state-level inequality/growth 

nexus by employing three new approaches to the data.  First, following Barro (2000), we 

recognize inherent non-linearities in the data, which neither Partridge (1997) nor Panizza 

(2002) do.3   A previous paper (Frank and Freeman, 2002), showed that the effect of 

inequality on growth was negative, and more pronounced at lower levels of income.  

Second, we use Internal Revenue Service data, which are available on an annual basis, to 

construct a new data set of gini coefficients for the 48 states over the period 1945 to 

2001.  This data set brings an unusual degree of detail and comprehensiveness to the 
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inequality/growth literature.  Rather than a sample of 48 cross-sections and 5 or 6 time 

periods, as is common in prior research, the data set used in this paper has 48 cross-

sections and 57 time periods.     

Third, because the number of time series observations is relatively large and of the same 

order of magnitude as the number of states, we are able to exploit new cointegrated dynamic 

panel data techniques.  Prior empirical research on income inequality has relied on fixed 

effects estimators (e.g. Partridge 1997) or a combination of fixed effects estimators and 

instrumental variable estimators, such as Arellano and Bond (1991) (e.g. Forbes 2000, 

Panizza 2002, and Frank and Freeman 2002).  These methods require pooling individual 

groups and allowing only the intercepts to differ across the groups.  Unless the slope 

coefficients are in fact identical, these estimators can produce inconsistent and misleading 

estimates (see Pesaran and Smith 1995, and Baltagi 2001).  To address these concerns we 

employ two alternative estimators, the mean group estimator of Pesaran and Smith 

(1995), and the pooled mean group estimator of Pesaran, Shin, and Smith (1999).   

 

II. Methodology and Data 

The data used in the estimations is collected annually for the years 1945 to 2001 (T = 

57).  The number of states is 48 (N = 48).4  This brings the total number of observations 

to 2,736.  Descriptive statistics for the variables in raw form are presented in Table 1.   

[Table 1 about here] 

Gini coefficients are computed from tax data reported in Statistics of Income 

published by the IRS.5  This calculation of income by the IRS is a broad measure of 

income.  In addition to wages and salaries, it includes capital income (dividends, interest, 

rents, and royalties) and entrepreneurial income (self-employment, small businesses, and 
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partnerships).6  Real state income per capita is taken from the Regional Accounts Data 

available at the web site of the Bureau of Economic Analysis, and deflated using the 

Consumer Price Index (1982-84 = 100).7  The eight industry wage and salary variables 

are taken from the Regional Economic Accounts data available at the web site of the 

Bureau of Economic Analysis.8  

 Prior research on income inequality in the U.S. has relied on data from the Bureau of 

the Census to construct gini coefficients (e.g. Partridge 1997).  Census data are available 

from the decennial publication Census of the Populations for the years 1969, 1979, 1989, 

and 1999.  Data for the years 1949 and 1959 are not available from the Census, but are 

usually taken from Ahmad Al-Samarrie and Herman P. Miller (1967).  The annual data 

that are used to construct the gini coefficients in this paper have the obvious advantage of 

much greater frequency, but for comparability purposes have the disadvantage of being 

from a different source, the Internal Revenue Service.9   

It is reasonable to ask how the two data sources compare in their assessment of 

income inequality in the U.S. over the past five decades.  Figure 3 compares the average 

yearly trend lines and data distribution of both gini coefficients.10  With the exception of 

the year 1949, the average Census gini coefficient is smaller than the average IRS gini 

coefficient, though the trend is generally similar starting in 1969.  Note also that 1969 is 

the first true year of the Bureau of the Census’s calculation of the Census gini, the two 

prior years are taken from Al-Samarrie and Miller (1967).  It has been argued by Panizza 

(2002) that the censoring of the IRS data at the low end of the distribution may explain 

the difference, but top-coding procedures used in the Census data may also contribute.11  
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Obviously, unlike the Bureau of the Census, the IRS will penalize respondents for 

income reporting errors.  

[Figure 3 about here] 

For the empirical analysis, we assume that the long-run growth-inequality 

relationship is 

(1)  ( ) itititiitiiit uyginiginiy +×++= 210 θθθ , 

,,...,2,1 Ni =   ,,...,2,1 Tt =  

where ity  is the logarithm of real state income per capita, and itgini  is the state gini 

coefficient.  All variables are differenced from their cross-section means to control for 

fixed time effects.  Mean differencing is necessary given the year to year incremental 

changes in tax laws associated with the IRS income data and the long time span of the 

sample.  Including the product of the gini coefficient and the level of income allows for 

non-linearity in the inequality/income relation, and is a procedure also used by Barro 

(1999).  The inclusion of this term strengthens the principle conclusions, provides further 

evidence of omitted variable bias in previous work, and permits an interesting 

interpretation of the results. 

If the variables are I(1) and cointegrated, then the error term is an I(0) process for all 

i.  Imposing a lag of one on all terms, the ARDL(1,1,1) equation is 

(2) ( ) ( ) ittiititiiitititiiitiiit yyginiyginiginiginiy ελδδδδγ ++×+×+++= −−−− 1,1,1,21201,1110 . 

The resulting error correction equation is  

(3) ( )[ ]1,1,21,101, −−−− ×−−−=∆ titiitiiitiiit yginiginiyy θθθφ  

( ) ittitiitii yginigini εδδ +∆×∆+∆− −−− 1,1,201,11  
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The parameter iφ  is the error-correcting speed of adjustment term.  One would expect 

this parameter to be significantly negative if the variables show a return to a long-run 

equilibrium.  Obviously, if 0=iφ , then there would be no evidence for a long-run 

relationship.  Since we are primarily interested in the nature of the long-run relationship 

between income inequality and real income per capita, the long-run coefficients i1θ  and 

i2θ  will be of particular importance.     

 The recent literature on dynamic panel estimation in which both N and T are 

relatively large suggests several approaches to the estimation of equation (3).12  On one 

extreme, a fixed effects (FE) estimation approach could be utilized in which the time 

series data for each state is pooled and only the intercepts are allowed to differ across 

states.  If the slope coefficients are in fact not identical, however, then the FE approach 

could produce inconsistent and potentially misleading results.  On the other extreme, the 

model could be estimated separately for each individual state, and a simple arithmetic 

average of the coefficients could be calculated.  This is the mean group (MG) estimator 

proposed by Pesaran and Smith (1995).  With this estimator the intercepts, slope 

coefficients, and error variances are all allowed to differ across states.   

More recently, Pesaran, Shin, and Smith (1999) have proposed a pooled mean group 

(PMG) estimator that combines both pooling and averaging.  This intermediate estimator 

allows the intercepts, short-run coefficients and error variances to differ across states (as 

would the MG estimator), but pools the data and constrains the long run coefficients to be 
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the same across states (as would a FE estimator).   In the following section, we will 

estimate equation (3) using each of these three estimators.    

 

III. Empirical Results 

Table 2 presents evidence indicating that real income per capita and the gini 

coefficient are nonstationary and cointegrated (see Figure 2 also).  With respect to a null 

hypothesis of trend stationarity, Hadri (2000) constructs several residual-based Lagrange 

Multiplier tests applicable to panel data with homoscedastic, heteroscedastic, or serially 

dependant error processes.13  The test statistics for each of these three cases are reported 

in Table 2.  Each test is statistically significant beyond the 1% level. 

[Table 2 about here] 

With respect to a null hypothesis of no cointegration, both Kao (1999) and Pedroni 

(1995, 2004) provide applicable tests.  The Kao (1999) test reported in Table 2 is an 

augmented Dickey-Fuller (ADF) type test applicable to panel data.  The Pedroni (1995, 

2004) test is a pooled Phillips and Perron-type test.  Both tests are statistically significant 

beyond the 1% level.  Taken together, these tests indicate that real income per capita and 

income inequality are both nonstationary and cointegrated among the 48 states for the 

period 1945 to 2001. 

Empirical estimates of the mean group, pooled mean group, and fixed effects 

estimators are presented in Tables 3 and 4.  Table 3 shows the estimation results for the 

one-lag ARDL without the interaction term (columns 1 – 3), and with the interaction term 

(columns 4 – 6).  Table 4 differs from Table 3 only in that the Schwarz Bayesian 
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Criterion (SBC) was used to select the lag lengths.  Appendix Table A1 shows the full 

mean group results for each state under the ARDL (1,1,1) model.    

[Table 3 about here] 

When the interaction term is omitted (columns 1 – 3 of Tables 3), the results do vary 

across estimators.  In Table 3, the long-run gini coefficient is negative in the MG and 

dynamic FE estimations, but positive in the pooled MG estimation.  (Although only the 

MG estimator of gini is statistically significant).  When SBC is used to select the lags 

(Table 4, columns 1 – 3), the long-run gini coefficients are all negative, and significantly 

so in both the pooled MG and static FE estimations. 

Recall that the long-run coefficients of the MG estimator are unrestricted, while the 

long-run coefficients of the pooled MG estimator are restricted to be the same for all 

states.  To compare the MG and pooled MG estimators, a Hausman test may be 

conducted to evaluate the additional restrictions of the pooled MG estimator (see Pesaran, 

Shin, and Smith, 1999).  Under the null hypothesis of the Hausman test, there are no 

differences in the estimators and the pooled estimator is consistent and efficient.  In the 

ARDL (1,1) estimations in Table 3 (columns 1 and 2), the Hausman test statistic is a 

significant 5.78 (p-value = 0.02).  Of all the results obtained, the only estimator showing 

a positive long-run gini coefficient was the pooled MG estimator in column 2 of Table 3.  

This Hausman test sheds doubt upon the reliability of this positive long-run gini 

coefficient.   

The same test may also be applied to the SBC estimations of Table 4 (columns 1 and 

2).  Note that in this case, the two long-run gini coefficients are negative and nearly 

identical.  Here the Hausman test statistic is an insignificant 0.49 (p-value = 0.48).  This 
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evidence indicates support for the additional restrictions incurred in the pooled MG 

estimation vis-à-vis the MG estimation.   

[Table 4 about here] 

The long-run estimates of i1θ  and i2θ  are remarkably consistent across estimation 

methods when the interaction term is included (columns 4 – 6 of Tables 3 and 4).  In the 

ARDL (1,1,1) models of Table 3, the MG and dynamic FE estimates for i1θ  and i2θ  are 

nearly identical.  In all cases in both Tables, moreover, the estimates for the long-run gini 

are significantly negative and large in magnitude, while the estimates for the interaction 

term are positive and significant.  In comparison to the MG estimator, the more restrictive 

pooled MG estimator produces very similar long-run coefficients, though they are 

slightly less in magnitude in both the ARDL (1,1,1) estimation (columns 4 and 5 of Table 

3) and the SBC estimation (columns 4 and 5 of Table 4).   

The speed of adjustment parameter, iφ , is consistently negative and significant in 

both Tables, but does vary in magnitude.  In general, the pooled MG iφ  is pushed closer 

to zero than the MG iφ .  Moreover, when the interaction term is included, the MG iφ  is 

nearly double the magnitude of the pooled MG iφ .             

The models in Table 4 include interaction terms between inequality and the real state 

income per capita, similar to specifications estimated by Barro (2000).  The general idea 

is that inequality may have different effects depending on the level of economic 

development.  In all six models, the interaction terms are positive and significant, 

indicating that the negative effect of inequality on growth is greater for lower-income 

states; Barro (2000) finds similar results for a panel of countries.  As Barro notes, the 

lesser effect of inequality at higher income levels may stem from the better developed 
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credit markets and the greater degree of income mobility at higher levels of development.  

[Table 5 about here] 

To test the robustness of these estimates, in Table 5 we include eight state-level 

industry wage and salary variables.  The inclusion of these variables changes the 

principle results very little.  The coefficients on the industry variables tend to show that 

those states who are more closely associated with manufacturing and construction 

production economies have experienced faster growth, but this conclusion is very 

tentative.  Most importantly, the estimates for iφ , i1θ , and i2θ  are nearly identical across 

the three models, and quite similar to the parsimonious estimates in Tables 3 and 4, 

columns 4 – 6.  

 

IV. Conclusions 

This paper presents empirical evidence on the relationship between income 

inequality and economic growth using a panel of 48 states over the period 1945 to 2001.  

Our measure of inequality is constructed from individual tax filing data available from 

the Internal Revenue Service.  Because this data is annual, we gain an unusual degree of 

detail and comprehensiveness.  Rather than a sample of 48 cross-sections with 5 or 6 time 

periods, as is common in prior research, we are able to construct a sample that is large in 

both cross-sections and time periods (T = 57, N = 48).   

This unusual panel size enables the employment of new cointegrated panel data 

techniques, a first in the inequality/growth literature.  Prior empirical research on income 

inequality has relied on fixed effects estimators and the instrumental variable estimators 

of Arellano and Bond (1991).  These estimators require pooling the individual groups and 
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allowing only the intercepts to differ across groups.  Because the slope coefficients are in 

fact not identical, these estimators can produce inconsistent and misleading estimates.  To 

address these concerns we have employed two alternative estimators, the mean group 

estimator of Pesaran and Smith (1995), and the pooled mean group estimator of Pesaran, 

Shin, and Smith (1999).     

The results indicate that the long-run relationship between inequality and growth is 

negative in nature, though this negative relationship appears to be larger for low-income 

states.  Moreover, when the nonlinearity of this relationship is recognized, the estimates 

are quite robust to alternative estimation techniques, as well as the inclusion of numerous 

additional regressors. 

These results contrast with the positive relationship found in prior empirical 

research, (see Forbes 2000, and Partridge 1997), though the robustness of these prior 

findings has been questioned by Barro (2000) and Panizza (2002).  As we have discussed, 

each of these prior efforts has been limited to large N, small T panels. 

The theoretical literature suggests several explanations for why the relationship 

between income growth and inequality would be negative.  In the political economy 

models of Alesina and Rodrik (1994) and Persson and Tabellini (1994), for example, 

high levels of inequality push median voters to support higher taxes, thereby lowering 

income growth.  In the imperfect credit models of Galor and Zeira (1993) and Aghion 

and Bolton (1997), low income individuals are unable to invest in their human capital, 

causing income inequality to increase and income growth to decrease.  Finally, models by 

Gupta (1990) and Alesina and Perotti (1996) emphasize the political and social unrest 

consequences of high income inequality, though these mechanisms seem less plausible 
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within the U.S. states.  The task for future empirical research is to begin testing and 

quantifying these potential mechanisms.  
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Figure 1.  Mean Real Income Per Capita and Income Inequality Among the 48 States, 1945 to 2001 
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Figure 2.  State-Specific Trends in Log Real Per Capita Income and Income Inequality
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Figure 3.  Distributional Comparison of the IRS Gini to the Census Gini, 1945 to 2001  
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Table 1.  Descriptive Statistics of the Variables in Raw Form (1982-84 = 100) 

Variable Mean 
Standard 
Deviation 

Minimum Annual 
Mean (Year) 

Maximum Annual 
Mean (Year) 

Real state income per capita 10,441 3,742 5,491 (1949) 16,375 (2000) 

Gini 0.472 0.052 0.402 (1953) 0.572 (2000) 

Farming 205,150 281,846 151,138 (1987) 2,705,12 (1946) 

Construction 1,636,132 2,048,659    339,120 (1945)     3,132,220 (2001) 

Manufacturing 7,666,546 9,510,521    3,893,355 (1946)    10,012,043 (2000) 

Transportation 2,216,814 2,775,356 1,146,637 (1947)  3,735,767 (2000) 

Trade 2,361,990 3,137,477 1,084,927 (1958)      4,003,021 (2000) 

F.I.R.E. 1,966,200 3,975,799 375,278 (1945) 5,366,797 (2001) 

Services 5,634,071 4,397,730 998,032 (1945)    16,562,089 (2001) 

Government 8,923,996 4,230,961 2,140,346 (1947)   16,270,362 (2001) 

 
 
 
 
 

 

Table 2.  Stationarity and Cointegration Tests 

Hadri (2000) Stationarity Tests Homoscedastic 
Errors 

Heteroscedastic 
Errors Serial Dependence 

H0: Log of real state income per capita 
is stationary 101.289* 95.006* 10.431* 

H0: Gini is stationary 47.961* 41.800* 10.574* 

Cointegration Tests Kao (1999)  Pedroni (1995)  

H0: No Cointegration -5.857* -45.282*  

   
* Significant at the 1% level. 

 



 

 

Table 3.  Alternative Estimates of Income Inequality and Real State Income Per Capita  
 

 Without Interaction, ARDL (1,1) With Interaction, ARDL (1,1,1) 

 
MG Pooled MG 

Dynamic 
FE MG Pooled MG 

Dynamic 
FE 

 (1) (2) (3) (4) (5) (6) 

Adjustment coefficient, (Φ) -0.149** -0.124** -0.095** -0.266** -0.141** -0.088** 

 
(1.721) (0.020) (0.008) (0.022) (0.018) (0.009) 

Gini, long run (θ1) -3.867* 0.234 -0.587 -17.920** -15.602** -17.809** 

 
(1.721) (0.234) (0.370) (0.861) (0.316) (0.744) 

   1.894** 1.676** 1.819** Gini Χ log real state income 
per capita, long run (θ2)     (0.085) (0.034) (0.080) 

 
*, **: Significant at the 0.05, 0.01 level, respectively.  Standard errors in parentheses.  Dependent 
variable in each estimation is the log of real state income per capita. 

 
 
 
 

Table 4.  Alternative Estimates of Income Inequality and Real State Income Per Capita, Schwarz 
Bayesian Criterion  

 

 Without Interaction, SBC With Interaction, SBC 

 MG Pooled MG Static FE MG Pooled MG Static FE 
 (1) (2) (3) (4) (5) (6) 

Adjustment coefficient, (Φ) -0.116** -0.132**  -0.310** -0.197**  

 
(0.017) (0.016)  (0.032) (0.035)  

Gini, long run (θ1) -1.352 -0.424* -0.440** -17.971** -16.216** -18.610** 

 
(1.340) (0.221) (0.077) (0.894) (0.214) (0.145) 

   1.887** 1.745** 1.967** Gini Χ log real state income per 
capita, long run (θ2)     (0.091) (0.023) (0.015) 

 
*, **: Significant at the 0.05, 0.01 level, respectively.  Standard errors in parentheses.  The maximum 
number of lags in each estimation is three.  Dependent variable in each estimation is the log of real state 
income per capita. 
 



 

 

Table 5.  Income Inequality and Real State Income Per Capita 
 

 ARDL (one lag) 

 
MG 

Pooled 
MG 

Dynamic 
FE 

 (1) (2) (3) 

Adjustment coefficient, (Φ) -0.738** -0.176** -0.124** 
(0.038) (0.026) (0.010) 

Gini, long run (θ1) -17.212** -17.032** -16.595** 
(0.555) (0.306) (0.647) 

1.869** 1.815** 1.725** Gini Χ log real state income 
per capita, long run (θ2) (0.062) (0.033) (0.070) 

Farming, long run 0.002 0.012** -0.010 
(0.006) (0.003) (0.009) 

Construction, long run 0.021** 0.030** 0.035** 
(0.005) (0.005) (0.012) 

Manufacturing, long run 0.014* 0.016** 0.026** 
(0.014) (0.004) (0.011) 

Transportation, long run -0.012 0.001 0.046* 
(0.015) (0.008) (0.022) 

Trade, long run -0.032* -0.025** 0.001 
(0.015) (0.007) (0.019) 

Fire, long run -0.037** -0.020** -0.074** 
(0.014) (0.008) (0.018) 

Services, long run -0.015 -0.078** 0.011 
(0.016) (0.011) (0.020) 

Government, long run 0.010 0.024* -0.074** 
(0.017) (0.011) (0.025) 

 
*, **: Significant at the 0.05, 0.01 level, respectively.  Standard errors in parentheses.  
Dependent variable in each estimation is the log of real state income per capita. 

 



 

 

V. Appendix 

 
Table A1.  State-Specific Mean Group Estimates, ARDL (1,1,1) 

 

State 
Adjustment 

coefficient, (Φ) Gini, long run (θ1) 
Gini Χ real state 

income, long run (θ2) Log likelihood 
AL  -0.269**  -28.654**  2.842**  202.680 
AZ  -0.309**  -15.240**  1.698**  191.490 
AR  -0.122*  -23.010**  2.450**  177.140 
CA  -0.114  -18.965**  1.869**  201.210 
CO  -0.204**  -8.883**  1.052**  190.520 
CT  -0.097*  -10.867  1.005  180.130 
DE  -0.237*  -6.910  0.887  151.470 
FL  -0.227**  -14.899**  1.550**  193.270 
GA  -0.377**  -21.567**  2.269**  221.770 
ID  -0.559**  -15.060**  1.658**  184.730 
IL  -0.022  -28.236  3.113  213.250 
IN  -0.189**  -14.254**  1.422**  227.300 
IA  -0.555**  -18.027**  1.874**  199.890 
KS  -0.310**  -13.890**  1.509**  206.990 
KY  -0.043  -18.755  1.899  203.290 
LA  -0.100  -15.492*  1.865**  180.670 
ME  -0.087  -11.547  1.063  190.490 
MD  -0.378**  -14.132**  1.556**  202.230 
MA  -0.353**  -18.061**  1.798**  194.150 
MI  -0.443**  -19.412**  2.096**  197.970 
MN  -0.588**  -17.678**  1.982**  221.050 
MS  -0.184**  -22.817**  2.346**  174.980 
MO  -0.149*  -9.709*  1.148**  243.740 
MT  -0.316**  -18.359**  1.985**  171.110 
NE  -0.203**  -17.410**  1.872**  195.490 
NV  -0.271**  -25.425**  2.683**  169.910 
NH  -0.500**  -19.337**  2.056**  175.590 
NJ  -0.331**  -15.335**  1.532**  190.850 
NM  -0.321**  -13.567**  1.511**  174.380 
NY  -0.021  -39.230  3.611  192.960 
NC  -0.257**  -23.419**  2.520**  210.220 
ND  -0.377**  -17.476**  1.869**  165.340 
OH  -0.174**  -14.899**  1.585**  230.560 
OK  -0.224**  -12.111**  1.396**  177.900 
OR  -0.237**  -19.308**  2.089**  217.890 
PA  -0.523**  -16.112**  1.731**  214.410 
RI  -0.626**  -18.208**  2.033**  207.860 
SC  -0.068  -29.360**  3.089**  185.860 
SD  -0.441**  -18.400**  1.986**  173.680 
TN  -0.263**  -22.935**  2.530**  198.640 
TX  -0.193**  -14.087**  1.435**  199.600 
UT  -0.244*  -13.920**  1.489**  200.830 
VT  -0.101  -21.717**  2.302**  186.590 
VA  -0.200*  -20.247**  2.198**  220.300 
WA  -0.213*  -17.995**  1.924**  194.370 
WV  -0.106  -7.571  0.655  177.800 
WI  -0.266**  -16.129**  1.657**  231.410 
WY  -0.366**  -21.525**  2.246**  184.660 
Mean Group  -0.266**  -17.920**  1.894**  9398.630 

 
*, **: Significant at the 0.05, 0.01 level, respectively.  Dependent variable in each estimation is the log of 
real state income per capita. 



 

 

Notes 
 
1 There are many possible interpretations of the gini coefficient (see Kakwani 1980), but perhaps the most common 

is the gini coefficient as one minus twice the area under the Lorenz curve, the later being a plot of the cumulative 

proportion of income received against the cumulative proportion of income units, arranged in ascending order of 

income. 
2 Our gini coefficients are constructed from state-level distributional data taken from tax returns compiled by the 

IRS.  Piketty and Saez (2003) look at various indicators of income inequality for the entire U.S. also using IRS tax 

return data, and find a pattern similar to Figure 1.  They measure only top income shares (top 10%, top 90-95%, 

top95-99%, and top 1%), not gini coefficients.  Their measures start in 1913, not 1945, and are calculated for the 

U.S. as a whole, not for individual states.  Despite these differences, they find consistently increasing income 

inequality since 1945 for the top 90-95% and top 95-99% (as do we), but large spikes in income inequality starting 

in the 1980s for the top 10% and top 1% (see Figures 1 and 2, pages 11-12). 
3 Of course, the famous Kuznets (1955) curve between the level of income and income inequality is highly 

nonlinear. 
4 The IRS tax data used to construct the gini coefficients is available starting in 1916, but there are several reasons 

to not sample before 1945.  First, war time wage controls were used extensively throughout the period 1941-1944.  

Secondly, before World War II only a small fraction of individuals had to file tax returns.  See Piketty and Saez 

(2003) for a discussion of these issues. 
5 The Gini coefficients are calculated using data on the number of returns and the adjusted gross income (before 

taxes) by state and by size of the adjusted gross income.  This distributional data is available annually from various 

publications by the Internal Revenue Service.  For the years 1945 to 1981, the data is available in the Statistics of 

Income, Individual Income Tax Returns annual series.  For the years 1982 to 1987, the data series was not published 

but is available by request from the Internal Revenue Service.  For the years 1988 to 2001, the data is available in 

the Statistics of Income Bulletin quarterly series. 
6 The distribution of wage and salary income by state, an informative but more narrow measure of income, is not 

available prior to 1970. 
7 We use the BEA’s calculation of per capita state income instead of an IRS-based measure of state per capita 

income because IRS data is based on tax units, not individuals.  Under currently tax law, for example, a tax unit can 

be defined as a married couple living together, or as a single adult.  Moreover, each may or may not have 

dependents. 
8 The mining industry wage and salary variable is not included because of missing data.  Government is the sum of 

national, state, and local government wages and salaries. 
9 Panizza (2002) also experiments with the IRS-based gini coefficients, but only at ten year spacings. 

 



 

 

Notes 
 
10 The correlation between the IRS and Census gini indexes for the six years of commonality is 0.52.  While 

seemingly small, it is higher than the 0.44 found by Panizza (2002) for similar data, or the 0.48 between estimates 

for OECD country data of Denininger and Squire (1996) and Gottschalk and Smeeding (1997).  
11 Akhand and Liu (2002) compare the IRS-based income inequality data with inequality data from the Current 

Population Survey (CPS), a third possible source for data.  They find the IRS data to be superior because of 

significant response errors in the CPS.  According to Akhand and Liu, the CPS data is systematically biased 

downward by as much as 32% because of “over-reporting of earnings by individuals in the lower tail of the income 

distribution and under-reporting by individuals in the upper tail of the income distribution” (p. 258). 
12 For general discussions of this literature see Baltagi (2001) chapter 12.  For recent empirical applications see 

Martinez-Zarzoso and Bengochea-Morancho (2004) and Freeman (2000). 
13 These are known as the Z-tau test statistics in Hadri (2000). 

 


